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The structural architecture and the anatomical connectivity of the human brain show
different organizational principles at distinct spatial scales. Histological staining and light
microscopy techniques have been widely used in classical neuroanatomical studies
to unravel brain organization. Using such techniques is a laborious task performed
on 2-dimensional histological sections by skilled anatomists possibly aided by semi-
automated algorithms. With the recent advent of modern magnetic resonance imaging
(MRI) contrast mechanisms, cortical layers and columns can now be reliably identified
and their structural properties quantified post-mortem. These developments are allowing
the investigation of neuroanatomical features of the brain at a spatial resolution that
could be interfaced with that of histology. Diffusion MRI and tractography techniques,
in particular, have been used to probe the architecture of both white and gray matter
in three dimensions. Combined with mathematical network analysis, these techniques
are increasingly influential in the investigation of the macro-, meso-, and microscopic
organization of brain connectivity and anatomy, both in vivo and ex vivo. Diffusion MRI-
based techniques in combination with histology approaches can therefore support the
endeavor of creating multimodal atlases that take into account the different spatial scales
or levels on which the brain is organized. The aim of this review is to illustrate and discuss
the structural architecture and the anatomical connectivity of the human brain at different
spatial scales and how recently developed diffusion MRI techniques can help investigate
these.
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Introduction

To fully understand how the brain works in both normal and pathological conditions, we need both
functional and anatomical maps. The endeavor of describing the anatomy of the brain has been
greatly advanced during the last century. The brain is a complex electrochemical device and, as
such, it comprises several fundamental components (i.e., neurons and neuroglia), which are highly
interconnected. To reverse engineer any device, we often need to identify its main constituent parts
and how these are connected to each other. The same rationale can apply to the study of the nervous
system. Therefore, one way to increase our understanding of the brain is to identify its different
components and map their afferent and efferent connections.
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Importantly, the nature of the components and connections
depends on the spatial scale at which the brain is investigated.
At the macroscopic level (thousands of microns) the brain is
made of different cortical areas and subcortical structures, which
are connected to each other via short and long axonal bundles.
Zooming in and looking at the mesoscopic organization of the
cortical sheet (hundreds of microns), it can be observed that
every cortical area shows a different layered organization of
cells and neurites and that every layer has its own intracortical
connectivity pattern. Finally, from the microscopic viewpoint
(tens of microns), axons in white matter are not equally
distributed everywhere, but have different packing densities and
diameters.

Recent developments in the field of magnetic resonance
imaging (MRI) have made it possible to probe both the function
and the anatomy of the brain in vivo at sub-millimeter resolution.
One MRI method in particular is gaining importance for the
study of anatomy and structural connectivity of the brain:
diffusion magnetic resonance imaging (dMRI). This technique is
sensitive to the diffusion of water molecules within the different
biological compartments in the brain, such as intracellular and
extracellular compartments. This enables it to delineate with
high accuracy the areas that have been affected by a stroke
as well as to identify the main axonal orientation of neuronal
fibers within an imaging voxel. Moreover, although dMRI
has been mostly used to probe macroscale brain connectivity
within white matter, it has recently also been used to highlight
mesoscopic differences in lamination patterns within human
cortical gray matter. Finally, dMRI-based techniques have also
shown the potential to study the microscopic organization
of white matter by estimating axonal packing densities and
diameters.

Given these premises, the aim of this work is to review
current knowledge about the structural architecture of the brain
at different scales and how such knowledge can be advanced
using dMRI. Diffusion MRI and dMRI-based techniques are
first introduced together with their capability to resolve the
anatomical connectivity patterns of the brain. After this, the
power of dMRI to probe neuroanatomy at three different scales,
namely the macro-, meso-, and microscopic ones, is discussed.
This is done by reviewing both some of the most prominent
neuroanatomical studies based on histological techniques and
recent works coming from the dMRI field. The ultimate aim of
this review is to provide the neuroimaging community, which
comprises both neuroscientists and clinicians, with a description
of tools and evidence that can help to understand the structural
architecture of the brain.

Diffusion MRI

The development of MR neuroimaging techniques has made
it possible to reach sub-millimeter resolution to map both the
anatomy and the function of the brain. However, standard
MRI acquisitions based on T1 and T2 contrasts give only a
partial description of the brain’s microstructural composition.
Moreover, these contrasts contain little information about

the anatomical connectivity between different cortical regions.
Diffusion MRI (dMRI) overcomes some of these limitations.
Diffusion MRI encodes the displacement of water molecules
within the different brain compartments, which can be used to
characterize the brain’s structural organization.

Physical and Imaging Principles of Diffusion
MRI
Free-floating molecules in a gaseous or fluid medium display
thermal motion in a random walk pattern: a behavior known as
Brownian motion or passive diffusion. Einstein (1905) formalized
this diffusion behavior in mathematical terms for randomly
diffusing particles in an isotropic medium (i.e., free diffusion).
Statistically, the displacement probability distribution within an
isotropic medium can be modeled using a Gaussian distribution,
with its variance and isoprobability contours moving outward
with time. However, in the brain, cell membranes, organelles, and
myelin sheaths create barriers and form biological compartments
that constrain the displacement of water molecules, modifying
their statistical behavior over time. Water diffusion measured
over all but the shortest time intervals in biological tissue such
as the brain is typically hindered or restricted by these barriers
and anisotropic in nature. Measuring water diffusion with dMRI
characterizes the so-called apparent diffusion coefficient (ADC)
dependent on physical factors (diffusingmolecule and viscosity of
the medium), parameters of the measurement (discussed below)
and the biophysical environment of barriers and compartments.
Brain white matter mostly consists of myelinated axons that
are often reasonably coherently organized in bundles or tracts.
There are two important microstructure compartments in white
matter in which anisotropic water diffusion can be measured
with dMRI: the intra–axonal and an extra–axonal compartment.
Water diffusion within the confines of the axonal membrane
is said to be restricted, while diffusion within the extracellular
space is said to be hindered. The latter can be well approximated
using an anisotropic Gaussian probability distribution, but for
restricted diffusion the Gaussian assumption does not hold.

To measure the displacement of moving spins with dMRI,
the pulsed gradient spin echo (PGSE) sequence is mostly used
(Stejskal and Tanner, 1965). In this MRI pulse sequence, two
high-amplitude diffusion gradients are applied to dephase and,
after a spin-echo refocusing pulse has been delivered, rephase
stationary spins (protons, Figure 1). Spins that are moving
along the direction of the applied diffusion gradient will show
bulk dephasing and, consequently, signal loss. The signal loss
is proportional to the amount of diffusion, the area under the
diffusion encoding gradients and to the time interval between
the two gradients. In a mono-exponential signal decay model, the
b-value is used as a measure of diffusion encoding in the diffusion
gradients:

b = γ 2δ2|G|2
(

� − δ

3

)
(1)

where b is the b-value measured in s/mm2, γ is the gyromagnetic
ratio, δ is the duration of the diffusion pulse, | G| is the amplitude
of the diffusion gradients and � is the time interval between
the two diffusion gradients (Figure 1). The monoexponential
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FIGURE 1 | Schematic representation of the pulsed gradient spin echo
(PGSE) diffusion sequence and water spins behavior. The classical
PGSE sequence consists in the application of an initial 90◦ radiofrequency
(RF) pulse and a refocusing 180◦ RF pulse. When interested in probing the
diffusion behavior of water molecules, two diffusion gradient pulses are
applied. These are characterized by amplitude (|G|), duration (δ) and time

between their application (�). The diffusion gradients tag the spins of moving
water molecules. This means that, those spins that move along the direction
of the applied q-vector will elicit a signal reduction since they will have lost
their coherence. The free induction decay signal is then acquired at echo
time. Reprinted by permission from Macmillan Publishers Ltd (Patterson
et al., 2008).

approximation is valid at low b-values and models the
signal as:

Si = S0e−bDi (2)

where Si is the measured signal with the ith diffusion encoding
gradient in direction �Gi= [xi, yi, zi], S0 is the measured signal
without diffusion encoding, b is the b-value and Di is the
ADC. A dMRI experiment will consist of a few unweighted
S0 measurements and a larger number of measurements with
different diffusion gradient directions. Under the narrow-pulse
approximation (δ<<�), the ADC Di can then be estimated
in every voxel of the image and for every sampled diffusion
direction �Gi

The diffusion gradients could be said to probe a three-
dimensional space called q-space (Figure 2; Callaghan et al., 1988;
Hagmann et al., 2006). Every sampled point can be represented
using vector �q:

�q = γ δ �G
2π

(3)

where �G is the diffusion gradient vector. Q-space imaging
consists in estimating the full probability distribution of water
molecules’ displacement, the so-called diffusion propagator, or its
statistical moments, by sampling points in q-space and using the
Fourier transform relationship between q-space and the diffusion
propagator (Callaghan et al., 1988). Diffusion spectrum imaging
(DSI; Wedeen et al., 2005) links the diffusion signal directly to the
diffusion propagator by sampling the entire three dimensional
q-space on a Cartesian grid and using discrete Fourier analysis.

Diffusion Tensor Imaging and Beyond
Diffusion tensor imaging (DTI; Basser et al., 1994; Basser and
Pierpaoli, 1996) was introduced to characterize diffusion in

an anisotropic medium, such as brain white matter with a
relatively simple parametric model. DTI today still represents
a clinical and research standard for analyzing dMRI data. By
sampling q-space using at least six linearly independent diffusion
encoding directions and a non-diffusion weighted volume and
extending Eq. 2, it is possible to model the diffusion behavior
of water molecules in three dimensions using a rank-2 tensor
representation:

D =
⎡
⎣Dxx Dxy Dxz
Dxy Dyy Dyz
Dxz Dyz Dzz

⎤
⎦ (4)

This symmetric matrix contains six independent components
that summarize the diffusion properties of water molecules
within a voxel.

DTI models water diffusion using a Gaussian distribution,
i.e., the average displacement due to diffusion of the sampled
molecules will be characterized by only one peak. Therefore,
using DTI it is only possible to reconstruct one main direction
of diffusion. This direction can be found by decomposing (i.e.,
diagonalizing) the tensorial matrix into so-called eigenvalues and
eigenvectors:

D =
⎡
⎣ e1x e2x e3x
e1y e2y e3y
e1z e2z e3z

⎤
⎦
T

·
⎡
⎣λ1 0 0
0 λ2 0
0 0 λ3

⎤
⎦ ·

⎡
⎣ e1x e2x e3x
e1y e2y e3y
e1z e2z e3z

⎤
⎦ (5)

where e1, e2, and e3 are the eigenvectors, λ1, λ2, and λ3
are the eigenvalues and T the transpose operator. Intuitively,
this decomposition reflects the amount of displacement due to
diffusion (the eigenvalues) along three orthogonal orientations
(the eigenvectors). This means that in a highly isotropic voxel
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FIGURE 2 | Q-space encoding example. Q-space is represented as a two
dimensional space for simplification purposes (top). Three different shells at
three different b-values are outlined. On each shell, several diffusion encoding
directions (q-vectors) are sampled. Example axial slice obtained at different
positions in q-space (bottom). (A) When the diffusion encoding gradients are
switched off, the so-called T2-weighted b0 volume is obtained. (B,C) show
the effect of sampling q-space at two different diffusion encoding orientations
lying on the same b-shell. While SNR and amount of probed diffusion are kept
constant, the contrast changes at different anatomical locations. When
sampling along the left–right direction, the body of the corpus callosum show
a higher signal drop (C) in respect to the sampling along the anterior-posterior
direction (B). This reflects the fact that, in the body of the corpus callosum,
axons are mainly oriented along the left–right orientation. (D–F) show the
effects of sampling along the same diffusion encoding orientation while
increasing b-value. In this case, the total SNR decreases while moving from
lower to higher b-values, but the contrast increases. As an effect, different
anatomical structures are more strongly differentiable between each other
according to their main axonal orientation.

(e.g., one that lies within the ventricles) the eigenvalues will
roughly be the same and have a relatively high value. On the
other hand, in anisotropic voxels (e.g., those lying in the corpus
callosum) the eigenvalues will be different from each other, with
the largest eigenvalue (usually taken, by reordering, to be λ1 and
called major eigenvalue) much larger than the other two. The
corresponding major eigenvector e1 then represents the main
direction of diffusion. The complete eigenvalue decomposition
allows the representation of the water molecules’ displacement
within a voxel as a three-dimensional equiprobability surface, the
well-known diffusion tensor ellipsoid (Figure 3).

It can be assumed that the main orientation e1 of this
ellipsoid will correspond to the orientation of the axons in those
voxels with simple geometry and a high degree of coherence
of axonal bundles. Furthermore, several scalar indices can be
estimated from the diffusion tensor. Mean diffusivity (MD)
measures the average degree of water diffusion within a voxel
and is computed as the average of the three eigenvalues. For
low b-values (i.e., <3000 s/mm2), MD does not clearly highlight
differences between white and gray matter, but it is very useful to
discriminate pathological diffusion behavior due to, e.g., ischemic
stroke. Fractional anisotropy (FA; Basser and Pierpaoli, 1996)
measures the directional specificity of diffusion as obtained by
DTI analysis. FA values, essentially a normalized measure of
variance of the eigenvalues, range between 0 (fully isotropic)
and 1 (fully anisotropic). Both the MD and FA indices have
been widely used to study neurodevelopment (e.g., McKinstry
et al., 2002), axonal integrity (e.g., Khayal et al., 2011), clinical
conditions (for a review, see: Dong et al., 2004) and plasticity (for
a review, see: Zatorre et al., 2012).

As already hinted to, the main limitation of DTI is its
incapability of resolving complex fiber architecture within an
imaging voxel such as large curvature, divergence or splaying,
or two or more differently oriented fibers. Recently it has
been shown that at the nominal resolution of current day
standard dMRI acquisition (2–3 mm isotropic voxels), more
than 90% of voxels contains more than one fiber bundle
(Jeurissen et al., 2013). Therefore, more sophisticated models
for dMRI data have been proposed that can better represent
such complex fiber architecture. In the case of multiple fiber
components with different orientations the peaks of the ADC
profile do not directly correspond to actual fiber orientations
(Figure 3). In the case of a 90◦ crossing, for example, there
is an offset of 45◦ (Alexander et al., 2002; Frank, 2002).
Furthermore, the ADC is computed under the assumption
of monoexponential signal decay, which breaks down at high
b-values. Therefore, more sophisticated models for complex
fiber architecture tend to avoid the ADC formulation. DSI,
(Wedeen et al., 2005) reconstructs the diffusion propagator or
displacement probability in a model-free or non-parametric way
by directly computing the Fourier transform of the measured
q-space signal as defined above. In order for this approach to
work it is necessary to sample the q-space very densely (i.e.,
use a high number of diffusion encoding directions at different
b-values). A simplification to this model is represented by high
angular resolution diffusion imaging (HARDI) acquisitions. By
probing a high number of diffusion encoding directions only
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FIGURE 3 | Example of three-dimensional profiles obtained using
different dMRI methods in the case of single fiber configuration and
two fibers crossing at 90◦ (top row). Visualizing the three-dimensional ADC
profile, it can be seen that in the case of crossing fibers, the maxima do not
coincide with the true fiber orientations. When using diffusion tensor imaging
(DTI), the single fiber case is reconstructed accurately, with the ellipsoid being
very anisotropic in the direction of the fiber. When two fibers are crossing the
DTI derived ellipsoid will turn into a disc, losing the possibility to discriminate
the two main orientations. The last two techniques shown, namely QBI and
CSD, reconstruct the three dimensional orientation distribution functions more
accurately. The figure shows that the dODF looks less sharply defined when
compared to the fODF.

on one spherical shell in q-space (i.e., using one b-value), it
is possible to infer non-Gaussian effects in the reconstruction
of ADC profiles (Alexander et al., 2002; Frank, 2002). Q-ball
imaging (QBI; Tuch, 2004) was the first attempt to model
multiple fiber components in a voxel. Using a model-free
approach, QBI reconstructs the spin displacement orientation
distribution function (dODF). Like the diffusion tensor ellipsoid,
the dODF represents a probability function defined over a

spherical surface that maps the likelihood of water molecules
to move along a certain orientation (in either direction) due
to diffusion in three dimensions (Figure 3). The dODF peaks
can then be assumed to represent the orientations of multiple
fiber bundles within a specific voxel. By mapping the water
displacement, QBI dODFs are not very sharp as water will still
have some directional components orthogonal to the main axon
directions. Spherical deconvolution (Tournier et al., 2004) and,
subsequently, constrained spherical deconvolution (Tournier
et al., 2007), aims at modeling the actual fiber orientation
distribution function (fODF), rather than water displacement.
The fODF reflects the actual orientations of distinct fiber
populations by modeling complex fiber configurations as linear
combinations of Dirac’s delta functions (Figure 3). Further
model-free approaches are such as the diffusion orientation
transform (Ozarslan et al., 2006) and persistent angular structure
MRI (Jansons and Alexander, 2003; Parker and Alexander,
2005) can be considered as extensions of QBI and spherical
deconvolution respectively.

Moreover, a generalization of single shell (i.e., single
b-value) HARDI-based techniques has been proposed.
Generalized q-sampling imaging (GQI; Yeh et al., 2010)
increases the sensitivity to multiple fiber compartments which
are characterized by different microstructural properties by
sampling q-space using multiple shells. Model-based approaches
that are capable of resolving more than one fiber population
in a voxel have also been proposed. The multi-tensor model
is a generalization of the classical DTI approach, where two
or more diffusion tensors are fitted to the data (Tuch et al.,
2002). A Bayesian framework has been described by which
it is possible to fit an isotropic component and several fiber
components to the sampled diffusion signal, with an estimate
of orientational uncertainty (Behrens et al., 2007). Model-based
multi-compartment approaches (Assaf and Basser, 2005; Zhang
et al., 2012) have recently been used to probe the microstructural
organization of white matter by estimating axonal packing
density or neurite dispersion.

Tractography
Any set of modeled local orientations can be used for
tractography or fiber tracking. That is, once the main orientation
has been estimated in every voxel, it is possible to reconstruct
tracts connecting different brain regions by further modeling
techniques. Several algorithms have been developed to perform
tractography. These algorithms can be clustered in different
classes from the methodological point of view. Those approaches
that, given a seed point where the tracking begins, proceed
in discrete steps are named streamline or local integration
algorithms. These further comprise two sub-classes, deterministic
and probabilistic, according to whether they are taking into
account the uncertainty in the estimation of the local fiber
orientation. Global tractography algorithms, on the other hand,
try to optimize the whole set of estimated local orientations at
once (Bastiani et al., 2012).

The classic local deterministic approach was based onDTI and
uses a streamline algorithm, which locally integrates the fiber path
using a step-wise approach (Figure 4). A streamline is initiated
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FIGURE 4 | Example of tractography algorithms. (A) shows the main DTI
eigenvector orientation as a RGB color coded map of a single coronal slice of
the human brain. This is obtained by separately mapping the x, y, and z
component of the main eigenvector on the three separate color channels of
the RGB color scale (scale bar: 2 cm). (B) shows the main eigenvector
orientation visualized on top of a FA axial slice. An example streamline is
mapped in yellow, which follows the main path crossing the corpus callosum.
(C) shows the results of tracking the pyramidal tract using a deterministic (left)
and a probabilistic (right) approach superimposed on a FA sagittal slice. Color
bar on the right indicates the confidence estimate obtained when using
probabilistic approaches. Reprinted by permission from Macmillan Publishers
Ltd (Craddock et al., 2013).

at a certain seed point and follows the main eigenvector of the
diffusion tensor, switching orientation as soon as it has entered a
new voxel (Conturo et al., 1999; Mori et al., 1999; Mori and van
Zijl, 2002). Since the paths reconstructed using this method are
biased by the coarse spatial resolution of dMRI data, continuous
approximation techniques of the tensor field have been proposed
to smooth the results and make them follow more biologically
plausible pathways (Basser et al., 2000). Despite their simplicity,
local deterministic tractography methods have been successfully
used to perform in vivo ‘virtual dissection’ of known fibers
analogous to classical post-mortem fiber dissection techniques
(Catani et al., 2002). Using prior knowledge, two regions of
interest (ROIs) are selected through which the tractography
streamlines should run. The problem of false positive fibers can be
partially addressed by selecting a third exclusion ROI to remove
the known spurious fibers.

However, dMRI data are inherently corrupted by a certain
amount noise, which depends on factors such as voxel size and
amount of diffusion weighting (i.e., b-value). As a result, the
estimation of the diffusion tensor contains a certain amount
of uncertainty, which is then reflected in its eigenvalues and
eigenvectors (Jones, 2003). Probabilistic tractography approaches
characterize the variability of tractography results resulting
from the uncertainty of the estimated local fiber directions
(Behrens et al., 2003b; Parker et al., 2003). This contrasts them
with deterministic approaches which give a single deterministic
answer for the connection of a given region-of-interest (ROI)
to any part of the brain. In a probabilistic algorithm the

direction of track propagation will be randomly selected
at every step by sampling the local orientation distribution
function. Probabilistic algorithms, therefore, will propagate
several hundreds of streamlines from the same seed point and
each iteration will result in a slightly different preferential path
(Figure 4). The result of a probabilistic tractography algorithm
for every single well-defined seed point is a three-dimensional
map of visitation counts for fibers through a voxel. The noisy
streamline or diffusing particle principles have been applied
both to tensor models and to complex local architecture models
(Parker and Alexander, 2005; Behrens et al., 2007; Tournier et al.,
2010).

Local streamline methods, either deterministic, or
probabilistic, use only local information to determine the
course of tracts. Global approaches move from local step-wise
reconstruction of fiber trajectories to a global goodness-of-fit of
the entire candidate fiber. Here, the measure of fit quantifies the
joint likelihood of the fiber given all voxel data it passes through
(Tuch et al., 2002; Jbabdi et al., 2007; Sherbondy et al., 2008,
2009; Zalesky and Fornito, 2009). The global fit measure makes
tractography less sensitive to modeling errors caused by local
noise (Jbabdi et al., 2007). A graph-based global tractography
algorithm (Iturria-Medina et al., 2007) and its extension to a
multiple direction fiber models (Sotiropoulos et al., 2010) have
been proposed. These algorithms reconceptualize the global
tractography problem as a shortest-path search in a graph,
in which (in contrast with the connectome graph, described
below) nodes are represented by the center of each white-matter
voxel. Since graph-weights are then defined as the probability of
voxel-center connections given the local ODFs, a shortest path
from one point to another in this graph constitutes a globally
optimized fiber. Since in a shortest-path search all possible nodes
are visited and the path lengths recorded, the n% shortest paths
then correspond to the n% most likely paths in the probabilistic
tractography sense. Thus, graph-based methods – and in fact,
global methods in general – are naturally used as probabilistic
methods. The only way to force a global graph based approach to
be deterministic is to select only its highest percentile results for
consideration, which corresponds to looking at only the single
shortest path that connects two points. Some global tractography
approaches even aim at constructing the entire connectivity
pattern between all the voxels in the acquired volume with
minimum user input and interaction. One way toward this
that has proven successful is to fit thousands of line segments
in the entire sampled volume and optimizing both local fit
of the segment to data they pass through and smoothness of
the segments (Kreher et al., 2008; Reisert et al., 2011). Global
approaches are computationally very expensive, but being less
dependent on user choices and more resistant to noise make
them very interesting.

Macroscopic Brain Organization:
Cortical Cartography and Connectomics

The cerebral cortex can be subdivided into two major parts,
the isocortex and allocortex (Vogt, 1910). The first one shows
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a clearly defined six-layered structure when looking at Nissl-
stained sections in almost all of its parts, while the latter shows
wide variability in its microstructural anatomical patterns. More
fine-grained parcellations of the whole cortical mantle were first
published at the beginning of the 20th century (Brodmann, 1909;
Vogt, 1910). Cytoarchitectural parcellations of the cortex have
been brought forward by several other groups (von Economo and
Koskinas, 1925; Bonin and Bailey, 1947; Sanides, 1962; Zilles and
Amunts, 2010, Amunts et al., 2013), while only few studies have
focused on myeloarchitecture (for a review, see: Nieuwenhuys,
2013). Recently, new methods have been introduced that can
provide details about other structural features of the cortex, such
as receptor mapping techniques (Geyer et al., 1998; Eickhoff et al.,
2008; Zilles and Amunts, 2009, Amunts et al., 2010).

Whereas neural cell bodies and intracortical neurites form
the basis of gray matter architecture, long and short association
tracts are the neuroanatomical substrate of white matter. The
latter constitutes 40% of the total matter volume in the central
nervous system of the adult human brain (Morell, 1984). Theodor
Hermann Meynert originally postulated the three principal
types of white matter tracts, now well known and accepted:
association tracts that link the different brain regions within
the same hemisphere, including both short (the U-shaped fibers
of Meynert) and long association fibers, commissural tracts
that connect the two hemispheres and afferent and efferent
projection tracts between the cerebral cortex and subcortical
structures.

To study the brain’s structural connectivity profile, several
animal studies have used tract tracing techniques that are based
on the axonal transport of injected neuronal tracers, either
anterogradely, or retrogradely. These studies have allowed the
detailed study of cortical networks, such as the hierarchical
organization of the visual system in the monkey brain (Felleman
and Van Essen, 1991). In most tract tracing studies to date the
strength of the connection (the number of projecting axons)
was not well quantified. The addition of a weighting index,
together with the direction of the connection, represents a
fundamental step to unravel the hierarchical structure between
functionally specialized brain areas (Markov and Kennedy, 2013).
Further studies have developed databases of weighted regional
connectivity indices, encoding connection strength, based on
tracing studies in the whole monkey cortex (Stephan et al.,
2000; Markov et al., 2011; Bakker et al., 2012). Furthermore,
since interspecies studies represent a fundamental step to
understand brain evolution and development, a translation
of these connectivity profiles to the human brain has been
attempted, based on macroanatomical landmarks and structural
similarities between human and macaques (Kotter and Wanke,
2005; Bezgin et al., 2012).

The neuroscientific endeavor of mapping the whole brain
connectivity map represents a fundamental effort to understand
cognition (Bressler and Menon, 2010; Van Essen and Ugurbil,
2012). Several attempts to map the macroscopic structural
connectivity pattern of the whole brain have been made through
history using different techniques (see for review: Catani et al.,
2013). To summarize all the results obtained by using different
methods in a convenient way, the brain can be conceptualized

as a set of nodes (cortical regions and subcortical nuclei)
connected by different edges (the axons). Mathematically, a set
of nodes and edges is called a graph and an entire branch of
mathematics (graph theory) is dedicated to studying it. The
graph representing all the cortico-cortical and cortico-subcortical
connections between cortical areas and subcortical nuclei has
been recently called the (macroscopic) connectome (Sporns et al.,
2005).

Diffusion MRI based tractography has made it possible to
trace in vivo the three principal types of macroscopic white
matter tracts that were originally described by Meynert using
post-mortem samples. Both the long association tracts and the
commissural fibers have been described in great detail in term
of their anatomical location and fiber termination area in vivo
and non-invasively (Wakana et al., 2004; Catani and Thiebaut
de Schotten, 2008). Fibers obtained from tractography analysis
connecting cortical areas to subcortical structures such as the
thalamus have been traced with a level of detail that resemble
that of classical post-mortem histological studies (Behrens
et al., 2003a). Moreover, advancements in dMRI acquisition
techniques and MRI hardware have increased the achievable
voxel resolution, allowing short-association tracts (u-fibers) to
be identified and segregated in the frontal lobe (Catani et al.,
2012). A recent study has used in vivo dMRI and post-
mortem polarized light imaging (PLI; Axer and Keyserlingk,
2000; Axer et al., 2001, 2011a,b; Larsen et al., 2007; Dammers
et al., 2010, 2012; Kleiner et al., 2012) to locate and validate
cortical insertion sites of transcallosal fibers in visual cortices
in humans, which are mostly located at the boundaries between
different cytoarchitectonically defined visual areas (Caspers et al.,
2015).

It is therefore possible to map the macrostructural connection
organization of the entire brain using dMRI and tractography in
two different ways. First, when the origin and termination sites
of tracts have been previously defined, tractography can be used
to reconstruct the entire macroscopic wiring map of the brain,
i.e., the macroscopic connectome, in vivo and non-invasively, i.e.,
the “connectome approach” (Figure 5; Hagmann et al., 2008; Van
Essen and Ugurbil, 2012; Sotiropoulos et al., 2013). Secondly,
the reverse approach is to define cortical areas using clustering
approaches based on large scale brain structural connectivity
profiles previously obtained using dMRI-based tractography,
i.e., the “clustering approach” (Figure 5; Behrens et al., 2003a;
Tomassini et al., 2007; Perrin et al., 2008; Mars et al., 2011). The
clustering approach has led to the identification and subdivision
of several cortical (Tomassini et al., 2007; Perrin et al., 2008;
Mars et al., 2011) and subcortical (Behrens et al., 2003a) areas.
More recently, the clustering of large parts or the entire human
neocortex into areas has been attempted using this approach
(Perrin et al., 2008; Gorbach et al., 2011).

The connectome matrix can be either weighted or binarized.
This means that the edges connecting the different nodes of
the connectome can either indicate the strength of a connection
between two different cortical areas or simply indicate the
existence or lack of a specific neural pathway. The typical
approach consists in initially obtaining a weighted connectivity
matrix that is then thresholded and binarized. Methods of
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FIGURE 5 | Two different approaches to the macroscale mapping of
the brain anatomical connectivity. The left column shows the
“connectome approach” processing pipeline. In this case, two processing
streams are used to define the nodes (cortical areas) and the edges (fiber
tracks), obtained using T1-weighted image segmentation and dMRI-based
tractography, respectively. The right column shows the “clustering
approach.” In this case, the nodes are defined from clustering connectivity
information obtained from tractography. Parcellations of the thalamus (top

row) and of the inferior parietal lobule (IPL, bottom row) are shown as
examples of anatomical delineation of subcortical and cortical structures,
respectively. Right column figure has originally been published in Hagmann
et al. (2008). Left column, top row figure is reprinted by permission from
Macmillan Publishers Ltd (Behrens et al., 2003a). Left column, bottom row
figure is republished with permission of the Society for Neuroscience, from
Mars et al. (2011); permission conveyed through Copyright Clearance
Center, Inc.

computing the weights include mean path length between the
nodes, averaged FA orMD values along the tracts, or probabilistic
and deterministic streamline counts (Li et al., 2012). As discussed
in the previous section, estimating ‘connectivity’ between areas
using dMRI is not straightforward. As a consequence, the
definition of the weights and the choice of the threshold used
to binarize the connectivity matrix can dramatically influence
the metrics obtained from connectome analysis (Bastiani et al.,
2012). Moreover, the matrix representing the connectome can be
symmetric or asymmetric. An asymmetric matrix indicates that
connection weights are different when tracking from ROI A to
ROI B in respect to those obtained when tracking in the opposite
direction. Since connectivity indices estimated from dMRI-based
tractography do not reflect the direction of the connections
between two areas, it is common practice to symmetrize the
connectivity matrix, for instance by taking the maximum of the
two weights between regions.

In the connectome approach, the application of network
analysis to the connectome graph has allowed neuroscientists
to describe different properties of cortical areas based on
their structural connectivity profiles, such as their degree of
segregation based on clustering approaches or their centrality in

the communication network (Rubinov and Sporns, 2010). It was
recently shown that some cortical regions form a so-called ‘rich
club,’ in the sense that those areas are not only very central areas
connected to many other areas (i.e., brain hubs), but that these
rich club members are also very strongly connected to each other
(van denHeuvel and Sporns, 2011). These findings can be used to
study several pathological conditions by bringing the analysis to
a new level of abstraction (van den Heuvel et al., 2010), in which
different brains can be compared based on their connectivity
profiles rather than using a common standard template. This can
even be used to compare the macroscale connectomes of two
different species and identify similarities and differences in their
connectivity profiles (Goulas et al., 2014).

Several issues continue to exist in the pursuit of whole brain
tractography in particular and caution should be exercised when
interpreting connectivity results obtained using diffusion MRI
tractography (Thomas et al., 2014). The selection of tractography
algorithm in reconstructing the macroscale connectome has a
considerable effect on resulting connectivity estimates (Bastiani
et al., 2012; Pestilli et al., 2014). Estimating connectivity indices
that are both accurate and specific is not straightforward.
Tractography algorithms can reconstruct streamlines that are
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well correlated to large axonal bundles or tracts, but false
positives and false negatives will often exist. When using
deterministic tractography algorithms, the number of streamlines
that successfully reached ROI B when seeded from ROI A is
usually taken as a measure of connectivity. However, this result
is highly dependent on the resolution of the dMRI data and
on the initial parameters set by the user, such as the position
of the ROIs, the step size, angular threshold and the intra-
voxel diffusion model. Moreover, connection probabilities that
are estimated when using probabilistic tractography algorithms
are not a measure of true anatomical connectivity. The term
‘probabilistic’ that is used to identify the class of tractography
algorithms points at the estimation of uncertainty in fiber
orientation obtained with a particular intra-voxel diffusion
model. Probabilistic tractography algorithms randomly select
the next propagation step within a confidence interval around
the estimated orientation, incorporating the effect of noise on
the local estimation of the main axonal orientation. The final
output of such algorithms will still be a streamline count
between two different ROIs, be it a count of probabilistically
propagated streamlines. Moreover, the distance between two
ROIs influences these total counts. The further apart two ROIs
are, the more difficult it will be for streamlines to propagate
from one to another (Jones, 2010). Furthermore, fibers can
cross or kiss within a voxel, and these configurations can be
resolved, though not clearly distinguished, when using HARDI
measurements and sophisticated orientation modeling. Fibers
can also bend or fan within a voxel, and these configurations
will be undistinguishable when looking at the dMRI signal of a
single voxel (for a review, see: Jbabdi and Johansen-Berg, 2011).
Recent works have tried to solve this issue by fitting helical
curves between neighboring voxels to determine whether fibers
within them will fan or bend (Savadjiev et al., 2006, 2008).
Moreover, it is also possible to determine the polarity of the
fanning (i.e., fanning-in or fanning-out), which is very useful
when performing tractography (Campbell et al., 2014). Another
suggested approach is to model the intravoxel diffusion fODFs
while breaking the assumption of symmetry. Since the recorded
dMRI signal is symmetric in a three-dimensional space, most
diffusion modeling techniques try to estimate a symmetric PDF.
Based on the fact that neuronal fibers are continuous between
adjacent voxels (i.e., a fiber that leaves a voxel with a certain
orientation should enter the next one with the same orientation),
a recent work has investigated the benefits of modeling local
fODFs as asymmetric functions (Reisert and Kiselev, 2011;
Reisert et al., 2012).

Mesoscopic Brain Organization: Cortical
Columns and Layers

Zooming in to the mesoscopic scale the brain again offers very
clear and coherent patterns of structural organization. From this
viewpoint it is especially interesting to observe the architecture
within cerebral neocortex. Roughly speaking, a grid-like structure
can be defined. With respect to the pial surface, neurons in gray
matter are organized radially (along the depth of the two to

four millimeter thick cortex) in columns and tangentially (along
the two dimension surface of the cortex) in layers. A single
cortical column spans the cortical layers vertically, from the pial
surface to the border between white and gray matter and, when
combined with other columns, forms a so-called macrocolumn
(Mountcastle, 1997). The definition of functional columns arose
from electrophysiological studies reporting that, when moving
electrodes perpendicularly to the gray matter surface, there
was a very strong degree of consistency in the receptive field
of neurons in the primary visual cortex (Hubel and Wiesel,
1962, 1968; Mountcastle, 1997). The anatomical characterization
of neocortical columns is notoriously difficult (Rakic, 2008),
except perhaps in rare cases such as the barrel fields in rodent
somatosensory cortex, leading to doubts about the anatomical
significance of the cortical column concept (Horton and Adams,
2005; da Costa and Martin, 2010). The laminar organization
of the cortex is much more neuroanatomically defined. From
the cytoarchitectural point of view, the cortex is organized
in layers, which are tangential to the pial surface and are
characterized by different densities, sizes and morphology of cell
bodies.

Since both cyto- and myeloarchitectonics show a layered
organization of the cortical mantle, the delineation of cortical
areas can be inferred from different patterns of cell bodies as well
as from changes in intracortical fiber configurations. However,
the relationship between cytoarchitecture and myeloarchitecture
in the cortex is still not clear. Hellwig (1993) showed, using
simulations, that it is possible to predict the myelin content over
the depth (i.e., layers) of the cortex from cytoarchitecture using
two assumptions, namely that neurons with a bigger cell body
size contribute more to the intracortical myelin content and that
the distribution of axon collaterals can be quantified using a
simple model. This model relates the amount of axon collaterals
originating from pyramidal neurons with their distance from the
respective cell body.

Each cortical layer tends to be characterized by different
afferent and efferent projections. Moreover, the brain can be
seen as a hierarchically organized system, where the hierarchical
level of a cortical area is determined by the distance (in
number of synaptic connections) from sensory areas. There
are three main patterns of laminar projections within the
hierarchically organized cortical system, namely ascending,
lateral, and descending projections (Felleman and Van Essen,
1991). These pathways tend to have relatively specific laminar
origin and termination patterns. Ascending pathways coming
from hierarchically lower cortical areas tend to terminate in
layer 4, lateral projections coming from hierarchically similar
cortical areas terminate across all layers in a columnar fashion
and descending projections coming from hierarchically higher
cortical areas avoid layer 4 and terminate both in superficial
and deep layers. Generally, infragranular layers (layers V and
VI) are those that mainly project to sub-cortical areas, while
supragranular layers (layers II and III) are connected to other
cortical locations (Jones, 1981; Fuster, 2005).

Diffusion MRI can be used to map the mesoscopic
organization of the brain (McKinstry et al., 2002). The high
resolution needed to look at the mesoscopic organization of
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the brain can be achieved by acquiring data from excised
tissue samples (D’Arceuil et al., 2007). Although long scanning
times can be achieved in ex vivo acquisitions to increase SNR,
different temperature conditions and tissue fixation effects have
an influence on dMRI contrast. This is usually reflected in
lower FA and lower MD values, as well as a greater challenges
in the tracking of axonal fibers (D’Arceuil and de Crespigny,
2007). Post-mortem dMRI imaging has recently progressed to
studying the structural organization of the entire human brain
at a voxel resolution of 0.7 mm isotropic (Figure 6; Miller
et al., 2011). Other studies have focused on smaller tissue
samples to reduce the necessary field of view and increase
isotropic voxel size, bringing it to 0.2–0.4 mm. Leuze et al.
(2014) describe the intra and inter-laminar connectivity within
post-mortem tissue samples of primary visual cortex using CSD-
based tractography (Figure 6). Furthermore, the organization
of primary visual cortex, where the highly myelinated stria
of Gennari can be found, was investigated using post-mortem
dMRI (Kleinnijenhuis et al., 2013). All the aforementioned
results show how powerful dMRI-based techniques are to resolve
complex anatomical features in the human brain. Moreover, in
studies of post-mortem tissue samples, dMRI volumes can be
combined with histological investigations of the same tissue.
This is potentially very useful especially to validate the results of
tractography and to better tune the available algorithms (Seehaus
et al., 2013).

Microscopic Brain Organization: Axonal
Densities and Diameters

From the microscopic viewpoint, both white and gray matter
show a wide range of different patterns in their structural

organization. Within white matter, axons themselves are
characterized by different diameters and packing densities. In the
corpus callosum of both macaque (Lamantia and Rakic, 1990)
and human (Aboitiz et al., 1992), several clusters of tracts have
been identified. Using light microscopy, Aboitiz et al. (1992)
examined the corpus callosum of several individuals and found
that thin axons are denser in the genu. Furthermore, their density
decreases moving toward the posterior midbody and increases
again in the splenium. On the other hand, thicker fibers exhibit
the opposite pattern, with a maximum density in the posterior
midbody of the corpus callosum. Interestingly, the authors were
not able to find any correlation between callosal volume and fiber
density and between gender and density.

DiffusionMRI has recently proven to be successful inmapping
brain microstructural architecture. Several new biophysical
markers have been estimated that show strong correlation to
information such as axonal diameters, axonal density and fiber
dispersion both in vivo and post-mortem. These advances have
been achieved by introducing new modeling approaches that aim
to estimate and separate the contributions of different biological
compartments within the white matter, most importantly the
restricted intra- and hindered extra-axonal compartments (Assaf
and Basser, 2005; Panagiotaki et al., 2012; Zhang et al.,
2012). If modeled correctly, these two separate water pools
are characterized by different signal profiles in standard pulsed
gradient spin echo (PGSE) experiments (Stanisz et al., 1997).
This difference in signal properties can be used to fit dMRI
microstructural compartment models of white matter to the
acquired data. Depending on the type of acquisition (e.g., how
many b-values) and selected model, it is then possible to infer
the microstructural characteristics of the tissue from model
parameters such as compartment volume fractions (for a review,
see: Panagiotaki et al., 2012). This makes it possible to infer

FIGURE 6 | Examples showing that dMRI can be a valuable tool to
investigate the mesoscopic organization of the brain. Recent
advancements in sequence programming and MRI hardware have allowed the
acquisition of whole-brain post-mortem samples at sub-millimeter resolution.
The left panel shows a comparison between a whole-brain post-mortem volume
acquired at 0.73 mm isotropic resolution (A,B) versus a typical in vivo
acquisition at 2 mm isotopic resolution (C,D). The insets show that the gain in
resolution allows a better segregation of fiber tracts that are usually not easily
distinguishable in vivo acquisitions, such as the tapetum of the corpus callosum
(Tap), the posterior thalamic radiation (PTR) and the superior longitudinal

fasciculus (SLF). The right panel shows an application of dMRI-based
tractography to the study of intracortical connectivity in primary visual cortex. (i)
shows a PLI section containing the stria of Gennari, (ii) is the same slice overlaid
on a myelin stained section of the same tissue, (iii) compares the color-coded
PLI section in (i) with the estimated fODFs obtained using CSD and (iv) the
results of tractography ran after estimating the fODFs, where the cortically
tangential component of the stria of Gennari is correctly reconstructed. The
figure on the left has originally been published in Miller et al. (2011). The figure
on the right is from Leuze et al. (2014), reprinted by permission of Oxford
University Press.
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patterns of axonal densities in the human brain as well as relative
axonal diameter distributions, both in vivo and ex vivo (Assaf
et al., 2008; Barazany et al., 2009; Alexander et al., 2010; Zhang
et al., 2012).

To study conduction velocities and signal transmission in the
nervous system, anatomists have been looking to the so-called
g-ratio, which is the ratio between the membrane-to-membrane
axonal diameter and the myelinated fiber diameter. Rushton
(1951) was the first to describe a mathematical approach to
define the optimal g-ratio in the nervous system, which predicted
to be 0.6. His theoretical framework was solely based on the
velocity of signal transmission, and recent studies have both
challenged and improved this framework in the central nervous
system of the rat (Chomiak andHu, 2009). The g-ratio represents
an important marker for detecting and studying progression
of diseases, axonal plasticity, and development. As recently
shown by Zikopoulos and Barbas (2011), the comparison of
different microstructural indices such as the g-ratio and axonal
diameters between individual axons of the frontal cortex of both
human and non-human primates can lead to the identification of
several differences and similarities between different species. Such
findings are fundamental to follow and explain the evolutionary
paths followed by different species and represent a necessary step
to understand the neuroanatomical underpinning of neurological
diseases. The dMRI models discussed above have also allowed
estimating the axonal g-ratio in vivo. By looking at the ratio
between the intra-axonal volume compartment, estimated using
the neurite orientation dispersion and density imaging technique
(NODDI; Zhang et al., 2012) and myelin water fraction, Stikov
et al. (2014) have shown that it the g-ratio can be computed in
vivo from human dMRI data.

Conclusion and Future Directions

Technical advancements in the world of microscopy are
constantly increasing both in level of detail and the field of view
that can be investigated. Recent efforts have already shown the
potential of classical cytoarchitectonic staining of an entire brain
at the very high resolution of 20 microns (Amunts et al., 2013)

with more individual datasets currently underway. Combining
such maps with observer-independent techniques to demarcate
architecturally different cortical areas (Schleicher et al., 1999) will
allow identifying new common structural principles which are
shared between individuals and which could not be described in
earlier works based on single subjects (Brodmann, 1909; Talairach
and Tournoux, 1988). Furthermore, it has been shown that three-
dimensional structural connections can be investigated in larger
tissue samples after having made the tissue transparent with
optical clearing techniques (Chung and Deisseroth, 2013).

Validation of dMRI-based techniques is still an important
issue. The combination of whole brain post-mortem findings
obtained from techniques such as PLI (Axer et al., 2011b)
with tractography results might represent a very good way to
address this. Both techniques in principle allow for a whole
brain three-dimensional reconstruction of fiber tracts. Here it
should be noted that such techniques, although at different
intrinsic resolutions, have the same basic tractography problem
to solve, starting from local fiber directions. Another technique
which can help in validating dMRI-based tractography results
is optical coherence tomography (OCT; Huang et al., 1991).
As an advantage over PLI, OCT does not require the tissue
to be sectioned and it is therefore less prone to deformation
artifacts. OCT provides both cyto (Magnain et al., 2014) and
myeloarchitectural information at resolutions of tens of microns.
This three-dimensional volumetric information can provide a
gold standard when coregistered to dMRI volumes (Wang et al.,
2011). At the microstructural mapping side, there is also the
need to improve the sensitivity and the specificity of estimated
microstructural indices and reconstructed axonal pathways (Bells
et al., 2011).

Finally, consortium projects including large population
studies have recently started mapping structural and functional
macroscale connectomes of adult human brains (Van Essen and
Ugurbil, 2012; Sotiropoulos et al., 2013) and newborns (http://
www.developingconnectome.org/) at the population level and at
very high resolution. Making these data available to the whole
scientific community must become a fundamental prior to any
future study aimed at mapping the structural architecture of the
brain.
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