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 Abstract 

The present work reports a novel strategy of assembling maghemite (γ-Fe2O3) nanoparticles 

(NPs) in mesoporous silica host for developing a highly efficient MRI contrast probe. 

Shrinkage of hydrophobic environment due to the continuous evaporation of chloroform from 

Chloroform-in-Water emulsions pushes the hydrophobic γ-Fe2O3 NPs towards the 

hydrophobic pores of silica spheres resulting in a water soluble dense assembly structure. 

Mesoporous silica only with straight pores is found to be suitable for this particular 

entrapment process, while with curved and twisted pores, NPs are found to be seated on the 

surface only. So-developed assembly system has retained the superparamagnetic behaviour of 

its comprising NPs and exhibited high colloidal stability and biocompatibility. A significant 
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enhancement in MRI transverse relaxivity to 386.2 mM
-1

s
-1

 from 191.8 mM
-1

s
-1

 of isolated 

primary γ-Fe2O3 NPs, has been obtained due to the strong magnetic field generated by the 

large number of NPs packed in the porous channels and consequent faster relaxation process. 

The fabrication strategy can be extended for the development of designed secondary 

nanostructures with new magnetic effects and physical properties.     

 

KEY WORDS:   solvent evaporation, magnetic NPs, MRI contrast agent, mesoporous silica, 

assembly of NPs   

 

1. Introduction 

Directed assembling of magnetic NPs has been emerged as a promising bottom-up approach 

for designing their secondary nanostructures with controllable shape, size and morphology 

The key in the creation of these unique nanostructures is the controlled assembling of the 

building blocks. This new class of nanostructured materials has high sensitivity and can 

overcome the limitations of nanoscale single domain systems, making them highly desired 

components for designing smart sensors, intelligent systems, and adaptive structures [1-3]. 

Application potential of these assembled magnetic NPs systems as the MRI contrast 

enhancers in the field of bio-imaging research has attracted lot of research attentions in the 

recent time. Ferrite based superparamagnetic NPs are already established as the highly 

efficient T2 or dark contrast enhancers in Magnetic Resonance Imaging (MRI) and among 

them, NPs of magnetite (Fe3O4) and maghemite (γ-Fe2O3) are highly promising due to their 

higher saturation magnetizations [4]. However, the weak magnetic trackability due to the 

high Brownian motion of these fine sized NPs hampers on their potential for biomedical 

applications. Recent works in this direction showed that a compact dense structure of the 

superparamagnetic NPs, i.e. formation of their secondary nanostructures can short out this 
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problem and additionally enhance MRI relaxivity by aggregation-induced effect [5]. This 

type of secondary nanostructures can be obtained usually by employing three different basic 

bottom-up approaches; (i) single step process by optimizing the concentration of surfactants, 

where the nucleated primary particles follow the secondary growth process, (ii) by 

modulating the intermolecular packing parameter of participating self-assembling 

amphiphilic molecules
 
and (iii) by using suitable host structures [6, 7]. However, it is 

important that the used capping molecules or support materials should not limit the 

penetration of water molecules to the core of the comprising magnetic NPs, so that it will not 

impart negative effect on MRI contrast efficiency [8].  

Submicron size silica grains with porous architecture have shown tremendous opportunities 

in this direction. Their high chemical stability, bio-compability, versatility with respect to 

surface functionalization, and most importantly their versatile porous networks and the ability 

of labelling with wide range of functional molecules make them a suitable host material for 

fabrication of secondary magnetic nanostructures [9]. This host material also takes account of 

ensuring water accessibility to core of the entrapped magnetic NPs by its porous channels.  In 

few works, silica was employed as the shell material for encapsulating clusters of magnetic 

NPs, while in some cases silica was employed as the core structure on which magnetic NPs 

are grafted. For example, encapsulation of magnetic NPs by mesoporous silica as a result of 

hydrolysis and condensation of silica precursors (TESO) in presence of different surfactants 

has been explored by many groups [10]. In another method, sonication of Fe (CO)5 solution 

in decalin containing silica particles resulted in structures composed of iron oxide NPs 

heterogeneously grafted onto the silica spheres [11].
  
Another alternative strategy showed the 

coating of silica spheres with layers of iron compounds based on the forced hydrolysis of iron 

(III) acetylacetonate solutions containing the silica cores and a surfactant [12]. The coating of 

silica spheres with layers of preformed magnetite (Fe3O4) NPs using a heterocoagulation 
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process facilitated by charging the silica surface through the addition of a polyelectrolyte film 

has been also reported, although this method produced rough coatings [13].
 
Thus, in these 

types of structures either core or shell part of the silica spheres remains unutilized. In 

contrast, the present work demonstrates a mesoporous silica supported dense assembly 

structure of γ-Fe2O3 NPs, where, NPs get entrapped inside the silica spheres and also get sited 

on the surface of it. In this work, γ-Fe2O3 NPs have been chosen over Fe3O4 NPs due to its 

higher physico-chemical stability. A facile approach was employed for developing this 

secondary nanostructure, where the NPs are entrapped homogenously inside the porous 

channels of   silica spheres. The method is based on solvent evaporation mediated entrapment 

of NPs inside the porous network of silica spheres of submicron size. The developed 

magnetic assembly system can also have potential for being a multifunctional nanoprobe with 

other functionalities like targeted drug carrier along with the MRI contrast enhancer.  Also, 

the process used for developing this structure can be further employed for developing new 

secondary nanostructures of other nanomaterials.     

2. Experimental section  

2.1 Materials: Tetraethyl orthosilicate (reagent grade, 98%) was purchased from Sigma-

Aldrich. Ammonium hydroxide (NH4OH), Iron sulphate (FeSO4.7H2O, 99%), 

tetramethylamonium hydroxide (TMAOH assay 25%), oleic acid (C18H34O2, 90%), 

dimethylsulphoxide (DMSO, 99 %) and cetyltrimethyl ammonium bromide (CTAB, 99%), 

Ethyl acetate (EtoAC) were procured from Merck, India. All chemicals were used directly 

without further purification. Milli-Q water was used throughout all the reactions.   

 2.2 Synthesis of Mesoporous silica spheres (S1): The synthesis of the Mesoporous silica 

spheres has been performed using a modified Stöber method.  Here, 0.01 g of CTAB was 

added to 100 ml water and the pH of the solution was adjusted around 10.00 by adding 

NH4OH (25% solution). Then, 1ml of the silica precursor solution, TEOS was added drop 
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wise with the subsequent addition of 5 ml ethyl acetate. The mixture solution instantly 

became turbid and white precipitation was observed. The obtained precipitate was washed 

with distilled water three times and dried overnight. The similar protocol was followed for 

the preparation of the other two silica samples S2 and S3. The only difference is that here 

0.05 and 0.1 g of CTAB were added for S2 and S3 respectively.     

2.3 Synthesis of iron oxide (IO) NPs: Oleic acid capped iron oxide NPs were synthesized by 

using a modified co-precipitation method as reported [14].  

2.4 Synthesis of iron oxide NPs loaded silica spheres (S@IO): 50 mg of the already 

prepared silica powder and 0.05 g of CTAB were mixed in 100 ml water. A dispersion of iron 

oxide NPs prepared in 4 ml chloroform was poured drop wise to the above solution and 

stirred vigorously for 30 minutes for the preparation of a homogenous emulsion solution. The 

obtained emulsion solution was kept at 60°C in an oven until the complete evaporation of the 

chloroform. The resultant brown colour solution was centrifuged to precipitate down the 

particles. The obtained precipitate was washed with water and dried overnight.    

3. Characterization details  

High resolution transmission electron microscopy (HRTEM) was performed using a JEOL 

2100 electron microscope operated at an accelerating voltage of 200 kV. The particle size 

distribution was calculated on about 200 nanoparticles from multiple images in bright field 

mode and fitted with Gaussian function.  Raman spectra were taken using a Renishaw system 

with Ar
+
 laser excitation source of wavelength 514.5 nm. The surface capping characteristics 

was characterized with Nicolet Fourier transforms infrared (FTIR) spectrometer. SAXS 

experiments were performed using a laboratory based SAXS instrument. The sample to 

detector distance was ~1 m. The radial averaged scattering profiles were obtained a function 

of wave-vector transfer (q). The dynamic light scattering (DLS) and Zeta potential 
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measurements were performed using a NanoPlus-3, Nano Particle Analyzer, Micromeritics 

instrument at room temperature. Thermogravimetric analysis (TGA) was carried out using a 

thermogravimetric analyzer (TGA-50, Shimadzu), where, the samples were heated in N2 

atmosphere with flow rate of 20 ml/min. Magnetic measurements such as M-H and M-T with 

ZFC and FC protocols were carried out using 9T Quantum Design Physical Property 

Measurements system (PPMS) equipped with a vibrating sample magnetometer (VSM). XPS 

characterizations were performed using an X-ray photo spectrometer with monochromatic Al 

Kα source (hʋ = 1486.6 eV). For MRI transverse relaxivity measurements, stable suspensions 

of synthesized maghemite NPs and their assembly at predetermined concentrations in agarose 

water were filled in standard NMR tubes (5 mm diameter) and introduced inside a 9.4 T 

NMR spectrometer. Agarose was used to stabilise the suspension and to prevent the NPs 

from sedimentation during the experiments. Seven different concentrations of NPs were used 

and an additional reference tube that only contained the water agarose medium.  For 

measuring T2, multi echo experiments were carried out with spatial resolution (field of view 

of 25 x 25 mm, image matrix of 128 x 128 pixels and a slice thickness of 1 mm) providing a 

set of T2-weighted images. Data analysis was carried out by importing the time data into a 

MATLAB programme. Regions of interest (ROI, 10x10 pixels) were manually selected in 

such a way that they coincide with the cross sections of the NMR tubes in the images and the 

average signal intensity in each ROI was calculated and its attenuation with increasing 

number of echoes determined by fitting a simple exponential decay function. T2 weighted 

images were acquired at a fixed repetition time and at variable echo times. In this manner for 

each concentration of particles a transverse relaxation T2 time constant was obtained. Its 

inverse, the transversal relaxation rate R2, was plotted against the corresponding 

concentration and by linear fitting the transversal relaxivity r2 was calculated.   
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4. Results and discussion  

4.1 Entrapment of the γ-Fe2O3 NPs in silica 

The uniform size of around 4.9 nm and well separation of the oleic acid stabilized iron oxide 

NPs employed for entrapping in mesoporous silica sphere is shown in the Fig.1a (i). TEM 

images of the silica spheres before and after NPs’ entrapments are shown in the Figs. 1a (ii) 

and 1a (iii) respectively, where it is observed that the silica spheres with hexagonally packed 

straight pores have been densely filled up by the NPs.  Fig. 1a (iv) shows a magnified view of 

the entrapped NPs in silica a sphere.  

 

Fig. 1 (a) TEM images of iron oxide NPs (i), mesoporous silica spheres (ii), IO loaded silica 

sphere (iii), magnified view of the assembly system (iv); (b) the comparative SAXS plots (in 

double logarithmic scales) of mesoporous silica (S1) and IO loaded silica (S1@IO) systems 

and (c) Raman spectra of IO NPs (i), S1 (ii) and) S1@IO (iii). The inset of Fig.c (iii) shows 



8 
 

the characteristic peaks of γ-Fe2O3 in the S1@IO system. The inset of the Fig.1 (a) shows the 

size distribution plot of the IO nanoparticles best fitted with Gaussian distribution function.   

No separate aggregation of the NPs is observed on outer part of the silica spheres. A low 

magnified image shown in supplementary Fig. s1 justifies the uniform occurrence of this type 

of assembly system. The effective entrapment of the iron oxide NPs in the pores of the silica 

system is further confirmed from the complete suppression of the characteristic ordering peak 

in the SAXS plot (shown in the Fig. 1b). This implies that the entrapment of the iron oxide 

NPs breaks the hexagonal pore periodicity of silica in the S1 sample. The SAED (shown in 

supplementary Fig.s2) pattern taken in the magnetic assembly system shows the characteristic 

diffraction rings of face centred cubic structure of maghemite (γ-Fe2O3) (JCPDS Card 39-

1346) [15]. The intrinsic maghemite (γ-Fe2O3) phase of iron oxide NPs and retaining of the 

same phase in the assembly system have been further confirmed from the observed 

characteristic peaks of maghemite for both the samples in Raman spectra (shown in the 

Fig.1c). The peaks at around 712 cm
-1

, 510 cm
-1

 and 360 cm
-1

 are attributed to the A2g, T2g 

and E2g modes of maghemite phase respectively [16, 17]. The broad peaks at around 1452 

cm
-1

 and 1611 cm
-1 

can be due to the disordered carbon chain of oleic acid molecules capped 

over the particles [18, 19].
 
It is observed that the pure silica sample has not shown any 

characteristic Raman peaks. The intensities of all the characteristic maghemite peaks have 

been diminished significantly for the assembly system, which is obvious due to the 

entrapment of the particles inside the pores. However, the assembly system has also shown 

the broad peaks of the disordered carbon chain, but with relatively higher intensities. This 

might be due to the additional contribution of carbons of CTAB molecules on the assembly 

system. To have an understanding of the process of entrapment, another two silica host 

systems (S2 and S3) with different pore morphologies have also been prepared and tried to 

develop the similar assembly systems by employing the similar protocol.
  
However, unlike 
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the first case, no signature of entrapment of the NPs has been observed here. In contrast, here 

NPs are observed to be aggregated separately on the surface of the silica grains (shown in 

Fig.2a (iii) and Fig.2a (iv)). TEM images show that with the increasing concentration of 

CTAB the pore morphology of the silica has been changed from straight to curved and then 

to twisted one (as shown in the Fig.1a(ii), Fig.2a (i) and Fig.2a (ii)). This variation in the pore 

morphology and also pore size can play important role in this type of entrapment process. To 

have a better insight, these later two pristine silica systems and also their respective NPs 

conjugated systems have been also characterized by Small-angle X-ray scattering (SAXS).  

SAXS plots in the Fig.2b (i) and Fig.2b (ii) show that the prominent peaks, corresponding to 

positional correlation among the pores, remain mostly unaffected even after the incorporation 

of NPs in the case of S2 and S3 samples. However, for the first system (S1), this peak is 

vanished completely as shown in the Fig.1b.  At first instance, it can be argued that the size 

of the pores in the case of S2 and S3 samples are smaller and therefore, the particles are not 

going inside properly. However, the obtained pore size distribution (shown in Fig.3) has 

confirmed that the later two systems have even bigger pore sizes than the first one (S1). The 

SAXS profiles of the three pristine silica systems (S1, S2 and S3)  have been fitted using the 

Porod cylinder form factor and Debye-Anderson-Brumberger (DAB) correlation function 

(equation 1), from which their pore size distribution and the pore morphologies have been 

derived (details of the fittings are provided in supplementary section s1 ). 

                                                            22
o

qξ1

1
II(q)


                                                     (1) 

Where, ξ- Correlation length and Io is the forward scattering. 

The obtained parameters have been shown in the supplementary Table s1 of, where it is 

observed that pore radius and pore lengths have been increased for the silica samples 
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prepared with higher concentration of CTAB. An earlier work also showed that the increasing 

concentration of CTAB with constant TEOS concentration increases pore volume [20]. 

Interestingly, here it is also found that the effective pore lengths are larger than the average 

sizes of the silica grain for the S2 and S3 samples, which implies the folding nature of the 

pores.  Therefore, the reasonable factors of not entrapping the particles by the later two silica 

systems can be either rigidity of the pores or bending/twisting nature of the pores. If the pores 

are rigid enough it cannot pull the bigger size particles inside it or the force felt by the 

particles during solvent evaporation (which is explained in the section 4.2) is not enough to 

promote the filling process. Another factor can be the roughness of the silica structures. In the 

first system, some bigger size random voids are observed which can act as the door for the 

particles to enter inside the pores.  However, in the later two systems, such voids are not seen 

and the silica structures become smoother. The smoothness of these later two systems (S2 

and S3) and the roughness of the first silica (S1) system can be further confirmed from their 

scattering plots. For the S2 and S3 samples, it is seen that the scattering profiles show a 

complete Porod behaviour, while the sample S1 shows a broad hump. The observed humps 

between q values 0.7 to 1 nm
-1

 before the characteristic ordering peak for the composite 

samples prepared with S2 and S3 silica hosts indicates the aggregation of the NPs outside of 

the silica structures.    
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Fig.2 (a) TEM images of mesoporous silica with curved pores, S2 (i), and twisted pores, S3 

(ii), IO conjugated S2, S2@IO (iii) and IO conjugated S3, S3@IO (iv); (b) comparative 

SAXS (in double logarithmic scale) plot of S2 and S2@IO (i) and S3 and S3@IO (ii). The 

yellow arrows on the TEM images are showing the aggregated IO nanoparticles on the 

surface of the silica structures.   

 

Fig.3 Pore size distribution plots of the S1, S2 and S3 samples obtained from the respective 

SAXS profile fittings. 
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4. 2 Mechanism of the entrapment process 

  

Fig. 4 A schematic of the entrapment mechanism of the IO NPs in mesoporous silica spheres. 

The inset on the figure shows the CTAB molecules inside the pores projecting their carbon 

chain outwards.   

A plausible mechanism is presented for getting an idea of the entrapment process of the 

nanoparticles inside the pores (shown in Fig.4). When both the components, i.e. the NPs in 

chloroform and the suspension of silica spheres with CTAB were mixed, an Oil-in-Water 

emulsion solution was formed (optical micrographs of the formed emulsion system is shown 

in the supplementary Fig.s3. The formed emulsion is basically of chloroform droplets 

dispersed in water phase stabilized by the surfactant CTAB, where in the oil phase both IO 

nanoparticles and Silica spheres get dispersed as shown in the schematic. In general, silica 

particles are hydrophilic due to the high abundance of Silanol (Si-OH) groups on their 

surface.  However, here the as-prepared silica particles are hydrophobic in nature due to the 

dominancy of remaining CTAB molecules inside its pores. Hydrophobic nature of the silica 

system is shown the supplementary Fig.s3, where silica particles are observed to be easily 

dispersed in the chloroform phase. Therefore, here also the mesoporous silica particles are 

likely to be in chloroform of the developed Chloroform/Water emulsion system. As soon as 
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the evaporation of the chloroform starts, hydrophobic NPs are bound to be absorbed in to the 

pores of the silica spheres due to the continuous shrinkage of the hydrophobic environment. It 

is also mentionable that the pores of the silica spheres have hydrophobic environment due to 

the presence of CTAB molecules projecting their carbon chain outwards.  Therefore, there is 

a high probability of hydrophobic interaction between the NPs and the carbon chain of CTAB 

molecules, which eventually favours this adsorption process. As the evaporation process of 

the chloroform continues, NPs gradually enter to the pores of the silica spheres. CTAB 

molecules engaged for stabilizing the emulsion droplets also envelope the clusters after 

completion of the evaporation process.      

4. 3 DLS and Zeta potential studies  

 

Fig. 5 Comparative size distribution plots from DLS and the comparative Zeta potential plots 

the three silica samples and silica-nanoparticles conjugate samples.   
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Table 1. Table showing the mean particle sizes, polydispersity indices, Zeta potentials of all 

of the three silica systems and their respective nanoparticles composite samples.      

DLS measurements show a lower value of the polydipersity index for the NPs loaded silica 

samples than that of the pure silica system (S1). However, for the other two silica samples it 

is found to be increased after NPs conjugation (shown in the Fig.5 and Table 1), which is due 

to the non-uniformity of these two composite structures unlike the first sample. The mean 

hydrodynamic sizes of the silica-nanoparticles composite samples in all the three cases are 

found to be increased. However, the increments of the hydrodynamic size for the later two 

samples are noticeable and the reason behind this could be the same, i.e., morphological non-

uniformity of these two samples.              

On the other hand, the measurement of Zeta potential values shows that the value of the Zeta 

potential for the NPs loaded system (S1@IO) is increased significantly from that of pure 

silica system (S1) and this difference for the other two systems decease gradually (shown in 

the Table 1). This increment of the Zeta potential is due to the enhanced stability of the silica 

spheres resulted from the uniform enveloping of the CTAB molecules over it during the 

process of NPs entrapment. Since, this enveloping process for the other two samples is not 

happening properly and separate aggregations of the nanoparticles are formed outside the 

silica, hence a smaller difference in Zeta potential values before and after NPs conjugation 

Samples PDI Mean Particle 

size (nm) 

Zeta Potential 

(mV) 

Difference in Zeta 

Potential (mV) 

S1 0.684 599.79±24.87 5.02 ± 0.26 22.45 

S1@IO 0.664 629.41± 9.15 27.47 ± 0.19 

S2 0.580 320.67 ± 5.69 34.77 ±0.25 15.95 

S2@IO 0.736 620.93 ± 21.11 50.72 ±0.12 

S3 0.588 419.19 ± 11.98 34.33 ± 0.27 4.21 

S3@IO 0.760 725.47 ±38.29 38.54 ± 0.38 



15 
 

are observed. However, it is noticeable that for the second system (S2), the difference of the 

Zeta potentials values is not very small, which can be correlated to the partial loading of the  

particles to silica as mentioned in the earlier discussions.   

4. 4 Surface analysis  

XPS has been performed for oleic acid capped γ-Fe2O3 NPs and also for their assembly 

structure. The Fig.6a shows the complete spectra of the two samples, while the Fig.6b shows 

the high resolution Fe2p, O1s and C1s spectra of both the samples. 

 

Fig.6 (a) XPS spectra of iron oxide NPs (i) and iron oxide NPs loaded silica spheres (ii); (b) 

High resolution XPS spectra of Fe2p (i & iv), O1s (ii & v) and C1s (iii & vi) of iron oxide 

nanoparticles and nanoparticles loaded silica spheres respectively.  
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The Fe2p high-resolution XPS spectrum for iron oxide NPs reveals the presence of Fe2p3/2 

peak at around 710.5 eV, along with the satellite peaks at around 712.0 eV and 718.0 eV.  

Fe2p1/2 peak at around 725.4 eV gives the evidence of Fe
3+

 state of γ-Fe2O3 [21]. The 

spectrum of Fe2p peak for the assembly sample also shows the similar peaks that obtained for 

the oleic acid capped iron oxide NPs. The high resolution O1s spectra shows three peaks, one 

at around 529.2 eV resulting from the lattice oxygen of γ-Fe2O3 and other two peaks at 

around 530.2-531.5 and 532.0 eV raised from mono (–C=O) and bidentate (–COO) 

carboxylate oxygen atoms respectively [22].
 
However, there is clear variation in the relative 

intensities of these three peaks for the two samples, which could be due to the passivation 

effect of silica in the assembly sample and also the possibility of changing oleic acid binding 

configuration to the NPs surface. The high-resolution C1s spectrum of iron oxide NPs gives 

three peaks at 284.5, 285.2 and 288.5 eV, which can be assigned to carbon atoms of aliphatic 

–C–C bonds, –C–OH groups and –COO− groups of oleic acid, respectively [23]. For the 

assembly sample, all the three peaks have been also observed, but with higher relative peak 

intensity for –C–C, which can be due to the contribution of –C–C coming from CTAB 

molecules.  The XPS spectrum of the S@IO sample shows the Si2s and Si2p peaks at around 

153.8 eV and 102.8 eV respectively, which are with the good agreement with literature [24]. 

High resolution spectra of the same, has been shown in the supplementary Fig.s4.    
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Fig. 7 (a) Comparative TGA; (b) DTG plots of iron oxide nanoparticles, silica spheres and 

nanoparticles loaded silica spheres and (c) shows the comparative FTIR of iron oxide NPs, 

silica spheres and NPs loaded silica spheres.   

TGA and FTIR characterizations were performed for the maghemite NPs, S1 and S1@IO for 

further understanding on NPs-silica conjugation characteristics. Fig.7a shows the 

comparative TGA plots of the iron oxide NPs, pure silica spheres and the nanoparticles 

loaded silica spheres. The single step weight loss observed for the pure silica sphere system is 

coming due to the decomposition of the remaining CTAB molecules. However, for the NPs 

loaded system two distinct weight loss regimes have been observed and the total weight loss 

was also found higher. DTG plots shown in the Fig.7b further clarifies this two-steps process. 

The first step weight loss might be due to the decomposition of the CTAB molecules 

remaining in the silica and the second step weight loss at higher temperature corresponds to 

the decomposition of oleic acid molecules over the iron oxide NPs. Moreover, it is also 

observed that the second peak is extended up to higher temperature than that where the 
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weight loss of the iron oxide NPs ended. This could be argued as the entrapment of the oleic 

acid capped NPs inside the pores does not favour the easy degradation of the particles’ 

capping molecules. It is also observed that the inflection point of the weight loss with respect 

to the degradation of CTAB molecules for the nanoparticles loaded sample is observed little 

bit at lower temperature and also with higher intensity of the derivative peak. This might be 

due to the contribution of loosely bound CTAB molecules enveloping the spherical 

assemblies. Thus, the observed higher weight loss value and the two step weight losses for 

the silica nanoparticle composite system with the extended second stage weight loss signify 

the effective NPs loading to the mesoporous silica.    

FTIR spectrum of the iron oxide nanoparticles shows the characteristic bands of oleic acid 

bonding to the nanoparticles surface (shown in the Fig.7c). The prominent peaks at around 

633 cm
-1

 and 595 cm
-1

 correspond to the Fe-O stretching vibration of maghemite phase of the 

nanoparticles [25, 26]. The peaks at around 1532 cm
-1

 and 1432 cm
-1

 are attributed to the 

symmetric and asymmetric COO
-
 stretching vibrations, implies that oleic acid molecules are 

bonded to the nanoparticles through the chelating bonding of the carboxylate group [27]. The 

peak at around 1711 cm
-1

 is due to the stretching vibration of C=O, which signifies that oleic 

acid molecules are not only bonded bidentately, but also monodentaly over the particles [28].
 

XPS analysis also gave the same conclusion on this type of binding nature.  Similarly, the 

FTIR spectrum of the pure silica sample has shown all the characteristics peak of silica like, 

Si–O–Si stretching at around 1074 cm
-1 

, [29] Si–OH stretching at around 960 cm
-1

,[30] Si–

O–Si bending vibration at around 790 cm
-1

 and Si–O bending at around 490 cm
-1 

[31].
 
The 

presence of the CTAB in the pure silica sample is confirmed from the observed peaks at 

around 2922 cm
-1

, 2854 cm
-1

 and at 1643 cm
-1

, 1490 cm
-1 

[32]. The FTIR spectrum of the 

silica spheres after nanoparticles entrapment shows both the characteristics vibration bands of 

nanoparticles and silica. It is observed that Fe–O stretching bands are visible for the 
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composite sample, while the other signature bands of silica have also appeared at the same 

positions, but with lower intensities. The observed lowering of intensities is obvious due to 

the entrapment of the nanoparticles inside the pores.  

 4.5 Magnetic property studies 

 

Fig. 8 M-H plots of iron oxide nanoparticles (a) and nanoparticles loaded silica spheres (b) at 

the mentioned temperatures; Fig.c shows the comparative M-H plots (normalized plots) of 

the two systems at 5 K and; Fig. d shows the comparative ZFC and FC plots of the two 

systems in double y plot.  

Fig.8 (a) and (b) show the M-H plots of the iron oxide NPs and that of after loading in 

mesoporous silica spheres respectively. Very small values of coercivity and remanence (close 

to zero) at 300 K for both the samples imply the superparamagnetic property of the systems 

[33]. The oleic acid capped γ-Fe2O3 nanoparticles show the saturation magnetization value 

around 50 emu/g, which is found smaller than that of the bulk maghemite. This is due to the 

non-magnetic contribution of the thick oleic acid capping over the particles [34]. It is 
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observed that the saturation magnetization (Ms) value deceases to 4 emu/g for the 

nanoparticles loaded mesoporous silica system. This is obvious due to the lower weight 

fraction of the nanoparticles in comparison to the host silica materials in the composite 

system. The value of coercivity (Hc) is also obtained smaller for the composite sample than 

that for the separated iron oxide nanoparticles, while the reduced remanence (Mr/Ms) value 

shows the opposite observation (shown in Fig.8c).  

ZFC and FC measurements for both the samples were measured with probe field 300 Oe 

(shown in the Fig.8d). The iron oxide nanoparticles system shows the value of blocking 

temperature of around 80 K. For the assembly system it reduces to 46 K. The observed 

lowering of the blocking temperature could be related to the average lowering of interparticle 

dipolar interaction in the assembly system. Though the nanoparticles inside the silica spheres 

are densely packed, but as a whole there is less interaction among the particles due to the 

separation among the loaded silica particles. Moreover, it is also observed that the 

magnetization values above the blocking temperature decrease faster for the assembly system 

than that for the nanoparticles. This again signifies the less interparticle interaction effect. 

Thus, it is confirmed that the assembly system has retained superparamagnetic property or 

even it has shown more towards superparamagnetic property than the iron oxide system. This 

behaviour would make the system promising for biomedical applications.    

4.6 Biocompability and MRI study      

The MTT (3-(4,5-Dimethylthiazol-2-yl)-2,5-Diphenyltetrazolium Bromide)  assay  was 

performed  to  assess  the  in  vitro  cytotoxicity  of plant extracts or active compounds using 

L6 and A549 cell lines. The healthy cells of both the cell lines were harvested in 96 well cell 

culture grade plates and incubated at the similar conditions. In brief, approximately, 1x104 

cells/ml were cultures in DMEM media supplemented with 2 mM L-glutamine, 1mM sodium 
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pyruvate, 10 % FBS and penicillin (100units/ml), streptomycin (10 µg/ml) and allowed to 

incubate at 37
o
C in a humidified 5% CO2 environment. After 80% cell confluence, the cells 

were treated with different concentrations of each compounds and incubated for 24 hrs. After 

24 hrs incubation, MTT solution (5mg/ml) was added  to  each  well  and  incubated  for  a  

further  4  hrs followed by addition of MTT solvent to dissolve formed formazone complex. 

The absorbance was taken at 580 nm and the cell viability was compared to control cells 

without any treatment. 

To observe the cytotoxic effect of the sample, the L6 and A549 cells were treated with 

different concentrations of it separately for 24 hrs. After 24 hrs of the treatment the cells were 

exposed to MTT solution for 4 hrs forming formazone complex. The absorbance of the 

dissolved formazone complex revealed that the compound showed the 50% toxicity towards 

the cells at concentrations more than 50 μg/ml (shown in Fig.9a). At less than 50 μg/ml 

concentration, the compound showed moderate toxicity. When the cells treated with 10 μg/ml 

or less, viability of the cells were found to be more than 75% in comparison to the control. 
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Fig. 9 (a) MTT based cytotoxicity assay for S@IO sample performed on the (i) L6 Skeletal 

Muscle cell and (ii) A549 Lung cancer cell lines; (b) shows MRI relaxivity plots of γ-Fe2O3 

NPs (i) and assembly system (ii) along with the respective phantom images for the two 

samples, (iii) for γ-Fe2O3 NPs and (iv) assembly system measured at 9.4T and ambient 

temperature. Relaxivity for the NPs was found to be 191.8 s
-1

mM
-1 

and for the assembly it 

was found to be 386.2 mM
-1

 s
-1

 

The results in Fig. 9b demonstrates that transverse relaxivity of the γ-Fe2O3 NPs assembly is 

twice as high as the transverse relaxivity value of the individual NPs. Transverse relaxivity 

(r2) of the individual NPs is 191.8 mM
-1

s
-1

 and for the assembly it is 386.2 mM
-1

 s
-1

. 

Subsequently the values of r2/r1 were also calculated which were obtained as 9.59 and 49.20 

for the IO nanoparticles and the assembly samples respectively. The r2/r1 value for the 

assembly sample is higher than that of the IO nanoparticles and also higher than the recent 

reported values, suggesting it as highly efficient negative contrast agents [35-36]. The 

magnetic moment of NPs is directly related to the transverse relaxation rate following the 

relation [37]. 
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where, γ is proton gyromagnetic ratio, Ms is the magnetic moment per unit volume of the 

particle, V* is nanoparticle volume fraction, r is nanoparticle core radius, D is the diffusivity 

of water molecule at a given temperature and L is the thickness of surface coating. However, 

this formula does not hold for the assembly. Here a model would require to take into account 

the exchange rate of water between the interior of the assembly made up by the silica host 

and the surrounding water as well as the density of NPs within the assembly. It is already 

seen from the experimental results that the host silica shells have radial pores and the NPs are 
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trapped in the pores. The assembly thus provides a region of highly concentrated NPs with 

relatively good accessibility for water protons as the water protons can traverse through the 

pores. Due to the high concentration of NPs in the radial pores, water protons are strongly 

affected by the spatially varying magnetic fields arising from the particles. In contrast, the 

individual NPs are dispersed uniformly in solution and hence affect only water protons in 

close proximity. The assembly has a higher r2 relaxivity compared to the individual NPs, in 

analogy to the observation that proton relaxivity increases with the size of magnetic particle 

[38]. Moreover, this sample has shown higher r2 relaxivity value in comparison to the 

commercially available iron oxide nanoparticles based r2 contrast agents like Feridexs and 

Resovist etc [39]. Also this assembly system has shown superior r2 value compared to the 

other reported clustered iron oxide nanoparticles based systems [40-42].  

5. Conclusion     

In conclusion, our results demonstrate that the dense assembly of maghemite NPs can be 

developed by packing them in porous silica network through controlled evaporation of 

solvent. The NPs get entrapped to the pores effectively even after having higher size of the 

particles than the pore diameter, which is due to the triggering force on the particles to pores 

as a result of solvent evaporation. However, the nature of pore correlation is one of the key 

parameter in this mechanism, where it is realized that mesoporosus silica spheres only with 

straight pores can effectively entrap iron oxide NPs. Magnetic property measurements have 

showed retaining of superparamagnetic property of the NPs even after dense assembly 

formation. Also, lowering of interparticle interaction is revealed due to spacing between the 

individual assemblies even though particles are densely assembled inside the silica spheres. 

Due to strong collective magnetization and higher accessibility to the water protons through 

the pores, this secondary nanostructure exhibits significant improvement in MRI transverse 

relaxivity. This work provides a practical strategy to design high-dimensional ordered 
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secondary nanostructure by using ultrafine NPs as basic building blocks for superior 

efficiency.    
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