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Abstract

Background: Gene expression studies have identified molecular subtypes of breast cancer with implications to
chemotherapy recommendations. For distinction of these types, a combination of immunohistochemistry (IHC)
markers, including proliferative activity of tumor cells, estimated by Ki67 labeling index is used. Clinical studies are
frequently based on IHC performed on tissue microarrays (TMA) with variable tissue sampling. This raises the need
for evidence-based sampling criteria for individual IHC biomarker studies. We present a novel tissue sampling
simulation model and demonstrate its application on Ki67 assessment in breast cancer tissue taking intratumoral
heterogeneity into account.

Methods: Whole slide images (WSI) of 297 breast cancer sections, immunohistochemically stained for Ki67, were
subjected to digital image analysis (DIA). Percentage of tumor cells stained for Ki67 was computed for hexagonal
tiles super-imposed on the WSI. From this, intratumoral Ki67 heterogeneity indicators (Haralick’s entropy values)
were extracted and used to dichotomize the tumors into homogeneous and heterogeneous subsets. Simulations
with random selection of hexagons, equivalent to 0.75 mm circular diameter TMA cores, were performed. The
tissue sampling requirements were investigated in relation to tumor heterogeneity using linear regression and
extended error analysis.

Results: The sampling requirements were dependent on the heterogeneity of the biomarker expression. To achieve
a coefficient error of 10 %, 5–6 cores were needed for homogeneous cases, 11–12 cores for heterogeneous cases;
in mixed tumor population 8 TMA cores were required. Similarly, to achieve the same accuracy, approximately 4,000
nuclei must be counted when the intratumor heterogeneity is mixed/unknown. Tumors of low proliferative activity
would require larger sampling (10–12 TMA cores, or 6,250 nuclei) to achieve the same error measurement results as
for highly proliferative tumors.

Conclusions: Our data show that optimal tissue sampling for IHC biomarker evaluation is dependent on the
heterogeneity of the tissue under study and needs to be determined on a per use basis. We propose a method
that can be applied to determine the sampling strategy for specific biomarkers, tissues and study targets. In
addition, our findings highlight the benefit of high-capacity computer-based IHC measurement techniques to
improve accuracy of the testing.
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sampling
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Background
Gene expression studies have identified distinct molecu-
lar subtypes of breast cancer (Luminal A, Luminal B,
HER2-enriched, basal-like and normal breast-like) with
markedly different behavior and prognosis [1]. Mean-
while, clinical practice of decision making largely relies
on the definition of Luminal A-like and Luminal B-like
disease, based on a combination of estrogen receptor
(ER), progesterone receptor (PgR) and Ki67 immunohis-
tochemistry (IHC) [2]. Proliferative activity of tumor
cells, estimated by Ki67 labeling index (Ki67 LI) is a key
indicator to support this stratification and provides
strong prognostic and predictive information on re-
sponse to chemotherapy [3]. Clinical utility of Ki67 LI is
hampered by the lack of robust measurement method-
ologies and widely acknowledged issue of intratumor
Ki67 heterogeneity expression. Consequently, it is hard
to achieve consensus on cut-off values to stratify the pa-
tients for therapeutic decisions [2]. Great effort has been
made to standardize the techniques for manual and
digital/automated Ki67 LI measurement, including cri-
teria for tissue sampling, hotspot detection, and digital
image analysis (DIA) tools [4–11].
Recently, Ki67 expression across distinct categories of

breast cancer specimens including whole slide surgical
specimens, needle core biopsies and tissue microarrays
(TMA) was investigated by Knutsvik et al. [1]. They
found significant differences of Ki67 LI estimates across
the different sample categories and suggested that
specimen-specific cut-off values should be applied for
practical use. While the recommendation is logical and
may compensate for the inherent differences of the tis-
sue sampling, its implementation requires better know-
ledge of measurement accuracy that can be achieved by
the techniques, in general. Additionally, Going [12] has
previously pointed out that the counting rules depend
on level of mitotic activity in tumors. This dependency
has not been investigated for tumors with varying Ki67
proliferation rates.
TMA has been often applied for discovery and clin-

ical studies of IHC biomarkers. Initially proposed by
Battifora [13], it enables multiple testing on numerous
tissue samples in a standardized, tissue-sparing, and high-
throughput manner by assembling small core biopsies
from morphologically representative areas of tissues onto
a single paraffin block [14]. The approach was further
refined into to a precise technique by Kononen [15]. One
inherent drawback of the TMA technique is related to the
limited fraction of the original sample included, raising
the need to achieve/be aware of adequate sampling re-
quirements [16]. Furthermore, TMA sampling require-
ments may vary depending on the target, lesion, tissue,
and the goal of investigation. Therefore, it is important to
determine the sampling parameters on a per-use basis.

For instance, three cores of 0.6 mm diameter will have al-
most a similar area to one core of 1 mm diameter
(0.85 mm2 versus 0.78 mm2), but provide different infor-
mation about the specimen as they are likely to represent
multiple areas [17, 18]. To address this issue, many studies
have been performed to determine the impact of size and
number of TMA cores [17, 19–28]. Most commonly, the
recommended number of TMA cores varied from one to
four with a diameter between 0.6 mm to 2 mm.
Determining optimal TMA sampling parameters by

physical sampling of the cores, is not only time-consuming,
but, more importantly, it limits the options of comprehen-
sive statistical modeling and decomposes the original tissue
sample to be used as the reference standard. To overcome
these limitations, the concept of a virtual TMA was ex-
plored by utilizing digital whole slide images (WSI) to
extract artificial TMA cores [25]. The approach has been
applied in several studies: Quintayo et al. [19] manually
marked core positions on a low magnification image
before acquiring images of the TMA cores at high mag-
nification; they also matched core positions between
H&E and IHC staining of the same tissue before the
acquired cores were subsequently assembled to a virtual
TMA of ductal carcinoma in situ. Pedersen et al. [28]
reported a similar procedure, but used random sam-
pling of six 1 mm diameter cores directly on 20x mag-
nification images of both H&E and IHC slides before
assembling the virtual TMA. The studies supported the
principle that assembling a set of virtual TMAs by
copying cores from digital images is a valuable ap-
proach in TMA-based tissue sampling modeling.
A methodology for comprehensive IHC evaluation with

appraisal of intratumoral heterogeneity aspects in WSIs of
Ki67-stained breast cancer tissue was recently proposed
[29]. It is based on systematic subsampling of DIA-
generated data into a hexagonal tiling (HexT) arrays and
enables computation of a comprehensive set of texture
and distribution indicators for Ki67 intratumoral variabil-
ity. While the primary aim of that study was to investigate
intratumoral heterogeneity of Ki67 expression, in the
current study we exploit the method for modeling tissue
sampling precision in homogeneous and heterogeneous
tumors dichotomized by spatial entropy of Ki67 expres-
sion: The hexagons in the HexT were chosen to simulate
virtual TMA cores (or corresponding fields of view in
conventional microscopy), with numbers of Ki67 positive
and negative cells established by DIA. Using the spatial
entropy extracted from the tiling as a spatial modeling of
the Ki67 expression the impact tissue and cell sample size
and tumor heterogeneity has on the accuracy of Ki67 LI
measurement becomes possible to investigate. We present
evidence that tumors with lower Ki67 LI as well as higher
spatial heterogeneity of Ki67 expression require relatively
larger sampling subsets to represent the global average of
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the biomarker expression in the tissue. Additionally, the
results support the notion, that tumors at the low end of
proliferation scale require higher cell counts [12].

Methods
Tissue and data
A data set consisting of primary breast cancer from 297
patients was used in this study. Details of the dataset are
reported in [29]. Briefly, 91 % of the tumors were inva-
sive ductal carcinoma of the breast (270/297). Tissue
samples were formalin-fixed, processed with standard
paraffin embedding techniques. IHC for Ki67 was per-
formed with antibody (clone MIB-1; DAKO, Glostrup,
DK) and multimer technology-based detection system
(ultraView Universal DAB, Ventana, Tucson, AZ, USA).
Digital WSIs were recorded using a ScanScope XT Slide
Scanner (Leica Aperio Technologies, Vista, CA, USA)
under 20x objective magnification (0.5-μm resolution)
and subsequently subjected to DIA by the Leica Aperio
Genie Classifier v.1/Nuclear v.9 algorithm. This tool was
previously calibrated based on tumor versus benign tis-
sue recognition and positive versus negative cells detec-
tion. DIA algorithm was previously validated using a
criterion standard achieved by stereological counting.
The research was approved by the Vilnius Regional Bio-
medical Research Ethics committee (reference number
NR.:40, date 2007-04-26). Additional informed consent
was not required for the use of archived material.

TMA simulation using hexagonal tiling
The HexT methodology forming the basis of automated
texture feature extraction is described in detail in [29].
Briefly, the coordinates of positive and negative nuclei
extracted by DIA were distributed into a dense HexT
overlaid on each WSI. The HexT was randomly posi-
tioned within the invasive tumor area (Fig. 1, Middle).
Hexagons containing no nuclear profiles by DIA were
regarded as missing data; hexagons containing fewer
than 100 nuclear profiles were regarded as insufficiently

sampled. A minimum requirement of 30 informative
hexagons per tumor was applied. Local Ki67 LI was cal-
culated for each hexagon to construct co-occurrence
matrix used to compute Haralick texture parameters.
The individual hexagons, with local Ki67 LI, were sub-

sequently used as TMA cores for the random sampling
simulations (Fig. 1, Right) and resembled approximately
a TMA core of 0.75 mm circular diameter and 0.44 mm2

area. The tumors were dichotomized into homogeneous
and heterogeneous groups based on the median entropy
value obtained by the HexT methodology. The sampling
simulations were carried out for all three tumor classes:
all/mixed, homogeneous and heterogeneous.
In addition to giving insight about the minimum number

of required TMA cores, the simulations can be used to
infer error measurements according to how many nuclei
are assessed. By dichotomizing the simulated cores by the
number of nuclei contained, the error measurement can
additionally be investigated as function of the nuclei count.

The experimental models and statistical methods
The impact caused by varying core number was investi-
gated for a range of numbers feasible to punch out in
practice. The chosen set of core numbers investigated is
denoted HexN = (1, 2, …, 15).
The practical evaluation of Ki67 LI scores from multiple

cores or tissue regions is not always based on individual
cell counts. Here we investigated the impact of three ways
of calculating the Ki67 LI from a set of subsampled virtual
cores: mean, median and by first summing total numbers
of positive and negative nuclei in the subsampled hexa-
gons, denoted sum. For a subsampled set H the Ki67 LI
by sum is simply:

sum Hð Þ ¼ Σ
i¼ 1

HexN

Pos hexið Þ
Σ
i¼ 1

HexN

Pos hexið Þ þΣ
i¼ 1

HexN

Neg hexið Þ;

where Pos and Neg are functions counting positive and
negative nuclei in a hexagon, respectively. Note that if

Fig. 1 Hexagonal tiling of digital image analysis data for tissue subsampling simulations. Left: Tumor marked by region of interest. Overlay
showing high resolution tissue. Middle: Tumor with results of DIA and the hexagonal grid for TMA simulation. Overlay showing high resolution
DIA results. Right: Hexagonal grid filtered according to nuclei count. Ki67 LI indicated by fill color. Light gray is low Ki67 LI with darker reds
showing larger Ki67 LI. Green hexagons illustrate one possible subsampled set of four hexagons

Besusparis et al. Diagnostic Pathology  (2016) 11:82 Page 3 of 10



TMA cores could sample the entire area of the tumors,
only the evaluation by “sum” would be equivalent to the
Ki67 LI determined by whole slide image analysis which
extracts all nuclei before calculating Ki67 ratio.
Two different methods were used to simulate the im-

pact of the number of hexagons/TMA cores on the preci-
sion of the sampling to represent the Ki67 LI reported by
the DIA of the entire region of interest (ROI). First, the
practice of “physical” TMA construction, in which a set of
cores is sampled only once, was simulated by randomly
sampling a subset of hexagons once. Single linear regres-
sion analysis was used to compare the data in a single
random selection.
Secondly, an error analysis was conducted by simulating

many samplings of TMA subsets with core numbers of
sizes HexN= (1, 2, …, 15) per case. Each subset is sampled
from the set of hexagonal tiles without replacement, but
all hexagons are replaced before sampling a new subset.
From the resulting sampling distribution, error measure-
ments and other statistics can be inferred. Here, the simu-
lations were used to infer the coefficient of error (CE) of
Ki67 LI predictions using subsets differing in the number
of virtual cores. The CE was calculated as

CE ¼
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
Bias2 þ σ2

T 2

r
¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
μ− Tð Þ2 þ σ2

T 2

s
;

where σ is standard deviation, μ is mean of Ki67 LI
inferred from the simulation distributions and T is the
Ki67 LI as determined by the DIA. The interpretations
of error analysis results are made according to a putative
CE value of 10 % for accessible results for practical
applications. The choice of this value is strongly influ-
enced by CE dependence on Ki67 LI heterogeneity levels
(Haralick entropy values). This dependence is illustrated
in additional plots available as Additional file 1.
Both experiments were grouped by tumor heterogeneity

and repeated for HexN = (1,2, …,15) with hexagons resem-
bling a 0.75 mm diameter TMA core and the simulations
were performed with 50,000 iterations.
From the simulations error measurements according

to how many nuclei are assessed can be inferred as fol-
lows: for one tumor case 50,000 subsets of TMA cores
are sampled of size HexN = (1, 2, …, 15). This yields a
total of 750,000 subsets which are effectively grouped by
HexN. By dichotomizing according to the number of
nuclei sampled in each subset into bins of 250 nuclei
(first bin [0;250), second bin [250;500) etc.), the error
measurement can additionally be investigated as func-
tion of the nuclei count. To make it clear if CE is calcu-
lated according to hexagon area or nuclei number, the
CE is denoted CEArea and CENuclei, respectively.
Previously, Going [12] pointed out that to achieve the

same relative error large cell counts are required for low

mitotic activity tumors while high mitotic activity re-
quires more moderate cell counts. Specifically, it was
illustrated that the relationship between the relative
error in the mitotic activity can be approximated by
Relative Error ≈ 1ffiffi

n
p ¼ n−0:5 , where n is number of

mitoses. Here we investigate if a similar relationship
exists between relative error measurements CEArea and
CENuclei as function of the Ki67 proliferation activity
indicator by fitting CE as function of Ki67 to

CE ¼ a x−b:

This is done for each choice of HexN, for a set of bins
used for dichotomizing by nuclei count and for all three
classes of heterogeneity (all/mixed, homogeneous and
heterogeneous).
Statistical analysis was performed using R 3.1.2, GNU

GCC 5.2.1, Open Office 4.1.2 and SAS 9.4 software.

Results
Summary statistics
Extensive dataset summary statistics of the Ki67 indica-
tors, obtained by HexT methodology, are previously
reported [29]. Briefly, the global average of Ki67 LI
values (in percentages) estimated by DIA of the WSIs
was almost identical to the results obtained by HexT
(mean: 32.5 ± 16.9 %, median 32.6 ± 17.4 % and sum 32.7 ±
17.3 %). Importantly, the HexT data provided a compre-
hensive set of intratissue variation indicators [29].

Single subsampling – linear regression analysis
Figure 2 illustrates the linear regression analysis results
(R2 values) plotted by different types of Ki67 LI calcula-
tion methods (mean, median, and sum) and grouped by
heterogeneity. All R2 values from linear regression ana-
lysis were at p < 0.0001 significance level. The R2 values
for all cores are presented in Table 1. Linear regression
analysis (Fig. 2) reveals that R2 values plotted for various
Ki67 LI measurement methods were nearly overlapping
in the subgroup of homogeneous tumors. For the het-
erogeneous tumors, mean and median were less repre-
sentative than the sum-based percentage. This bias was
mostly apparent with small sets of cores and diminished
when a larger number of cores were used.
To achieve R2 = 0.95 value in the regression models,

random selection of at least four, three and twelve cores
were required in the mixed, homogeneous and heteroge-
neous tumors, respectively.

Error analysis
The mean coefficient of error (CE) for Ki67 LI estimates,
calculated using the sum, is plotted for increasing TMA
core numbers in the tumor subgroups (Fig. 3). To achieve
the CE of 10 %, 8 cores of 0.75 mm diameter were
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required in the mixed group of tumors. Respectively, 5–6
or 11–12 cores were required in the subgroups of homo-
geneous and heterogeneous tumors.
To achieve a CE of 10 %, approximately 4,000 nuclei

were required in the mixed group of tumors as depicted
in Fig. 4. For the subgroups of homogeneous and hetero-
geneous tumors to reach the same error, 3,000 and 7,000
nuclei were necessary, respectively.
An inverse relationship between CE_Area and prolifera-

tion activity is clearly seen in Fig. 5 for any choice of TMA
count. Furthermore, Table 2 reveals that the fitted

parameter b is close to the value of 0.5 as reported in [12]
confirming the same dependence. The close-up around
the critical point of 10 % CE and 20 % Ki67 LI in Fig. 5
shows that for mixed tumor population to achieve the CE
of 10 %, approximately 10–11 TMA cores were required
at the level of 20 % Ki67 LI. Respectively, 7–8 or 13–14
cores were required in the subgroups of homogeneous
and heterogeneous tumors.
Similarly, a high CE_Nuclei is also observed for low pro-

liferation rates as depicted in Fig. 6. which graphically con-
firms the need for counting more nuclei for low

Fig. 2 Linear regression results for single random selection. Linear regression analysis results for hexagon size = 825 pixels ≈ 0.75 mm TMA core. Ratios
by sum, median and mean were used on a subset of hexagons. Results are divided by tumor heterogeneity. Note that y-axis begins at R2 = 0.6 for
better visualization of differences between groups of measurements

Table 1 Linear regression analysis results for hexagon size = 825 pixels (≈0.75 mm TMA core)

R2 values

HexN All tumor cases Homogeneous cases Heterogeneous cases

Sum Mean Median Sum Mean Median Sum Mean Median

1 0.827 0.827 0.827 0.906 0.906 0.906 0.6 0.6 0.6

2 0.893 0.888 0.888 0.929 0.926 0.926 0.749 0.733 0.733

3 0.93 0.92 0.9 0.964 0.955 0.947 0.81 0.79 0.731

4 0.955 0.952 0.945 0.969 0.969 0.965 0.897 0.879 0.866

5 0.964 0.958 0.938 0.972 0.969 0.963 0.926 0.912 0.842

6 0.964 0.957 0.951 0.975 0.972 0.969 0.916 0.895 0.886

7 0.964 0.959 0.952 0.976 0.969 0.969 0.918 0.913 0.883

8 0.969 0.958 0.95 0.981 0.977 0.977 0.916 0.882 0.845

9 0.976 0.971 0.966 0.984 0.98 0.981 0.944 0.934 0.908

10 0.978 0.971 0.962 0.987 0.983 0.98 0.947 0.923 0.893

11 0.974 0.968 0.961 0.983 0.978 0.977 0.936 0.92 0.894

12 0.977 0.971 0.968 0.982 0.976 0.977 0.954 0.941 0.926

13 0.982 0.978 0.969 0.986 0.984 0.984 0.965 0.95 0.914

14 0.98 0.975 0.969 0.986 0.984 0.984 0.952 0.938 0.907

15 0.982 0.977 0.973 0.984 0.983 0.983 0.965 0.95 0.933

In each data set Ki-67 LI was calculated by counting mean, median and sum of positive and negative cells. All linear regression analysis results were statistically
significant, p < 0.0001
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proliferation tumors. Also here the fitting parameter b is
close to the value 0.5 reported [12], see Table 3. The close-
ups in Fig. 6 reveal that at the level of 20 % Ki67 LI, to
achieve the CE of 10 %, approximately 6,250 nuclei were
required in the mixed group of tumors. For the subgroups
of homogeneous and heterogeneous tumors to reach the
same error 5,000 and 10,000 nuclei were necessary,
respectively.

Discussion
This study has exploited novel opportunities that digital
microscopy images offers for virtual TMA modeling
with incorporation of DIA results. Firstly, the virtual
TMAs were modeled after the HexT methodology
extracted both global texture information and local fea-
ture information from the WSI. Secondly, simulation of
the TMA cores using the HexT dataset enabled mul-
tiple random sampling iterations bypassing the digital

assembly of the virtual TMAs. This gave a much greater
flexibility in investigating a wider range of sampling meth-
odologies, parameters and error measurements. The added
benefits do not impose any new limitations: if cores are
needed for several stainings of the same tissue, cores can
be sampled at the exact location in different images by
applying mapping techniques similar to the ones reported
by Quintayo et al. [19].
Previously, a similar approach was tested by Heus et al.

[30], who utilized a dense grid of rectangular frames
instead of hexagons. From each subsampled frame, a core
was simulated by the largest circle contained within. This
has a side-effect that tissue located at the corners of the
frames will never be sampled; this effect is not independ-
ent of size of the simulated cores. The use of hexagons for
virtual core simulation does not suffer from this: the dense
HexT ensures that all parts of the tissue are considered
with the same probability. Sampling without replacement

Fig. 3 Error results as function of tissue area evaluated. The resampling procedure was simulated for each individual tumor case using 50,000
iterations for each count of hexagons (HexN). Analysis results are split by tumor heterogeneity level. Error measurement (Coefficient of error) is
expressed by mean of all cases

Fig. 4 Error results as a function of nuclei counted. The coefficient of error plotted as a function of nuclei count. See text for transformation of
TMA by core number to nuclei count. Analysis results are split by tumor heterogeneity level. Error measurement (Coefficient of error) is expressed
by mean of all cases
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further ensures that the same area is not represented by
multiple cores in the subsets used in the simulations.
The analysis of core/cell sampling requirements in this

study was made possible to group according to Haralick
entropy texture feature extracted by the HexT method-
ology for each WSI. It must be noted that the Haralick en-
tropy threshold value is not clearly defined. Therefore, the
optimal method to split the dataset it into equal parts by
median was chosen. In a similar study, the variance of the
local Ki67 LI was used as entropy measurement, but with-
out a complete error analysis for the entire dataset [30].

Combining Ki67 LI (or any other biomarker) from
several cores is often needed in TMA studies. This in-
troduces a risk of bias which involves assessing the num-
ber of positive and negative nuclei for the observed
cores before recalculating the Ki67 LI. We evaluated this
potential bias by comparing results from combined Ki67
LI from a set of simulated cores using the mean, the me-
dian and Ki67 LI calculated by using sum of nuclei in
the sampled hexagons. We found that when larger set of
cores were used, any bias with regard to the Ki67 LI cal-
culation methods was negligible (Table 1), while calcula-
tion of the combined Ki67 LI, by assessing the core data
first, is strongly advised where only a few TMA cores
are used from heterogeneous tumors (Fig. 2, right).
The practical TMA construction, where cores were ran-

domly chosen only once, was investigated using linear re-
gression. This allowed comparison of the hexagonal
simulation data to previous studies. For a tumor set with
mixed heterogeneity, we found a number of cores to
achieve R^2 = 0.95, to be four, in line with the previous
reports [17, 25, 26, 31]. For homogeneous tumors, the op-
timal number of cores was three, depending whether the
sum or mean calculations were used, respectively. A ra-
ther dramatic increase to the requirement of 12 cores was
found in the heterogeneous tumors.
The single sampling brings some eventuality, because

for each sampling, it is possible to obtain cores contain-
ing different tissue representation and thus biomarker
expression level. The error is particularly important
when considering tissue samples with varying degrees of
heterogeneity, as it influences the representativeness of
TMAs [27]. A number of studies have shown that more
cores will improve the agreement level and reduce the
limitations due to the heterogeneity in various types of
tumors and IHC biomarkers [25–27, 32, 33]. However,

Fig. 5 Coefficient of error by tissue area evaluated as a function of Ki67 LI in tumors of different heterogeneity level. CE_Area plotted as
depending on heterogeneity level with a separate curve for each HexN = (1,…,15). See Additional file 1 for curve fits

Table 2 Fit parameters for relative error CE_Area fitted to
proliferation index for all three heterogeneity classes

Proliferation fit to relative error

HexN All/Mixed Homogenous Heterogeneous

a b a b a b

1 0.128 0.58 0.092 0.684 0.168 0.481

2 0.093 0.553 0.068 0.647 0.119 0.482

3 0.077 0.542 0.057 0.63 0.097 0.48

4 0.068 0.533 0.051 0.614 0.084 0.478

5 0.062 0.527 0.046 0.604 0.076 0.477

6 0.057 0.521 0.043 0.595 0.069 0.474

7 0.053 0.516 0.04 0.587 0.064 0.473

8 0.05 0.512 0.038 0.579 0.06 0.473

9 0.048 0.507 0.037 0.572 0.057 0.471

10 0.046 0.502 0.035 0.564 0.054 0.469

11 0.044 0.498 0.034 0.557 0.052 0.469

12 0.042 0.493 0.033 0.549 0.05 0.467

13 0.041 0.489 0.032 0.543 0.048 0.463

14 0.04 0.486 0.031 0.538 0.047 0.463

15 0.039 0.482 0.031 0.531 0.045 0.464
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only the introduced method allows inference about the
relative error caused by different TMA sampling param-
eters in combination with tumor heterogeneity. Our re-
sults show that to obtain a CE of 10 % the necessary
number of cores in the dataset with mixed heterogeneity
is 8; five cores hold sufficient information for Ki67 LI
determination in homogeneous tumors, while heteroge-
neous tumors need at least 11–12 cores to be sampled.
In practical TMA applications, intratumoral hetero-

geneity of biomarker expression is usually unknown in
advance; therefore, a more conservative approach would

assume that all tumors in the study population are hetero-
geneous. On the other hand, Ki67 LI expression in breast
cancer tissue is known for its spatial heterogeneity and
may serve a reference standard for other biomarkers and
tumors. In that sense, our study reveals that 11–12 ran-
dom TMA cores of 0.75 mm diameter would sufficiently
represent IHC biomarker expression in heterogeneous
tumors. Our simulations also indicate that disagreements
between different studies of TMA core numbers may in
fact be due to unestablished differences in heterogeneity
aspects. In general, our findings support the notion that
heterogeneity information is crucial for optimizing TMA
studies. Ideally, the presented method could be used in
pilot studies to validate the optimal number of cores, or at
least heterogeneity should be investigated from a larger
set of cores, for instance by measuring a range of Ki67 LI
between several TMA cores taken from the tissue.
Our study also provides evidence for minimum cell

counting requirements to achieve robust Ki67 LI meas-
urement, especially with regard to the limited capacity
of manual counting procedures. Current clinical guide-
lines on the minimal number of cells to be counted are
quite arbitrary, mostly set in the range of 500 and 2000
tumor cells [9]. While small samples (e.g., needle core
biopsies) may allow counting all the invasive tumor
cells, it becomes impractical in larger samples. There-
fore, to achieve adequate precision, it is recommended
for the interpreting pathologist to score at least 1,000
cells, while 500 cells would be acceptable as the abso-
lute minimum [9]. Importantly, our findings reveal that
to achieve 10 % CE approximately 4,000 nuclei must be
counted when the intratumor heterogeneity is mixed/
unknown (Fig. 4). These cell counts are rather large to
accomplish in clinical practice for all breast carcin-
omas, but could be feasible for cases considered as

Fig. 6 Coefficient of error by nuclei counted as a function of of Ki67 LI in tumors of different heterogeneity level. CE_Nuclei plotted as
depending on heterogeneity level with a separate curve for a selected subset of nuclei bins. See Additional file 1 for curve fits

Table 3 Fit parameters for relative error CE_Nuclei fitted to
proliferation index for all three heterogeneity classes

Proliferation fit to relative error

Nuclei
bin

All/Mixed Homogenous Heterogeneous

a b a b a b

250 0.171 0.571 0.137 0.644 0.209 0.494

500 0.111 0.697 0.085 0.815 0.178 0.421

750 0.109 0.573 0.087 0.658 0.148 0.425

1000 0.102 0.522 0.081 0.595 0.132 0.412

1250 0.094 0.509 0.076 0.572 0.117 0.426

1500 0.087 0.491 0.072 0.544 0.105 0.43

1750 0.078 0.516 0.064 0.575 0.096 0.434

2000 0.072 0.516 0.058 0.58 0.09 0.425

2250 0.069 0.504 0.056 0.567 0.086 0.419

2500 0.067 0.493 0.055 0.547 0.081 0.426

3750 0.055 0.487 0.046 0.538 0.068 0.411

5000 0.049 0.485 0.041 0.534 0.059 0.422

6250 0.046 0.494 0.037 0.539 0.054 0.47

7500 0.044 0.464 0.035 0.526 0.058 0.356

10000 0.039 0.507 0.033 0.532 0.042 0.543
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“grey zone”, e.g. in the range of Ki67 LI 10-30 % [3]. A
visual scoring methodology proposed by Hida et al.,
might be used as method of choice for “low” (Ki67 LI
<10 %) or “high” (Ki67 LI >30 %) proliferatively active
cases, leaving behind “grey zone” cases, which requires
more precise methodologies [34].
The inverse relationship between relative estimation

error and mitotic activity previously highlighted by Going
[12] was confirmed to also exist between each of the two
error estimates (CEArea, CENuclei) and the Ki67 LI prolifer-
ation activity indicator (Figs. 5 and 6). This dependency of
CE on Ki67 LI shows that tumor cases with low prolifera-
tion rate contribute most of the CE in Fig. 4 which is a set
of “mixed” proliferation rate. Consequently, when scoring
a single case with unknown Ki67 LI one may need to
evaluate a higher cell count or larger TMA sample to
ensure a 10 % CE at a specific grey zone. Specifically, the
tumors at the lower scale of proliferative activity (Ki67 LI
< 20 %, Fig. 5, left) will for a mixed/unknown heterogen-
eity case require larger sampling (at least 10–11 TMA
cores) to achieve the same error measurement (10 %
CEArea) results as for highly proliferative tumors (4–6
TMA cores). Similarly, for cases with Ki67 LI < 20 %
(Fig. 5, right) at least 6,250 nuclei are necessary (for 10 %
CENuclei) As such, Figs. 5 and 6 may aid determining prac-
tical sampling requirements of individual cases for accept-
able CE at specific grey zones.
In general, the results of our study suggest that ad-

equate accuracy levels of Ki67 LI measurement can
hardly be achieved by manual counts and argue in favor
of DIA-based techniques to benefit from the high-
capacity methods. In addition, automated hotspot detec-
tion with standard definitions by DIA, which was out of
scope in the present study, would provide another
advantage compared to the visual evaluation by conven-
tional microscopy or inspection of WSI.

Conclusion
Several aspects raised in this study relate to the evalu-
ation of Ki67 immunohistochemistry in breast cancer in
clinical research and practice. Firstly, obtaining an opti-
mal number of TMA cores/cell number needed for bio-
marker research studies depends on the tissue, especially
its intratissue heterogeneity and level of expression. For
Ki67 LI in breast cancer, we found 5–6 cores sufficient
for homogeneous expression in the tissue, 8 cores for
tumors with mixed heterogeneity and at least 11 cores
for heterogeneous tumors. Secondly, our findings reveal
that to achieve low error estimates when evaluating by
cell counting, approximately 4,000 nuclei must be evalu-
ated when the intratumor heterogeneity is mixed/un-
known. In breast cancer cases of the lower proliferative
activity (Ki67 LI < 20 %) larger sampling is required to
achieve the same error measurement results as for highly

proliferative tumors. The presented data may aid in defin-
ing practical sampling requirements of individual cases
and specific grey zones.
The wide range of the number of cores/nuclei needed

supports the notion that optimal sampling requirements
must be determined on a peruse basis and that heterogen-
eity information must be assessed in the study. The
method presented can be applied for individual pilot study
measurements. In addition, our findings highlight the
importance of high-capacity computer-based IHC meas-
urement techniques to improve accuracy of the testing.

Additional files

Additional file 1: Fits curves of proliferation index to CE_Area and
CE_Nuclei (depending on heterogeneity levels). Graphs for CE plotted as
a function of Area (Hexes in case). (DOCX 12 mb)

Additional file 2: Initial dataset of the study. (XLSX 2 mb)
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