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Abstract
Taking into consideration the constraints and objectives to appropriately assigning the available airport resources throughout
the period of time an airport provides its services can greatly affect the quality of service which airlines and airports provide
to their customers. The appropriate assignments can help airlines and airports to keep to published schedules, by minimising
changes in these schedules, reducing delays and considering customers preferences when assigning the resources. Given the
expected increases in civil air traffic, and the variety of resources, the complexities of resource scheduling and assignment
continue to increase. For this reason, as well as the dynamic nature of the problems, scheduling and assignment are becoming
increasingly more difficult. An Evolutionary Algorithm is presented together with some different operators, which are used
to find good solutions to the Airport Baggage Sorting Station Assignment Problem for when there are not sufficient resources
up to when the number of resources is sufficient to fulfil the demand on these resources. The contributions of these different
operators are studied and compared to other approaches, giving insights into how the appropriate choice may depend upon
the specifics of the problem at the time.

Keywords Airport Baggage Sorting Station Problem · Scheduling · Heuristics · Evolutionary Algorithms

1 Overview

Many airport resources (for example, stands, gates, tugs, stor-
age points, fuel trucks and baggage stations) are of limited
availability and are expensive or time-consuming to increase
in quantity. Given this, airports need to use their resources
as efficiently as possible, since any delays due to lack of
available resources can have a direct impact upon the pub-
lished schedules, the provision of services to customers and
the workforce.Moreover, the characteristics of each problem
are represented by constraints and the desired solutions by
objectives, which naturally conflict with each other.

The problem can be represented by some constraints
which must be strictly complied with (known as hard con-
straints) and other constraints where compliance is desirable
(called soft constraints or objectives). In order to solve a prob-
lem, it is necessary to find solutions which comply with both
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the hard constraints and most or all of the soft constraints.
An indication of the compliance with the soft constraints is
provided by an evaluation function, sometimes referred to as
the fitness function, the results of which give an indication
as to the quality or fitness of the solutions.

Many approaches have been used to solve optimisa-
tion problems, like the Airport Baggage Sorting Station
Assignment Problem (ABSSAP), two of which are Genetic
Algorithms (GAs) and Tabu Search (TS). GAs are one of the
methodologies belonging to the population-based model of
Evolutionary Algorithms (EAs), based on the Darwin and
Wallace (1858) theory of natural selection and Mendelian
genetics (Mendel 1865), which are recognised as the foun-
dation of evolutionary biology. GAs have been used to solve
a wide range of airport problems, such as the Airport Gate
Assignment Problem (AGAP) in Lim et al. (2005), the
scheduling of arriving aircraft in Cheng et al. (1999), Xiang-
wei et al. (2010) andHansen (2004), the scheduling of depart-
ing aircraft in Bolender (2000) and Caprì and Ignaccolo
(2004), the aircraft taxiing in Gotteland and Durand (2003)
and theABSSAP inAscó (2016) andAscó et al. (2010, 2012,
2013). TS is aMetaheuristic algorithmwhich employs a local
search, which in turn uses a solution to generate a neighbour-
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Fig. 1 An example of encoding for a three BSSs and eight flights

hood of solutions. The solutions from the neighbourhood are
checked in the hope of finding an improved solution. A local
search may get stuck within areas of the search space where
the neighbourhood is equally fit, somemory structures which
describe the neighbourhood visited are incorporated to avoid
using again solutions and regions previously visited, Glover
(1989, 1990) andBurke andKendall (2005).An implementa-
tion of both a GA and TS is used later in this paper, where the
neighbourhood (also called local walk) is generated by using
the mutation operators described in Sect. 6, which constitute
the list of candidate solutions. In the TS, the fittest non-tabu
solution in the candidate list is adopted as the new current
solution and is also added to the tabu list. Once the tabu list is
full, one solution is removed from the tabu list to leave space
for the new tabu solution.

Various different ABSSAP objectives have to be consid-
ered, such as maximising assignments, ensuring full service
time and allocating preferential positions. Some of these
objectives are in obvious conflict (reducing service times
in order to service an additional flight, for example), thus
preventing simultaneous optimisation of each objective.

An encoding of the parameter set for the ABSSAP for the
CanonicalGeneticAlgorithm (CGA)was implementedusing
the Evolutionary Computation Java library (ECJ), where a
chromosome is composed of the indexes of the baggage sort-
ing station (BSS) assigned to each flight, the flights being
ordered by their base service starting time, as shown in Fig. 1.

The initial studies showed that good initial solutions
greatly improve the speed, convergence and quality of the
final solutions to the limited time ranges under considera-
tion, as shown in Sect. 8.

The following sections begin by a description of the prob-
lem, followed by a description of the proposed EA with its
operators and selectors, followed by a study of the problem,
using a fitness function as a single compound objectivewhich
represents realistic priorities.

2 The Airport Baggage Sorting Station
Assignment Problem

The checked-in baggage at a passenger airport first enters
the baggage system where it is processed and delivered to

the ground side, and an overview of the process is provided
in Fig. 2. The baggage is then transported by conveyor belts
to the baggage system’s security hall where it is individually
scanned. Most baggage will continue straight on, but if at the
scanning stage suspicions were aroused concerning the bag-
gage, then it is diverted to the security checking area where it
will be further checked by one of the security personnel and,
if clear, will rejoin the normal journey with the rest of the
baggage. In the area of conveyor systems, Johnstone et al.
(2015) investigate the design and control of merging bot-
tlenecks of conveyor-based baggage handling systems, and
Kim et al. (2017) looks at determining an appropriate work-
load balance for a Baggage Handling System (BHS). The
baggage will then continue (on conveyor belts) to the bag-
gage hall and be transported to the baggage sorting station
assigned to it. Once the baggage reaches the BSS, it accu-
mulates ready for the workforce to sort and place on trolleys
or into special containers, which go directly into the aircraft,
ready for transportation by cart and placed next to the aircraft
on the air side where the baggage is loaded into the aircraft
hold by the ground workforce, ready to travel to its destina-
tion. Containers are used to transport the baggage on wide
fuselage aircraft, for long distance flights, which are directly
placed into the hold of the aircraft. The proposed EA here
assigns theseBSSs to the aircraft (flights) under the described
constraints and objectives presented in Sect. 3. Trolleys are
used in the narrow fuselage aircraft, and the baggage is indi-
vidually loaded into the hold of the aircraft by the handling
workforce, who use conveyor belts to lift the baggage from
the trolleys to the level of the aircraft’s hold. Johnstone et al.
(2010) looked at the routing of the baggage within the bag-
gage systemwith the aim of providing additional insight into
how agents can learn to route in a baggage handling system,
and experiments show that the learningmethod performs bet-
ter than the search method.

On reaching thedestination airport, the process is reversed,
so that the ground workforce removes the baggage from the
cargo area of the aircraft and places it directly on baggage
carts (open trolleys, onto which baggage is separately loaded
and protected with a canvas cover) or loads in baggage con-
tainers onto dollies (trailers, on which baggage containers
are loaded) ready for transportation by cart to the baggage
sorting stations assigned. Here the handling force transfers it
from the trolleys or containers onto the baggage sorting sta-
tions for transportation to the ground side of the arrival hall.
The baggage then enters the baggage system which delivers
the baggage to the carousel to which the flight is assigned, in
readiness for collection by the corresponding owner, and will
then leave the airport. In the case of transfer passengers, their
baggage is delivered to the baggage sorting station assigned
to their next flight. The sorting station used by a flight arrival
is normally directly linked to the carousel assigned to the
passenger flight for the given destination, and only the trans-
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Fig. 2 Simplified overview of baggage system

fer baggage re-enters the baggage system for delivery to the
sorting station assigned to its next departure, as shown in the
‘Arrival hall’ in Fig. 2. The transfer baggage does not usu-
ally need to be directed through the security hall, given that
it should already have been checked at the original airport.

Where airports have several terminals, it would be unreal-
istic to assume that baggage from a flight at a terminal stand
is serviced by a baggage sorting station in another terminal
(e.g. passengers usually go through security and board flights
from the terminal at which they checked their baggage in).
This may not be the case for transfers where passengers and
their baggage arrive at an airport terminal and perhaps leave
the airport by another flight departing from a different termi-
nal.

The ABSSAP involves the assignment of BSSs to flights
already scheduled. These previously scheduled flights have
already been assigned to stands, which are the areas allocated
for parking aircraft, and the stand is required from the time of
arrival to the time of departure, whereas gates are the areas in
a terminal where passengers access the aircraft. In theAGAP,
when practitioners refer to the assignment of flights to gates

they mean the assignment of the stands associated with these
gates, normally located at a pier next to the gate.

3 Amodel of the problem under study

The problem is composed of N BSSs, and M flights, where
flight j requires Pj activities to be completed, each of which
must be serviced by a different BSS. The objective here is
to find appropriate values for the yi jp Boolean variables,
which take a value of 1 if activity p of flight j is assigned to
baggage sorting station i , or zero otherwise, with a service
starting time s jp and reduction in service time r jp allocated
to activity p of flight j . The target service time represents the
time in which a BSS is expected to be assigned to a flight.
The reduction in service time has a detrimental effect on the
robustness of assignments against real-life delays. Therefore,
the amount of reduction in the target service time for the
assignment of an activity p for flight j is represented by r jp,
which is calculated in seconds (as an integer). The described
variables are shown in Table 1. A study of different robust-
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Table 1 Decision and input variables for this ABSSAP model

Name Description

yi jp Specifies the assignment of flights to sorting stations.
yi jp = 1 if baggage sorting station i ∈ [1 . . . N ] is
allocated to flight j ∈ [1 . . . M] for p ∈ [1 . . . Pj ], and
0 otherwise. If each flight only requires one activity,
which means that each flight only requires one BSS,
then this variable can be expressed as yi j

r jp Specifies the necessary reduction in service time for
activity p ∈ [1 . . . Pj ] of flight j ∈ [1 . . . M], given
the service starting time allocated, s jp

s jp The service starting time allocated to activity
p ∈ [1 . . . Pj ] of flight j ∈ [1 . . . M], and given that a
sorting station can only service one flight at a time, s jp
can be determined from r jp since s jp = t j − r jp

ness approaches for the ABSSAP has been presented in Ascó
(2016).

There are some constraints to be complied with within the
ABSSAP:

Assignment Limits each flight must be assigned to at most
Pj BSSs, as expressed by Inequality 1.

N∑

i=1

yi jp ≤ Pj ∀ j ∈ [1 . . . M] and ∀p ∈ [1 . . . Pj ] (1)

Complete Assignment when Pj > 1, the activities cor-
responding to the same flight must either all be assigned or
none should be assigned, as expressed by Formula 2.

N∑

i=1

yi jp =
N∑

i=1

yi j(p+1) ∀ j ∈ [1 . . . M] and ∀p ∈ [1 . . . Pj − 1]

(2)

Reduction in ServiceBSSs canonly be usedbyoneflight at
a time, so it may be necessary to reduce the flight service time
(usually by reducing the buffer times betweenflights) in order
to assign flights to the same sorting station. The principal
objective is usually to maximise the number of assignment
of BSSs to flights.

For any pair of different flights where service times
overlap, if the overlap in service times is greater than the
maximum reduction allowed (Blq for activity q of flight l),
then both flight activities cannot be assigned to the sameBSS.
Thus, Inequality 3 applies to any such pair of flights, j and l
( j �= l), where tlq < e j ≤ el and (e j − tlq) > Blq .

yi jp + yilq ≤ 1 (3)

They may otherwise be assigned to the same BSS as long
as the service duration of flight l is sufficiently reduced to
remove the overlap. Inequality 4 applies to any such pair of

flights, j and l ( j �= l), and their activities p and q, respec-
tively, where tlq < e j ≤ el and (e j − tlq) ≤ Blq . One
objective is to minimise these service time reductions.

rlq ≥ (yi jp + yilq − 1) ∗ (e j − tlq) (4)

Limit of Service Reduction the reduction in service dura-
tion may not exceed a limit, as expressed by Inequality 5.

0 ≤ r jp ≤ Bjp ∀ j ∈ [1 . . . M] and ∀p ∈ [1 . . . Pj ] (5)

Anumber of objectives concerning this problemneed con-
sideration, and there is a trade-off to be made amongst them.
The various objectives considered in this section are:

1. Maximise Assignment of Baggage Sorting Stations the
first and most important objective is to maximise the number
of flights assigned to BSSs, as expressed by Formula 6.

f1 = max
N∑

i=1

M∑

j=1

⎛

⎝
∑Pj

p=1 yi jp

Pj

⎞

⎠ (6)

2. Robustness delays on the day of operation may render
some assignments infeasible which need to be reassigned. It
is therefore desirable to account for potential delays on the
day of operation when generating the flight assignments to
BSSs at the planning stage, such that the final flight assign-
ments differ little or not at all from the original assignments
on the day of operation. The degree to which this is achieved
is an indication of the solution robustness, so a solutionwhich
requires less in reassignments is said to be more robust than
those solutions requiring more reassignments. Robustness is
the ability of assignments to resist changes consequence of
perturbations by reducing or removing the need to reassign
current assignments. One of these approaches is to Minimise
Reduction in Service, as expressed by Eq. 7. A study of
robustness approaches for the Airport Baggage Sorting Sta-
tion Problem (ABSSP) is presented in Ascó (2016) and Ascó
(2013).

f2 = min
M∑

j=1

Pj∑

p=1

r jp (7)

3. Minimise Distance the distance between the BSSs
which are assigned to the flights and the flights to which they
are assigned should be as short as possible. This objective
aims to minimise the inconvenience, work and time involved
in getting baggage to the aircraft and could reflect preferences
rather than distances. Oneway to handle this objective would
be by expressing it as in Formula 8 where

∑N
i=1

(
yi jp ∗ di j

)

represents the distance between flight j and its allocated BSS
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Fig. 3 Representation of the different times

for activity p.

f3 = min
M∑

j=1

Pj∑

p=1

(
C jp ∗

N∑

i=1

(
yi jp ∗ di j

)
)

(8)

Other objectives may be considered, such as Consecutive
Assignments, Fair Workload, Preferred Piers and Flights to
the Same Destination, between others. Some of these other
objectives were looked at in Ascó et al. (2013) andAscó et al.
(2011).

A fitness function composed of the weighted sum of the
three first objectives presented above was used to guide the
search within the algorithm, expressed by Eq. 9 where Wi is
the weight for objective i and fi is the corresponding objec-
tive function.

f =
3∑

i=1

Wi ∗ fi (9)

Flights which cannot be assigned to any BSS are assigned
to the dummy BSS, an approach widely used in the AGAP,
as shown in Tang et al. (2009) , Drexla and Nikulina (2008)
and Yan and Huo (2001).

The constants of the model are shown in Table 2, and the
relationship between the timing values is illustrated in Fig. 3.
A full description of theABSSAPcan be seen inAscó (2013).

The following two points were defined from the flight
density for the day under study and will be observed to be
useful later when interpreting the results for the ABSSAP.

The Lower Maximum Assignment Point (LMAP) is the
number of resources required to service a certain number of
activities when the service starting time (s jp) coincides with
the target starting service time (t j p), as shown in Fig. 4.

The Upper Maximum Assignment Point (UMAP) is the
number of resources required to service those activities when
the service starting time (s jp) coincides with the base starting
service time (τ j ), as shown in Fig. 5.

Table 2 Constants and input values for this ABSSAP model

Name Description

N The total number of BSSs under consideration

M The total number of flights to which sorting stations
should be allocated

Pj The total number of activities to be serviced by baggage
service stations for a given flight j , which also equates
to the total number of sorting stations required to fully
service flight j , Pj > 0

Tj The base service duration for flight j

B jp The desired buffer time for flight j and activity p
(p ∈ [1 . . . Pj ])

e j The end service time for flight j

τ j The base starting service time for flight j , τ j = e j − Tj

t jp The target starting service time for flight j and activity
p, t jp = τ j − Bjp , assuming that the full buffer time is
available. Target service duration is the difference
between the end service time and the target starting
service time, e jp − t jp

C jp A flight specific constant representing the amount of
baggage to be processed for flight j and its activity p.
This determines the difficulty involved in allocating the
flight to a more distant sorting station. For example,
this may represent the number of delivery trips
required to move the baggage from the sorting station
to the aircraft. In the absence of baggage load figures,
it was used C jp = 1 for all activities and flights

di j The distance between baggage sorting station i and
flight j

d
′
ik The distance between baggage sorting stations i and k

Fig. 4 LMAP for both 16/13/2009 and 01/03/2010

Fig. 5 UMAP for both 16/13/2009 and 01/03/2010
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4 Steady-State Evolutionary Algorithm

A Steady-State GA maintains the majority of the population
between iterations, only replacing a few individuals at each
iteration, a term initially introduced in Syswerda (1989). In
the Steady-State Evolutionary Algorithm (SSEA) presented
here, Algorithm 1, the next population is obtained by apply-
ing the population selection operator, some of which are
introduced in Sect. 5-1, to the current population. One of
the operators is applied to the individuals selected from the
population by the member selector (Sect. 5-2), this last step
being called an iteration and being repeated � times, known
as a generation. The newly obtained individuals are added to
the population so constituting the current population. This
is repeated until the termination condition is reached. In
contrast to the CGA, parents and offspring typically coexist
such that the parents are also considered for the next genera-
tion, which theoretically increases the algorithm’s ability to
retain information for exploitation in subsequent generations.
This creates additional selective pressure towards informa-
tion already contained in the population. However, keeping
the parents does not provide the search with new informa-
tion since it does not sample new genotypes. The approach
may incorporate an ageing strategy to ensure that the parents
eventually leave the population, thus increasing the chance
of offspring contributing to building the next population.
Schwefel and Rudolph (1995) incorporated an age by defin-
ing a maximum duration of life, so any individual surviving
longer than this will be worse than any other which has not
reached such limit or has less fitness.

The SSEA is an instance of the Evolutionary Strategies
(ESs) which can be described as (μ + λ)-ES, 1 ≤ λ, where
λ may be greater than μ. In the case of the SSEA considered
here where the operators used provide only one offspring,
when applied, λ = �. A Steady-StateGA considering parents
in the next generation was presented in Whitley (1989) and
Whitley and Kauth (1988), which differs from a CGA in that
it uses a serial recombination wherein an offspring replaces
the lowest ranking individual in the population rather than
the parent, whereas the SSEA may use some or all of the
parents in the next generation since the next population in a
generation is built by applying the replacement strategy to the
current population, which in turn is composed of both the off-
spring and the parents, so the chance of a parent taking part in
the next generation is determined by the replacement strategy
used. The SSEAmakes use of two selectors, Sp which selects
the population which is to take part in the next generation and
Sm which selects the member(s) from within an iteration to
which the chosen operator is applied. Likewise, Sokolov and
Whitley (2005) follows similar steps when generating their
GA; the main difference to the SSEA is the use of �, two
selection processes and the operators being any combination
of operators. The initial population may also be composed

Algorithm 1: SSEA
Input: Initial population P0
Input: Number of iterations in a generation � ∈ Z

+, � > 0
Input: Operators; Oj∀ j ∈ [1 . . . R]
Input: Replacement strategies, Sp
Input: Parent(s) selector, Sm

1 begin
// Initialisation

2 P ← P0; // set inital population

// Execution of generations
3 repeat
4 P ← Sp(P); // apply replacement strategy

to get the new population
5 Pt ← ∅; // empty population of children
6 i = 1; // initialise the iterations

// Execution of iterations
7 repeat
8 Select an operator, Ok ;
9 Q ← Sm(P, Ok); // select parents

10 Q ← Ok(Q); // generate children
solutions by applying operator

11 Pt ← Pt ∪ Q; // add children solutions
to the population of children

12 i = i + 1; // increment iteration
13 until i ≤ � or Termination Condition;
14 P ← P ∪ Pt ; // merge parents with

children solutions
15 until Termination Condition;

16 return P;
17 end

of fewer solutions than the preferred population size. This
size should eventually be reached as the new solutions gen-
erated are merged with the parent solutions, and then, the
replacement strategy is applied.

For � = μ (the population size), the SSEA algorithm is
closer to a CGA, but still differs from the CGA in that:

1. The new population to which the replacement strategy
is applied is of size μ + λ, whereas for the CGA it is λ.
Thus, not only do parents and offspring coexist in the new
population, but also those previous solutions which may
not have been selected for the generation of offspring in
the current generation.

2. A generation is composed of � iterations in which par-
ents are selected and operators applied to generate the
offspring, which together with the previous population
will compose the current population. � does not need to
be fixed, and it can be changed as the search progresses,
thus providing an additional mechanism to control the
sampling.

3. Whereas in the CGA reproduction produces two off-
spring, in the SSEA the reproduction may produce either
one or many offspring.

123



An Evolutionary Algorithm and operators for the Airport Baggage Sorting Station Problem

4. In the CGA up to two operators may be applied, namely
crossover and mutation. The SSEA does not put any
restriction on the operator, so operators may be applied
one per iteration or a set of operators in an iteration, as
described in the following sections. An operator may be
defined which sequentially applies a set of sub-operators
to the offspring of the previous operator, based on some
criterion, such as the probability of a sub-operator being
selected. An example of this is where two operators are
used one with a probability of 1, so it is always used, and
a second operator a probability of 0.1 being used. The
first offspring is always obtained by applying the first
operator to the parents in the population, given its prob-
ability of 1. This offspring may be further modified by
the second operator in order to obtain the final offspring;
otherwise, where the second operator is not applied, the
first offspring becomes the final one. If both probabili-
ties are lower than 1, there is a chance of the parent also
becoming the final offspring.

5. Each operator has a probability associated with it which
represents the chance of being selected, where the overall
probability of selecting any of the operators totals 1. In
this SSEA, any of the operators may be selected at each
iteration based on their probabilities.

5 Selectors

The selector methods are responsible for selecting solutions
within a population of solutions. Two types of selector are
used throughout this paper which are:

1. Replacement Strategies (Sp) The replacement strategies
generate the new population from the parents and off-
spring which is used in the following generation. The
replacement strategies are used in both CGA and SSEA.
They distribute the chance of individuals taking part in
the next generation. Normally, the fitter the solution, the
more chance it has of being selected for participation in
the following generation. A comprehensive analysis of
selection schemes used in EAs can be found in Blickle
and Thiele (1996).

2. Parent Selectors (Sm) The member selectors distribute
the chance of a given solution within the population tak-
ing part in generating new offspring within a generation.
Normally, the fitter the solution, the more chance there is
of being selected to produce new offspring.

An increase in diversity certainly corresponds to broaden-
ing exploration of the search space, and finding an adjustable
balance between exploration and exploitation is the key,
Levinthal and March (1993) and March (1991). Exploration
and exploitation should not be constrained to specific parts

of the process, such as only in the early stages of the search,
but also be taken into account throughout all the evolutionary
processes based on the characteristics at each stage.

The selection of solutions for participation in a popula-
tion is one of the mechanisms for managing diversity, which
together with the operators helps to improve the direction of
the search within the domain of solutions into the regions
containing solutions with a higher potential.

Some of the terms used are defined belowwhich are based
in Baker (1987) and Blickle and Thiele (1996).

– Selective pressure is the probability of selecting the best
individual compared to the average probability of selec-
tion of all the individuals.

– Bias is the absolute difference between an individual’s
normalised fitness and its expected probability of repro-
duction.

– Spread is the range of possible values for the number of
offspring of an individual.

There follows an overview of the new approaches pro-
posed.

5.1 Stochastic Universal Modified Sampling

The Stochastic Universal Sampling (SUS) may not be appro-
priate when the order of magnitude of the fitness under study
is greater than the difference in the fitness values amongst
individuals; such are the cases studied in this paper. So
Stochastic Universal Modified Sampling (SUMS) is defined
in such a way as to provide a greater selection pressure, as
shown in Algorithm 2. SUMS provides more selection pres-
sure than SUS and some bias. A characteristic of the SUMS
is that offsetting of all of the fitness by a constant does not
affect those sections of the roulette wheel occupied by each
solution as this is not the case for the SUS.

In both versions, a single spin of the roulettewheel ismade
which provides both a starting point and the first individual.
The following selections are made by advancing the point
in equal step sizes and selecting the individual occupying
the section upon which the point fell: the process is repeated
until all the required individuals have been selected. Some
individuals may not be selected where their occupied section
is sufficiently small, depending on the starting point.

Both versions of sampling ensure that the observed selec-
tion frequencies of each individual are in line with the
expected frequencies. So if there is an individual occupying
6.5% of the wheel and it is necessary to select 100 individ-
uals, it is expected, on average, that that individual will be
selected between six and seven times. Whereas both SUS
and SUMS guarantees this, roulette wheel selection does not
make such a guarantee.
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Algorithm 2: Stochastic Universal Modified Sampling
Input: Population P of size λ

Input: Desired population size of μ, 0 < μ < λ

begin
// Calculate the two lowest fitness
Fmin = ∞;
Fmin−1 = ∞;
for i = 1 → λ do

if Fmin > fi then
Fmin−1 = Fmin ;
Fmin = fi ;

end
else if Fmin > fi then

Fmin−1 = fi ;
end

end
F = Fmin − (Fmin−1 − Fmin);

// Assign a section to each solution
p0 = 0;
for i = 1 → λ do

pi =
∑i

j=1( f j−F)
∑λ

j=1( f j−F)
;

end

// Initialise
P ′ ← ∅; // empty next population

r0 = rnd
[
0, 1

μ

)
; // identify first point

i = 1; // set to first solution in P

// Select members from the population
based on their roulette wheel section

for j = 1 → μ do
r = ( j−1)

μ
+ r0;

for i → λ do
if pi > r then

P ′ ← i ; // add selected solution to
next population

break;
end

end
end

return P ′;
end

5.2 Index selector (ISxy)

This new selector makes sure that no more than a fixed max-
imum number of fitness duplicates are selected for the next
population. This selector requires an integer which corre-
sponds to the maximum number of solutions with the same
fitness to keep (x, number of solutions) and a base selector
(y, the base selector), one of the selectors presented above,
e.g. the Index Selector with the Elitist Selector and a group
size of 1 would be represented as I S1ES.

The IndexSelector is only useful as a replacement strategy,
given that as a parent selector it merely selects a very reduced
number of solutions.

5.3 Range index selector (RISxyz)

Empirical results show that when the previous selector ISxy
was applied to the ABSSAP, different groups with small dif-
ferences were generated, which also represented a reduction
in diversity, and which diversity may be increased further
by changing the ISxy from a unique fitness in each group to
a range of fitness per group. This requires a knowledge of
group size (x, the maximum number of solutions to be kept
within a range), a base selector (y, the base selector) and an
indication of the fitness range (z), e.g. the Range Index Selec-
tor with Elitist Selector (y = ES), a group size of 1 (x = 1)
and fitness range of 50 (z = 50) which may be represented as
RI S1ES50. For RI S1ES50 and a maximisation problem,
if the group having a fitness range from 1000 to 1050 already
contains a solution with a fitness of 1000, and a new solution
is to be added to the population with a fitness of 1010, then
the solution of a 1000 is removed and the new solution is
introduced into the group in its place, given that x = 1. The
selection within a group uses a greedy approach.

Many of the selection approaches presented are not suit-
ablewhere only one individual (solution) is required, as is the
case for the Index Selection (ISxy) and Range Index Selec-
tor (RISxyz), given that in those cases they are equivalent to
the underlying selection approach, e.g. the Index Selection
with Elitist Selection (ISxES) is the same as the Elitist Selec-
tion (ES). Such is the case for themutation operators (Sect. 6)
where theParent Selectors have to select onlyoneparent solu-
tion. Similarly, some of the classic selection methods such as
SUS, Roulette Wheel Member Selection (RWMS) and Tour-
nament Member Selection (TMS) are equivalent when just
one parent solution has to be selected.

6 Operators

Two main groups of operators are reviewed in the following
sections:Mutation andCrossover.Both of these are described
below.

6.1 Mutation

The operators introduced here are local search (guided muta-
tion) operators which generate feasible solutions.

All flightswhichhavenot been assigned to a sorting station
are assigned to the ‘dummy’ sorting station. Some operators
can switch flights between the real and dummy sorting sta-
tions.

When a sorting station is to be selected, the roulette wheel
selection method is used whereby every sorting station has
the same probability of being selected.

When a time has to be determined (for instance for the start
or end of a time range), a uniform random variable is used,
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so that any time within the time range of the flights under
consideration has an equal probability of being chosen.

6.1.1 Dummy Single Exchange Mutation Operator (DSEMO)

The DSEMO is equivalent to the ‘Apron Exchange Move’
used by Ding et al. (2004, 2005). A solution is selected from
the population by the member selector (Sm); then, a new
solution is built by moving a flight from the ‘dummy’ sorting
station in this solution to a randomly selected sorting station,
thus potentiallymoving another flight back onto the ‘dummy’
sorting station where it can no longer be fitted in.

This operator may increase the number of assignments
where the operation does not move a flight back onto the
‘dummy’ sorting station.

It is necessary that someflights be unassigned in the parent
solution. So when full assignment has been attained for the
given number of BSSs, this operator clearly will not provide
a new solution.

6.1.2 Dummy Single Move Mutation Operator (DSMMO)

In the DSMMO, a random unallocated flight and initial target
sorting station are chosen, and an attempt is made to assign
the flight to the selected sorting station. If the assignment
cannot be achieved, then the next sorting station is selected
and the process is repeated until the flight is assigned, or no
more sorting stations are available, in which case the flight
is returned to the ‘dummy’ sorting station. When maximum
assignments have been attained for the given number of sort-
ing stations, this operator obviously will not provide a new
solution.

6.1.3 Multi-Exchange Mutation Operators

Aset of sorting stations is randomly selected from these oper-
ators within a random time period, trs to tre. All assignments
where the base service durations are entirely within the time
period are then moved to the next sorting station in the set, as
shown in Fig. 6, provided they fit. This operation is repeated
from one sorting station in the set to the next, until they have
all been covered. Flights which cannot be moved are added
to the set of flights which will be considered for assignment
at the end, potentially reducing the number of flights which
would otherwise not be assigned. These operators generalise
the ‘Interval Exchange Move’ which was presented by Ding
et al. (2005), and cannot increase the number of assignments.

Three variants have been developed:

1. Multi-Exchange between a Fixed Number of Resources
(MEFNRn): The number of sorting stations between
which flights are exchanged is fixed at n, where 2 ≤
n ≤ N .

Fig. 6 Example of multi-exchange between three BSSs

2. Multi-Exchange between a Random Number of Resour-
ces (MERNRn): The number of sorting stations between
which flights are exchanged is randomly chosen each
time, between 2 and n, where 2 < n ≤ N .

3. Multi-Exchange between a Range Random Number of
Resources (MERRNRxy): The number of sorting stations
between which flights are exchanged is randomly chosen
each time, between x and y, where 2 ≤ x < y ≤ N .

6.1.4 Multi-Exchange By Pier Mutation Operators

These operators are a specialised case of theMulti-Exchange
Mutation Operators, where the sorting station selection ele-
ment ensures that no two consecutive sorting stations in the
set are on the same pier. The idea is to improve the dis-
tance objective by encouraging themovement of assignments
between piers.

Once again, this operator cannot increase the number of
assignments.As for theMulti-ExchangeMutationOperators,
three variants have been created:

1. Multi-Exchange By Pier between a Fixed Number of
Resources (MEBPFNRn): The number of sorting sta-
tions to exchange flights between is fixed at n, where
2 ≤ n ≤ N .

2. Multi-Exchange By Pier between a Random Number
of Resources (MEBPRNRn): The number of sorting
stations between which the flights are exchanged is ran-
domly chosen each time, between 2 and n, where 2 <

n ≤ N .
3. Multi-Exchange By Pier between a Range Random

Number of Resources (MEBPRRNRxy): The number of
sorting stations between which the flights are exchanged
is randomly chosen each time, between x and y, where
2 ≤ x < y ≤ N .

6.1.5 Range Multi-Exchange Mutation Operators

These are the same as the Multi-Exchange Mutation Oper-
ators; however, they add an additional feasibility recovery
step when flights cannot be moved. Flights which cannot be
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Fig. 7 Example of range multi-exchange between three BSSs

moved are added to the set of flights which will be consid-
ered for assignment to the next sorting station, potentially
reducing the number of flights which would otherwise not
be assigned at the end. Finally, flights which have still not
been moved are again considered for assignment to the other
sorting stations in the set, except the last one, once again
potentially reducing the number of flights which otherwise
would not be assigned, in the same way as the Multi-
Exchange Mutation Operators, as shown in Fig. 7.

Once again, this operator cannot increase the number of
assignments. Three variants have been developed:

1. Range Multi-Exchange between Fixed Number of Res-
ources (RMEFNRn): The number of sorting stations
between which to exchange flights is fixed at n, where
2 ≤ n ≤ N .

2. Range Multi-Exchange between Random Number of
Resources (RMERNRn): The number of sorting stations
between which to exchange flights is randomly chosen
each time, between 2 and n, where 2 < n ≤ N .

3. Range Multi-Exchange between Range Random Num-
ber of Resources (RMERRNRxy): The number of sorting
stations between which to exchange flights is randomly
chosen each time, between x and y, where 2 ≤ x < y ≤
N .

6.1.6 Range Multi-Exchange By Pier Mutation Operators

These are a specialised version of the RangeMulti-Exchange
Mutation Operators, which ensure that consecutive sorting
stations in the set are not on the same pier, to encourage the
movement of flights between piers, so potentially improving
the distance objective. These operators cannot increase the
number of assignments. As for theMulti-ExchangeMutation
Operators, three variants have been created: Range Multi-
Exchange By Pier between Fixed Number of Resources
(RMEBPFNRn) and with Random Number of Resources
Range Multi-Exchange By Pier between Random Number
of Resources (RMEBPRNRn) and Range Multi-Exchange
By Pier between Range Random Number of Resources
(RMEBPRNRxy).

Fig. 8 2-Point crossover

The Multi-Exchange Mutation Operators may also be
extended by using multiple points in time instead of two
points in time (a time range). However, this will also increase
the complexity and time required to execute the operations
and equates to several executions of the current implemen-
tation and was not therefore investigated.

6.2 Crossover

The crossover operators involve the generation of new solu-
tions frommultiple parents. Each parent will be chosen using
the Parent Selectors (Sm), and multiple child solutions may
be generated in each case.

6.2.1 2-Point crossover

In the 2-point crossover (C2P), two points in time are
randomly selectedwithin the time range of the flights, to gen-
erate a time window. All flight assignments which lie within
this time period, for all of the sorting stations in each solu-
tion, are exchanged between the parent solutions, as shown
in Fig. 8. The flight timings are identical across all solutions,
except that the flights in the exchanged region may overlap
flights which are not exchanged in the case of some sorting
stations. Such overlapping flights in the exchange region are
reassigned to other sorting stations where possible; other-
wise, they are assigned to the dummy sorting station (i.e. are
unassigned).

Whereas in the classic crossover a chromosome is divided
into three sections, here the chromosome is divided into 3 ∗
N sections which correspond to three sections per sorting
station.

6.2.2 1-Point crossover

The 1-point crossover (C1P) is a specific case of the above
2-point crossover, where the window extends to the end time
of the solution, as shown in the left in Fig. 9.

In the presented representation, 1-point crossover is a spe-
cial case of 2-point crossover (n = 2, number of points),
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Fig. 9 Example of 1-point crossover and 1-point serial crossover

where the second point corresponds to the end of the chro-
mosome.

6.2.3 n-point crossover

The n-point crossover (CnP) may use n + 1 solutions from
the population, where n refers to the number of cuts. The full
time range is divided into n + 1 sections, and multiple new
solutions are obtained by merging the consecutive sections
between the different parents. This recombination may leave
some flights unassigned, which may be assigned directly to
the dummy sorting station (fictitious sorting station) or an
attempt could be made to repair the solution by assigning
it to any available sorting station. An extension to 2-point
crossover is the n-point crossover which divides the chromo-
some into (n + 1) ∗ N which equates to n + 1 sections per
sorting station.

Using n-point crossover with n+1 parents can provide up
to (n+1)! children.Eiben et al. (1994, 1995), Tsutsui and Jain
(1998) and Eiben (2003) studied the effect of using multiple
parents and multiple crossover points and observed that the
increase in the success rate is not merely a consequence of
using multiple crossover points, leading to the conclusion
that using more parents does increase GA performance.

6.2.4 1-Point serial crossover

The 1-point serial crossover (SC1P) is a different imple-
mentation of a crossover operator and may be simpler to
understand by representing the problem as a continuous list
of BSSs where the crossover cut(s) is in this continuous list,
insteadofwithin eachBSSas seen in the previously presented
crossover operators. The 1-point serial crossover operator is
illustrated on the right in Fig. 9 for the ABSSAP. When the
cut(s) has to be determined, a comparison of both parents is
made to find the first and last differences in their assignments
within the representation, which may be used to restrict the
selection of the cut(s). This implementation of a crossover
operator is closer to that which is commonly presented in the
literature as a 1-point crossover operator, and it is different
to that previously introduced in this section.

Figure 9 shows a simple example where the same parent
solutions are used in a 1-point crossover and a 1-point serial
crossover side by side. When considering two parents with
full assignment, the cut in time (trs) in the 1-point crossover
(C1P) breaks the assigned flights into two groups, each of
which contains the same flights for both parents, whereas
this is not the case for 1-point serial crossover (SC1P), as
shown in Fig. 9, where flight ‘3’ is on a different side of the
cut in the parents. This means that in the case of SC1P it is
necessary to check the assignments after the cut (trs) from
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the second parent to make sure that they have not already
been assigned to the first side (from the first parent). Flight
‘3’ is already assigned to the offspring of the first parent and
therefore cannot be assigned again to those from the second
parent, as shown in Fig. 9. So 1-point crossover is simpler to
implement than 1-point serial crossover.

Furthermore, this implementation could easily be exten-
ded to n points.

Holland (1975) argued that, based on the schema theo-
rem to minimise schema disruption, 2-point serial crossover
is better than 1-point serial crossover. Although our results
show that in some instances 1-point serial crossover provides
better solutions than 2-point serial crossover, in general 2-
point serial crossover performs best overall. Nevertheless,
the schemata theorem is based on a binary representation of
the chromosome and binary operators, which differ from the
representation and operators presented here, so its applica-
tion is of limited interest.

6.3 Combination of operators

Based on how the operator is selected, the types which are
of interest are described in the following subsections. It is
noted that the operators could be used in complex ways by
combining these different types with different parameters.

6.3.1 Probability Single Multi-Operator

The Probability SingleMulti-Operator (PSMO) is composed
of several sub-operators (which are described inSect. 6), each
one of which has a specified probability of being used for the
creation of new population members, as shown in Algorithm
3. The combined probabilities across all operators must add
up to 1.

As an example, consider a PSMO operator which uses
the operators C1P (with a 0.1 probability of being selected)
andMulti-Exchange between aFixedNumber of 3Resources
(MEFNR3) (with a 0.90 probability of being selected), which
maybe represented as PSMO(C1P:10+MEFRN3:90).Given
that the total probability must amount to 1, it is not necessary
to specify the probability for the last sub-operator, so the
representation may also be PSMO(C1P:10+MEFRN3).

The PSMO operator is the one used as base operator in
the SSEA experiments presented in Sect. 8.

6.3.2 Sequential operator

Considering the way the CGA operates, where a crossover
operatormay be applied to the parents with a high probability
and its children may be further modified by applying a muta-
tion operator, the operators may be extended by defining a
new operator composed of multiple sub-operators, which are
applied sequentially with a given probability (0 < p ≤ 1),

Algorithm 3: Probability Single Multi-Operator.
Input: Member Selector Sm
Input: Population of solutions P
Input: Operators; Ok ∀ k ∈ [1 . . . R]
Input: Probability for operators pk , 0 < pk ≤ 1∀k ∈ [1 . . . R]

and
∑R

k=1 pk = 1
begin

// Initialise
P0 ← ∅; // empty list of children
r = rnd[0 . . . 1);
k = 1; // initialise sub-operator index to

first operation
p = p1;

// Select operator
while k < R and r > p do

k = k + 1; // next operator
p = p + pk ;

end
Q ← Sm(P, Ok); // get parent solutions for

operator Ok
P0 ← Ok(Q); // build children by applying

operator to parents

return P0; // return the obtained children
end

Algorithm 4: Sequential Operator.
Input: Member Selector Sm
Input: Population of solutions P
Input: Operators; Ok ∀ k ∈ [1 . . . R]
Input: Probability for each operator pk ,

0 < pk ≤ 1 ∀ k ∈ [1 . . . R]
begin

// Initialise
P0 ← Sm(P, O); // select parents based on

operators

// Build children
for k = 1 → R do

r = rnd[0 . . . 1);
if r < pk then

Q ← P0; // previous children as
parent solutions

P0 ← Ok(Q); // applying operator to
the parent solutions

end
i ← k + 1; // next sub-operator

end

return P0; // return the obtained children
end

as shown in Algorithm 4. This new operator is called the
Sequential Operator (SO) herein.

As an example, consider the operators C1P with a
selection probability of 1 and the MEFNR3 with a prob-
ability of selection of 0.01, which may be represented
as SO(C1P:100,MEFNR3:1), where a 1-point crossover is
always applied to generate the intermediate children. For
these, there is a small probability of 0.01 for application of

123



An Evolutionary Algorithm and operators for the Airport Baggage Sorting Station Problem

Table 3 Default parameter values

Parameter Value Comments

Tournament size 2 Tournament selection

Trails/runs 30 Number of runs per experiment

Significance level 0.05 Mann–Whitney U tests were carried out to
ascertain the statistical significance

Fitness weights W1 = 90 W2 = −0.008 W3 = −1 Also used in Ascó et al. (2012), and the weights
calculation can be seen in Ascó (2013)

the MEFNR3 operator in order to generate the final children
solutions.

7 General experiments information

A summary of some of the typical values for the different
parameters used in the following experiments is shown in
Table 3.

The data sets used relate to those provided by NATS Ltd.
both for 16 December 2009 (H1T091216) and for 1 March
2010 (H1T100301).

The initial solutions were obtained by running the con-
structive algorithms presented in Ascó et al. (2010, 2011).

Unless it ismentioned, the parameters presented here refer
to all the following experiments for the ABSSAP.

8 Results

The algorithms described are applied to the ABSSAP for
different number of BSSs and stands, and their results are
compared and analysed in this section for both the data sets
obtained from British Airports Authority (BAA)’s website
and those provided by NATS Ltd. for HeathrowAirport Lon-
don. A fitness function composed of the weighted sum of the
different objectives was used to guide the search within the
algorithms.

Normality testswere run to identifywhether the data could
be said to followanormal distribution,which is a requirement
for use of the t-test; otherwise, the Mann–Whitney U test is
preferable. Razali andWah (2011) compared some normality
tests and concluded that Shapiro–Wilk is the most powerful
normality test. Thus, the Shapiro–Wilk normality test was
run for some of the data to ascertain whether the data could
be said to be normal, but the data could not be said to follow
a normal distribution, the results of which can be seen at
Ascó et al. (2013). So Mann–Whitney U tests were carried
out to ascertain the statistical significance in the following
experiments.

The initial results from experiments executed for BAA’s
website data sets for Heathrow Airport London show that

Table 4 CPLEX none default parameter values used for results in
Figs. 10 and 12

Parameter Value Comments

NodeFileInd 3 Node file on disc and compressed

WorkMem 128 Memory in MB

NodeSel 1 Best-bound search

VarSel 3 Strong branching

TiLim 3600 and 86400 Time in seconds to end the run

the SSEA presented here provides better solutions than those
obtained by CPLEX and Gurobi for the running times con-
sidered. These experiments also highlighted the need to have
access to a large quantity ofRandomAccessMemory (RAM)
given howmemory hungry both commercial solvers CPLEX
and Gurobi are, making it necessary to run them on a 64bit
machine to be able to use more RAM. An initial run with a
duration of 1 h was executed, followed by another of 24 h to
identify whether the exact method could find the optimum
and compare the fittest solution obtained with those obtained
by the SSEA. Also the best upper bound obtained from each
run was used to help to get an idea of the of the solutions
quality obtained from the different algorithms used in the
following sections. All the Gurobi parameters used were the
default ones with the exception of the time, which was lim-
ited to 1 h and 24 h in the two initial runs, and the parameter
values used for CPLEX are presented in Table 4. Multiple
runs were executed to enable the SSEA to take account of
the random characteristics of the algorithm with a PSMO
composed of 0.2 MEFNR3, 0.2 RMEFNR2, 0.15 C1P and
0.45 DSEMO (only one of the sub-operators will be used
at each iteration) with an ES replacement strategy, and the
results are shown in Fig. 10.

The SSEA quickly improves upon the initial solutions
used, reaching solutions fitter than those obtained by Gurobi.
Further initial experiments were conducted between the
SSEA, CGA and TS with the parameter values as shown
in Table 5. The results for these experiments, which are pre-
sented in Fig. 11, also show that SSEA performs better than
the other Metaheuristics considered.
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Fig. 10 Progress for a 3-pier topology, 48 stands, 78 BSSs and 219
flights (H1T091216)

Table 5 Parameter values used with 30 runs per experiment

Algorithm Parameters

Name Value

SSEA Population size 10 and 30

Tournament size 5

Replacement strategy ES

Operator MEFNR3

CGA Population size 10 and 30

Replacement strategy ES

Operator 0.99 C1P and 0.1 MEFNR3

TS Walk size 10

Tabu list size 30

Operator MEFNR3

Fig. 11 Progress for a 3-pier topology, 48 stands, 78 BSSs for 219
flights (H1T091216) and different heuristics

In general, the results obtained show improvements in fit-
ness, as shown in Fig. 12. Better results were obtained when
other Replacement Strategies were used, which are presented
in the following sections.

These results show the potential of the SSEA for obtain-
ing good solutions even on short runs. It may also be noted
that the problem becomes simpler as the number of BSSs

Fig. 12 Average fitness for a 4-pier topology, 46 stands for 194 flights
(H1T091216) and different heuristics

increases, especially for the number of BSSs near or bigger
than the UMAP, where there are sufficient BSSs to service
all the flights while keeping the buffer time intact.

In the next sections, the experiments and their results are
presented which were obtained when studying the different
parameters part of the SSEA.

8.1 Initial solutions

Experiments were initially conducted to evaluate the influ-
ence of the initial population of solutions in reaching better
solutions when using good solutions as initial population.
The latter have been obtained by applying the constructive
algorithms presented in Ascó et al. (2010, 2011), to a data
set of 219 flights. The operator used is a PSMO composed
of the following sub-operators, each with its own probability
of being used; 0.2 for RMEFNRn, 0.2 for Dual Exchange
Mutation Operator (DEMO), 0.15 for 1-point crossover and
0.45 for DSEMO, for a population size of ten solutions for
a population based algorithms and 78 BSSs (lower than the
LMAP). Given that for 78 BSSs full assignment is not pos-
sible, use of the DSEMO should help to reach other areas of
the search space, thereby improving the solutions obtained.
The solutions which do not have maximum assignment may
further increase the number of assignments by applying the
DSEMO.

Maximum assignment is achieved where no buffer time
is considered, and no restriction is applied as to where the
flights may be assigned when ordering the flights by depar-
ture time: this is used to generate some of the constructive
solutions. The progress of the search is used here for the
different initial solutions being considered, in order to illus-
trate their contribution in reaching better solutions, as shown
in Fig. 13. This provides a view of the Steady-State Evo-
lutionary Algorithm with � = 1 (SSEA1) behaviour and
shows that the algorithm managed to improve on the already
good solutions provided as initial solutions, but not as much
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Fig. 13 Progress in fitness of solutions when run with and without a
initial random population for SSEA1, a 3-pier topology, 78 BSSs, 48
stands and 219 flights (H1T091216)

Fig. 14 Progress in fitness of solutions when run with and without
initial random population for Gurobi, a 3-pier topology, 78 BSSs, 48
stands and 219 flights for 1 h

as when the initial solutions are of lower fitness. This is as
expected given that there is more leeway to improve on the
solutions, but the final fitness of the best solutions is still less
than those obtained when good solutions are used. Further-
more, the solver Gurobi was run for 1 h, as shown in Fig. 14,
when no initial solution was provided and when an initial
constructive solution (the best of those used for the SSEA1)
was used, which showed Gurobi took over 2 min to find a
feasible initial solution, when no initial solution is provided.
Then quickly improved on this, but still does not manage
to reach a fitness such as those reached when a good con-
structive initial solution is provided, as is the case with the
SSEA1, but at a lower rate. The final solution fitness in both
figures shows that SSEA1 provides fitter (better) solutions
than those provided by Gurobi, with SSEA1 also improving
on Gurobi when no good initial solutions were used.

In summation, the benefits of using good initial solutions
in the SSEA are more apparent at short running times, as
the differences between fitness decrease as the running time
increases, but fitter overall solutions are foundwhen the algo-
rithm uses fit good initial solutions. This was also notedwhen
using commercial optimisation applications such as Gurobi
and CPLEX.

The mutation operators considered here, with the excep-
tion of DSEMO, cannot increase the number of assignments;
therefore, solutions which do not have maximum assignment
restrict the search space and waste iterations which could
otherwise be used to widen the search of the space of solu-

tions potentially improving on those solutions already found.
This can be particularly detrimental if none of the solutions
provided are sufficiently fit, i.e. solutions with at least one
unassigned flightwhich is assigned in the optimal solution, as
such flights cannot be assigned by these operators. Therefore,
when the initial solutions do not havemaximumflight assign-
ment for the given number of BSSs, the search is restricted
to flights already assigned which means low fitness. In these
cases, the use of another operator which can increase the
number of assignments such as the DSEMO should be used,
at least until one or many of the solutions in the population
reach maximum flight assignment.

Table 6 shows the statistical fitness significance of the
best solution obtained by the SSEA1 with a population size
of 30 and a single operator MEFNR3, when using an initial
population composed of good solutions obtained from apply-
ing the constructive algorithms studied in Ascó et al. (2010,
2011). It is compared with those solutions obtained when
the initial population is composed of the 30 fittest solutions
from 200 randomly generated solutions (random construc-
tive algorithm) for the data set. The empirical results show
that the SSEAwith good initial solutions provides, in most of
the instances considered here, a superior final best solution
(statistical fitness significance< 0.005) than when the initial
population is composed of random solutions.

The algorithms in the study in the following sections use
the initial solutions obtained by applying the constructive
algorithms which were used in this section and introduced in
Ascó et al. (2010, 2011).

8.2 Population size

The effect of the population size (μ) on the results of several
of the operators presented in 6 (Operators) was explored. The
parameters used in the experiments are:

1. The data sets used relates to those provided by NATS
Ltd. both for 16 December 2009 (H1T091216) and for 1
March 2010 (H1T100301), with both 3-pier and 4-pier
topologies, for Heathrow Airport London.

2. Number of BSSs of N ∈ [13 . . . 29].
3. The operators used are: C1P, C2P, DSEMO, Multi-

Exchange By Pier between a Fixed Number of 3
Resources (MEBPFNR3), MEFNR3 and RMEFNR2.
The number of resources (BSSs) considered for themuta-
tion operators used was determined by a comparison of
the initial results obtained from runs with a population
size of 30 for each of the mutation operators.

4. The number of iterations per generation � was initially
set to 1.

5. The replacement strategies used are: ES, SUMS, Index
Selection with Elitist Selection and a group size of 1
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Table 6 Statistical fitness significance for a significance level of 0.05, SSEA1 with fit initial solutions and initial random solutions for the data sets
provided by NATS Ltd

Data set 3-Pier

13 14 15 16 17 18 19 20 21

194 flights 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

H1T091216 22 23 24 25 26 27 28 29

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 14 15 16 17 18 19 20 21

163 flights 0.0000 0.0686 0.7746 0.0000 0.0000 0.0000 0.1127 0.0000 0.8741

H1T100301 22 23 24 25 26 27 28 29

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Data set 4-Pier

13 14 15 16 17 18 19 20 21

194 flights 0.0000 0.0000 0.0000 0.0000 0.0000 0.1275 0.0000 0.0000 0.0000

H1T091216 22 23 24 25 26 27 28 29

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

13 14 15 16 17 18 19 20 21

163 flights 0.0000 0.0000 0.0000 0.0000 0.0000 1.0000 1.0000 0.0000 0.0000

H1T100301 22 23 24 25 26 27 28 29

0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

(IS1ES) and Index Selection with Stochastic Universal
Modified Sampling and group size of 1 (IS1SUMS).

6. Population sizes of μ ∈ {1, 5, 10, 15, 30, 50, 100, 200,
500, 800, 1000, 2000} were considered. The algorithm
was initially run for population sizes of 15, 30, 50, 100,
200, 500 and 1000. In some instances, the best values
appeared at the end of the ranges, which encouraged
extending the range of population sizes studied accord-
ing to the best population size for each of the operators
types.
Regarding the Multi-Exchange Operators, only extra
population sizes of 1, 5, 10 were studied, given that
these operators are guided mutation operators based on
chance and provided better results for the lowest popu-
lation sizes initially considered. Nevertheless, given the
poor results obtained when using the TS, as shown in
Fig. 11, it was anticipated that the size of the population
should be higher than 1.
In the case of theDSEMO, the results indicated that a high
population sizewas preferred, such that other appropriate
population sizes were then considered. The population
sizes of 500 and 1000 gave the best results, which was
an indication that population sizes between those sizes
may potentially be statistically even better. The popula-
tion sizes studiedwere therefore extended to a population
size of 800, since a population size of 1000 solutions was
statistically significantly fitter in more cases than when
using 500 as the population size.

It was observed that the crossover operators performed
better for high population sizes as expected, being con-
sistently better for the largest population sizes evaluated.
Given that a higher population size means a higher run-
ning time, a further population size of only 2000 was
considered for the crossover operators. If there are too few
solutions in a population and given that crossover used
the information in the parent solutions, then the opera-
tor explores only a small part of the search space. On the
other hand, if there are too many chromosomes, the algo-
rithm may slow down, as some operations are applied to
the full population.

The summary of overall results, when compared using
the Mann–Whitney test, is shown in Table 7, where italics is
used for the values close to those that provided the overall
statistically significantly fitter solutions which are presented
in black.

With respect to the mutation operators, which are based
on a local search, the solutions reached are highly dependent
on the individual parent solution, which generally represent
small populations.Given thatmutation operators require only
a parent solution, the population size could range from one
solution to many. As the smaller population size would con-
sist of one solution, it may be considered that a population
size of one should be the best approach from a mutation
operator point of view. This relies strongly on the quality
of the solution in reaching either a better or optimal solu-
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Table 7 Summary of the results of the Mann–Whitney test for significance level of 0.05, different population sizes and replacement strategies

Operator 3-Pier topology 4-Pier topology

Population size Selector Population size Selector

194 flights (16 December 2009)

C1P 2000 IS1SUMS, IS1ES 2000 IS1SUMS, IS1ES

C2P 2000 IS1ES, IS1SUMS 2000 IS1SUMS, IS1ES

DSEMO 800, 1000 IS1ES 500, 800, 1000 IS1ES

MEBPFNR3 10, 5 IS1ES 5, 15 IS1ES

MEFNR3 1, 5 IS1ES 10 IS1ES

RMEFNR2 15 IS1ES 10, 15 IS1ES

163 flights (1 March 2010)

C1P 2000 IS1SUMS, IS1ES 2000 IS1ES, IS1SUMS

C2P 2000 IS1ES, IS1SUMS 2000 IS1ES, IS1SUMS

DSEMO 1000, 800 IS1ES 500 IS1ES

MEBPFNR3 5, 10 IS1ES 5, 10 IS1ES

MEFNR3 10 IS1ES 10, 5 IS1ES

RMEFNR2 15 IS1ES 15, 10 IS1ES

tion, as the fitness does not normally give a clear indication
of the solution quality with respect to better solutions in its
neighbourhood, which the empirical results corroborate. A
solution with lower fitness may be closer to a better or opti-
mal solution for the moves performed by the operators used,
thus improving the chances that these solutions latter are
reached.

In general, crossover operators are expected to benefit
from large population sizes, which is corroborated by my
results. Given that the crossover operators take advantage of
good differences between the parent solutions, the minimum
population size required is two solutions. This is the main
factor benefiting crossover operators since a large population
size normally results in greater diversity within the popula-
tion of solutions. Nevertheless, a higher population size also
means a slower algorithm execution time, given that some
operations are executed for all members of the population,
the processing time of which depends on the number of solu-
tions in the population. Additionally, too much diversity may
result in a loss of solutions with good building blocks, and
have a corresponding detrimental effect on the overall search,
the loss of better solutions or the opportunity to reach these
better or optimal solutions.

As observed, the population size and operator have an
important impact on the algorithm’s performance, but it is
not the only factor to consider, as the diversity may also be
increased or decreased by changing the selection approaches
used, i.e. Replacement Strategies (Sect. 1) and the Parent
Selector (Sect. 2). Elitist Sampling (ES) reduces the diver-
sity, as it keeps the solutions with higher fitness, which tends
in turn to concentrate the solutions around those with fewer
differences, but increases the pressure, whereas Stochastic

Universal Modified Sampling (SUMS, Sect. 5) increases the
chance of solutions with lower fitness taking part in the pop-
ulation of solutions so increasing the diversity. To reduce
the ES potential detrimental effect, the Index Selector (ISxy,
Sect. 5) was designed, implemented and run, the empirical
results of which show a better performance than the under-
lying Replacement Strategies used, such as ES and SUMS.

8.2.1 Population size for when combined operators are
used

Where different operators have a preference for different pop-
ulation sizes, these results may be taken into account when
combining operators in order to improve the performance.
So when the operator is selected from a pool of operators,
randomly for example, its population size preference should
be borne in mind so that the parent(s) may be selected within
the solutions in the population andwithin that given preferred
size. This assumes that the solutions are ordered in someway.
This approach allows better solutions obtained by the other
operators with larger preferred population sizes to enter the
population of the current operator, potentially increasing the
diversity, which it could be considered as a type of migration.
In this approach, only the preferred population size is used
to select the parent(s) for a given operator.

8.2.2 Run-time results for the different population sizes

In this section, the y-axis of the graphics is the average exe-
cution time for each set of 30 experiments with a different
number of BSSs (the number of BSSs is shown in the x-axis).
Each graph shows the average results for a given operator and
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Fig. 15 Average run-time for a 4-pier topology, 194 flights
(H1T091216), DSEMO and different population sizes

data set, taken from those data sets provided by NATS Ltd.,
different replacement strategies (ES and IS1ES) and popu-
lation sizes. The lines within a graphic identify the set of
experiments which were run with the same parameters, i.e.
replacement strategy, population size, operator and data set.

The average results for the operator DSEMO and the dif-
ferent data sets are presented in Fig. 15, which shows that
DSEMO requires a more constant running time up to the
vicinity of the UMAP, where the running time drops to zero.
On inspection of the initial population of solutions, it is appar-
ent that the average running time of near zero refers to all the
instances where the initial solutions have full assignment of
flights to BSSs. So the DSEMO is unable to exchange or
increase the flight assignments. As the number of BSSs is
reduced up to LMAP more flights are unassigned in the ini-
tial solutions, which in turn gives the operator more chance
to improve the solutions by increasing the number of assign-
ments, potentially generating solutionswith full assignments,
so improving on the fitness. Finally, for numbers of BSSs
lower than LMAP, not all the flights can be assigned to
BSSs, so the operator initially has a chance of increasing
the number of assignments for those initial solutions which
do not havemaximum assignment. Thismay also improve on
the other objectives by exchanging unassigned flights with
assigned ones, as will be seen in the following sections. This
explains the relatively constant average running time, as the
majority of operations are exchanges between assigned and
unassigned flights, whereas the small variations in running
time are a consequence of the number of solutions without
maximum assignments in the initial solution and the speed
with which the replacement strategy removes them. The dif-
ferences between the various lines in Fig. 15 correspond to
different population sizes, so a higher population size results
in higher running times as may be expected: this is mainly
because other operations are performed on all of the popula-
tion members, such as applying the Replacement Strategies
and the Member Selector. The difference between lines for
the same population size and different replacement strate-
gies are an indication of howquickly the replacement strategy

manages to remove solutions with low fitness, i.e. those solu-
tions which do not have maximum assignment, such as those
introduced as initial solutions. This is corroborated by the
fact that ES has smaller average running times than IS1ES,
as expected, since ES provides a higher search pressure giv-
ing less chance for solutions of a lower fitness to generate new
solutions. Also as expected, data sets with a higher number
of flights required longer running times. These results also
corroborate the findings presented in Ascó et al. (2012).

Figure 16 shows that the Multi-Exchange Mutation Oper-
ators (MEMOs) have a tendency to increase the running time
as N (number of BSSs) increases, which corresponds to an
increase in themaximumnumber of flights assignable and the
number of initial solutions which have full assignment. Con-
versely, RMEFNR2 running time is near constant in most
of the instances. RMEFNR2 running time for IS1ES does
not appear to be affected by the number of BSSs, whereas
for MEBPFNR3 andMEFNR3 the running time increases as
the number of BSSs increases. Similar results were obtained
for the data set provided by NATS Ltd. for 1March 2010 and
both 3-pier and 4-pier topologies.

Figure 17 shows a considerable difference in behaviour
between C1P and C2P as the number of BSSs increases,
whereas with C1P the speed fluctuates around an average,
and for C2P the speed reduceswithminor fluctuations overall
according to the number of BSSs.

The mutation operators considered are much faster than
the crossover operators as is to be expected.C2P andDSEMO
present variations dependingon thenumber ofBSSs,whereas
C2P expends more time running with very low numbers of
BSSs. This is reduced as the number of BSSs increases up
to a point just before the LMAP, where the required running
time is kept at its lowest and most constant, irrespective of
the number of BSSs.

In all the cases, as the population size increases so the
running time also increases as shown in Figs. 15, 16 and 17.
Similar results were obtained for the data set from London
Heathrow airport Terminal 1 for 1 March 2010.

8.3 Number of iterations in a generation

The SSEA is composed of � iterations per generation which
contributes to the overall performance of the algorithm. Hav-
ing an idea of the effects and contributions of this parameter
will help in tuning the algorithm. To this end, multiple exper-
iments were conducted using different values of � for the
different parameters presented below.

1. The operators used: C1P, C2P, DSEMO, MEBPFNR3,
MEFNR3 and RMEFNR2.

2. Population sizes used: 1000 for C1P, C2P and DSEMO
and 15 for the Multi-Exchange Mutation Operators.

3. Replacement strategies used: ES and IS1ES.
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Fig. 16 Average run-time for a 4-pier topology, 194 flights
(H1T091216) for some mutation operators and different population
sizes. a MEBPFNR3, bMEFNR3 and c RMEFNR2

4. Initial solutions were obtained by running the construc-
tive algorithms presented in Ascó et al. (2010, 2011).

5. Iterations in a generation: � ∈ {1, 5, 10, 15, 20, 30, 100}.
6. The data sets used correspond to those provided by

NATS Ltd. (NATS Ltd.) both for H1T091216 and for
H1T100301, with both 3-pier and 4-pier topologies.

The increase of � equates to a reduction in the search
pressure given that the current solutions have more chance of
being selected as � increases. Also since the same population
exists for longer (� times), the diversity is retained for longer
as � increases, e.g. if SSEA is run with a population size of
1000 solutions, for 1000 overall iterations and � = 1000,
then the initial population will be maintained throughout the
whole execution.

These results are similar for the different data sets and
topologies considered, an overall summary of which is pre-

Fig. 17 Average run-time for a 4-pier topology, 194 flights
(H1T091216), crossover and different population sizes. a 1-point
crossover (C1P) and b 2-point crossover (C2P)

sented in Table 8. Table 8 summarises the values of �,
which provide statistically significantly fitter solutions for the
widest range of numbers of BSSs. The values for � between
brackets are the next best values of �.

Table 8 shows that C1P, C2P andDSEMOprovide statisti-
cally significantly fitter solutions for all data sets considered,
topologies and number of BSSs for � = 1, whereas the
remaining operators considered provide statistically signifi-
cantly fitter solutions in the range of � from 5 to 30.

Increasing � gives more chance for other solutions to be
selected to generate new solutions, which equates to a reduc-
tion in pressure (but not an increase in diversity). Given that
C1P, C2P and DSEMO have a large population size of 800,
1000 and 2000 solutions, respectively, which provide diver-
sity, the same cannot be said about search pressure, which
may be said to explain the preference for low values of �. This
also seems to be corroborated by the results forMEBPFNR3,
MEFNR3 and RMEFNR2, which prefer higher values of
�.

8.4 Index for ISxES

The initial results obtained from the Index Selector were for
a group size of x = 1 for the Elitist Selector (ISxES, Sect. 5)
and provided solutions with good fitness. Other experiments
were conducted to see what other values for x could achieve.
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Table 8 Overall summary of the best � of each operator, data set and topology considered and significance level of 0.05

Operator Selector 194 flights (H1T091216) 163 flights (H1T100301)

Topologies

3-Pier 4-Pier 3-Pier 4-Pier

C1P IS1ES 1 1 1 1

C2P IS1ES 1 1 1 1

DSEMO IS1ES 1 1 1 1

MEBPFNR3 IS1ES 1, 15 (20, 30) 5, 15, 30 10, 15 (30) 5, 30 (1, 20)

MEFNR3 IS1ES 15 (5, 20) 10 (30) 20, 100 10, 100 (20)

RMEFNR2 IS1ES 10 (20, 5, 15) 5 (1) 10 (1, 5, 15) 5 (1)

The characteristics of the selector indicate that any index
must be greater than zero as a maximum group size of zero
does not have any meaning. Moreover, there is no signif-
icance in having an index higher than the population size,
since the maximum size of a group cannot be larger than the
population size. Taking these factors into account together
with the previous results in which the Multi-Exchange oper-
ators provide statistically significantly fitter solutions for
population sizes of 5, 10 and 15, some experiments were
then designed to examine the effect of changing the index
x ∈ {1, 2, 3, 5, 10, 15} for a population size of 15 for the
Multi-Exchange Operators. Given that the preferred popula-
tion sizes for the crossover operators and DSEMO are high
(around 1000 solutions), a population size of 1000 was used
for these operators.

The figures used in this section show the experiment
results for the maximum sizes of differing group when using
some of the operators previously presented. The results are
presented as an average percentage improvement in fitness
(y-axis), with 0% referring to the best initial solutions used.
100% refers to the upper bound obtained when running
CPLEX solver with the Integer Linear Programming (ILP),
for different numbers of BSSs (x-axis), Eq. 10. Negative per-
centages refer to the best final solutions which have a worse
fitness than the best initial solution.

%Improvement Fitness = f − f IniBest

f CPLEXUB − f IniBest

∗ 100 (10)

Figures 18 and 19 show the results for the data set
H1T091216, different operators and a 4-pier topology. Sim-
ilar results were obtained for a 3-pier topology and the data
set H1T100301.

The initial inspection of the way the operator works sug-
gests that an increase in the index should correspond to
a reduction in the diversity, as the overall number of dif-
ferent solutions will be reduced since many solutions with
the same fitness are included in each group. As an illustra-
tion of this, the case of an operator with a population size
of 10 and index of 10 is explored. As the execution pro-

Fig. 18 ISxES x ∈ {1, 2, 3, 5, 10, 15} for H1T091216 and a 4-pier
topology. a 1-point crossover (C1P) with a 1000 population size, b 2-
point crossover (C2P) with a 1000 population size and c DSEMO with
1000 population size

gresses, it could at some time finish with 10 solutions having
the same fitness, which corresponds to a behaviour similar
to ES.
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Fig. 19 ISxES x ∈ {1, 2, 3, 5, 10, 15}, mutation operators for
H1T091216 and a 4-pier topology. a MEBPFNR3 with a 15 popula-
tion size, bMEFNR3 with a 15 population size and c RMEFNR2 with
a 15 population size

The normality test showed that it was not possible to
assume that the distributions are normal; thus, it was appro-
priate to use the Mann–Whitney statistical significance test

for each of the number of BSSs considered and between the
different operators and indexes. A summary of the results
for these experiments is shown in Table 9, which shows the
maximum group sizes (x) only, which provided statistically
significantly fitter solutions.

In general, IS1ES provided more instances with statisti-
cally significantly fitter solutions than IS2ES, IS3ES, IS5ES,
IS10ES and IS15ES. In cases where both IS2ES and IS1ES
perform well, IS2ES was considered better because in the
caseswhere it provided statistical significantly fitter solutions
these corresponded to a high number of BSSs, which inci-
dentally also corresponds to the range of numbers of BSSs
normally operating at an airport.

8.5 Single operators

Several experiments were run to establish the performance
of each of the operators considered individually when used
with the proposed SSEA. Following the previous results, new
experiments were designed to establish an appropriate com-
bination for use of an operator and replacement strategy. The
parameters used in the experiments are:

1. The data sets used correspond to those provided byNATS
Ltd. both for H1T091216 and for H1T100301, with both
3-pier and 4-pier topologies.

2. Number of BSSs of N ∈ [13 . . . 29].
3. Initial solutions were obtained by running the construc-

tive algorithms presented in Ascó et al. (2010, 2011), as
in previous sections.

4. Operators used:MEBPFNRn, MEFNRn and RMEFNRn
with n ∈ [2 . . . 10]. Also MEBPRNRn, MERNRn and
RMERNRn with n = 10 were studied.

5. Population sizes used: 30.
6. Iterations in a generation used: � = 1.
7. Replacement strategies used: ES, IS1ES, SUMS and

IS1SUMS.

Table 9 Overall summary of the Mann–Whitney statistical significance tests for index in ISxES and significance level of 0.05

Operator 194 flights (H1T091216) 163 flights (H1T100301)

Topologies

3-Pier 4-Pier 3-Pier 4-Pier

C1P IS1ES IS1ES IS1ES IS1ES

C2P IS1ES IS1ES IS1ES IS1ES

DSEMO IS1ES IS1ES IS1ES IS1ES

MEBPFNR3 IS1ES and IS2ES IS1ES IS1ES IS1ES and IS2ES

MEFNR3 IS1ES IS2ES IS2ES IS2ES

RMEFNR2 IS1ES IS1ES IS1ES IS1ES
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Table 10 Summary for SSEA1 with a single operator, 30 population size, 800,000 iterations, a 4-pier topology for 194 flights (H1T091216) and a
significance level of 0.05

Operator Number of BSSs

13 14 15 16

MEBPFNR3 IS1ES and IS1SUMS IS1ES and IS1SUMS

MEBPFNR10 IS1ES

MEBPRNR10 IS1ES IS1SUMS IS1SUMS IS1ES and IS1SUMS

MEFNR4 IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR5 IS1ES IS1ES IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR6 IS1ES IS1ES and IS1SUMS IS1ES IS1ES and IS1SUMS

MEFNR7 IS1ES IS1ES IS1ES and IS1SUMS IS1EA and IS1SUMS

MEFNR8 IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES

MEFNR9 IS1SUMS IS1ES and IS1SUMS IS1ES IS1ES

MEFNR10 IS1SUMS IS1SUMS IS1ES and IS1SUMS

Operator Number of BSSs

17 18 19 20

MEBPFNR3 IS1ES IS1ES and IS1SUMS IS1ES

MEBPFNR4 SUMS

MEBPFNR10 IS1ES

MEBPRNR10 IS1SUMS IS1ES

MEFNR2 IS1ES and IS1SUMS

MEFNR3 IS1ES and IS1SUMS IS1ES, IS1SUMS and SUMS

MEFNR4 IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR5 IS1ES IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR6 IS1ES IS1ES IS1ES IS1ES and IS1SUMS

MEFNR7 IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR8 IS1ES and IS1SUMS IS1ES and IS1SUMS IS1SUMS

MERNR10 IS1ES

RMEFNR2 IS1ES

Operator Number of BSSs

21 22 (LMAP) 23 24

MEBPFNR3 IS1ES and IS1SUMS SUMS IS1ES

MEBPRNR10 IS1ES SUMS SUMS

MEFNR3 IS1ES and IS1SUMS SUMS SUMS

MEFNR4 IS1ES and IS1SUMS SUMS

MEFNR5 IS1ES and IS1SUMS and SUMS SUMS

MEFNR6 IS1ES and IS1SUMS

MEFNR7 IS1ES

MEFNR8 IS1ES

RMEFNR2 IS1ES IS1ES, IS1SUMS and SUMS IS1ES and SUMS IS1ES and IS1SUMS

Operator Number of BSSs

25 26 27 (UMAP) 28

RMEFNR2 IS1ES IS1ES and IS1SUMS IS1ES IS1ES and SUMS

Operator Number of BSSs
29

RMEFNR2 IS1ES and IS1SUMS
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Table 11 Summary for SSEA1 with a single operator, 30 population size, 800,000 iterations, a 4-pier topology for 163 flights (H1T100301) and a
significance level of 0.05

Operator Number of BSSs

13 14 15 16

DSEMO IS1ES and IS1SUMS IS1SUMS

MEBPFNR10 IS1ES IS1ES

MEBPRNR10 IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR4 IS1ES and IS1SUMS

MEFNR5 IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR6 IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR7 IS1ES and IS1SUMS IS1SUMS

MEFNR8 IS1ES IS1ES and IS1SUMS

MEFNR9 IS1SUMS

MEFNR10 IS1ES IS1ES and IS1SUMS

Operator Number of BSSs

17 18 19 (LMAP) 20

DSEMO IS1SUMS

MEBPFNR3 IS1SUMS IS1SUMS

MEBPFNR6 SUMS

MEBPFNR8 SUMS

MEBPRNR10 IS1ES IS1SUMS and SUMS

MEFNR3 IS1SUMS IS1ES and IS1SUMS

MEFNR4 IS1ES and IS1SUMS IS1ES, IS1SUMS and SUMS

MEFNR5 IS1SUMS IS1ES, IS1SUMS and SUMS IS1ES, IS1SUMS and SUMS

MEFNR6 IS1ES, IS1SUMS and SUMS IS1SUMS

MEFNR7 IS1SUMS IS1ES and IS1SUMS

MEFNR8 IS1SUMS IS1ES

MEFNR9 IS1SUMS

MERNR10 IS1ES

Operator Number of BSSs

21 22 23 24

MEBPFNR2 IS1ES

MEBPFNR3 IS1ES IS1ES IS1ES IS1ES and SUMS

MEBPFNR4 SUMS

MEBPFNR5 SUMS SUMS

MEBPRNR10 IS1ES

MEFNR2 SUMS

MEFNR3 IS1ES and IS1SUNS IS1ES IS1ES and SUMS

MEFNR4 IS1ES, IS1SUMS and SUMS IS1ES and IS1SUMS IS1SUMS IS1ES, IS1SUMS and SUMS

MEFNR5 IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES IS1ES, IS1SUMS and SUMS

MEFNR6 IS1ES and IS1SUMS

MEFNR7 IS1SUMS

RMEFNR2 IS1ES and IS1SUMS

RMEFNR3 IS1ES, IS1SUMS and SUMS
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Table 12 Summary for SSEA1 with a single operator, 30 population size, 800,000 iterations, a 4-pier topology for 163 flights (H1T100301) and a
significance level of 0.05

Operator Number of BSSs

25 (UMAP) 26 27 28

MEBPFNR2 SUMS SUMS

MEBPFNR3 IS1ES IS1ES and SUMS IS1ES, IS1SUMS and SUMS IS1ES, and SUMS

MEBPFNR4 SUMS SUMS SUMS

MEBPFNR5 SUMS

MEFNR2 IS1SUMS and SUMS SUMS

MEFNR3 IS1ES IS1ES SUMS

MEFNR4 IS1ES IS1SUMS SUMS

MEFNR5 SUMS

RMEFNR2 IS1ES IS1ES IS1ES and IS1SUMS IS1ES, IS1SUMS and SUMS

RMEFNR3 IS1ES IS1ES and IS1SUMS IS1ES SUMS

Operator Number of BSSs

29

MEFNR4 SUMS

RMEFNR2 IS1ES, IS1SUMS and SUMS

Table 13 Summary for SSEA1 with a single operator, 30 population size, 800,000 iterations, a 3-pier topology for 194 flights (H1T091216) and a
significance level of 0.05

Operator Number of BSSs

13 14 15 16

MEBPFNR3 IS1ES

MEBPFNR10 IS1ES IS1ES IS1ES and IS1SUMS

MEFNR4 IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR5 IS1ES and IS1SUMS IS1SUMS IS1ES

MEFNR6 IS1ES and Is1SUMS IS1ES and IS1SUMS IS1ES

MEFNR7 IS1ES and Is1SUMS IS1ES and IS1SUMS

MEFNR8 IS1ES and IS1SUMS IS1ES and IS1SUMS IS1ES and IS1SUMS

MEFNR9 IS1ES and IS1SUMS IS1ES

MEFNR10 IS1ES IS1ES and IS1SUMS IS1ES

RMEFNR2 ES, IS1ES and IS1SUMS

RMEFNR3 ES and IS1ES

RMERNR10 ES

Operator Number of BSSs

17 18 19 20

MEBPFNR3 IS1ES

MEBPFNR5 ES SUMS

MEBPFNR6 ES SUMS

MEBPFNR8 ES

MEBPFNR9 ES

MEBPFNR10 ES and IS1ES

MEBPFNR10 IS1ES

MEFNR4 IS1ES and IS1SUMS

MEFNR5 IS1SUMS

MEFNR6 IS1ES and IS1SUMS
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Table 13 continued

Operator Number of BSSs

17 18 19 20

MEFNR7 ES IS1ES and IS1SUMS

MEFNR8 IS1ES and IS1SUMS

MERNR10 SUMS

MEFNR9 ES

RMEFNR2 ES and IS1ES IS1ES IS1ES IS1ES

RMEFNR3 ES and IS1ES

RMEFNR4 ES

RMEFNR5 ES

RMERNR10 ES and IS1ES

Operator Number of BSSs

21 22 (LMAP) 23 24

RMEFNR2 IS1ES and SUMS IS1ES IS1ES IS1ES and SUMS

Operator Number of BSSs

25 26 27 (UMAP) 28

MEBPFNR2 IS1ES and IS1SUMS

MEBPFNR3 IS1ES, IS1SUMS and SUMS

MEBPFNR4 SUMS

MEFNR2 IS1ES, IS1SUMS and SUMS

MEFNR3 IS1ES, IS1SUMS and SUMS

MEFNR4 IS1ES, IS1SUMS and SUMS

MEFNR5 IS1ES, IS1SUMS and SUMS

RMEFNR2 IS1ES, IS1SUMS and SUMS IS1ES and SUMS IS1ES and SUMS IS1ES, IS1SUMS and SUMS

RMEFNR3 IS1ES IS1ES and SUMS

Once again, given that the data cannot be said to follow
a normal distribution, the Mann–Whitney test was used to
establish the statistical significance of the solutions’ fitness.
Tables 10, 11, 12, 13 and 14 show a summary of the replace-
ment strategies for different operators which cannot be said
to provide statistically significant solutions with a lower fit-
ness than the others for a significance level of 0.05. Those
operators providing statistically significantly less fit solutions
than any other are not shown for simplicity and clarity. The
selection operators with the highest number of statistically
significantly fitter solutions than other selection operators
have been underlined.

Looking at the results obtained by the operator MEBPF, a
pattern can be seen where the best solution obtained through-
out the studied range of BSSs is obtained for a parameter n ∈
[3 . . . 6]. This behaviour, together with the results obtained
for the operator Multi-Exchange By Pier between a Random
Number of 10 Resources (MEBPRNR10), which provides
similar results on average to MEBPFNRn, prompted me
to consider an extension of the MEBPRNRn for a range
of numbers of BSSs, instead of a maximum value only,

Table 14 Summary for SSEA1 with a single operator, 30 population
size, 800,000 iterations, a 3-pier topology for 194 flights (H1T091216)
and a significance level of 0.05

Operator Number of BSSs
29

MEBPFNR2 IS1ES, IS1SUMS and SUMS

MEBPFNR3 IS1ES, IS1SUMS and SUMS

MEBPFNR4 SUMS

MEBPFNR5 SUMS

MEBPRNR10 IS1ES and SUMS

MEFNR2 IS1ES, IS1SUMS and SUMS

MEFNR3 IS1SUMS and SUMS

MEFNR4 IS1ES, IS1SUMS and SUMS

MEFNR5 IS1SUMS and SUMS

MEFNR6 SUMS

MERNR10 SUMS

RMEFNR2 IS1ES, IS1SUMS and SUMS

RMEFNR3 IS1ES and SUMS

RMERNR10 SUMS
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as in MEBPRNRn, known as MEBPRRNRxy presented in
Sect. 6.

On examining the results for the DSEMO, it is apparent
that for a number of BSSs greater or equal to the LMAP
(N ≥ LMAP), in some instances the DSEMO still manages
to improve the initial solutions, even where the fittest initial
solutions have assigned all the flights, as can be observed
for the 25 BSSs in Fig. 18c. Simply applying the DSEMO
aloneprovides improvements up to25%for a 4-pier topology.
Examining the initial solution provided, some of these solu-
tions do not contain full assignments, so when the DSEMO
operator is applied improvement can be achieved by means
of an increase in assignments, which may in future guide the
search in a different direction, in order to reach better solu-
tions than those initially provided as initial solutions. This
behaviour could be advantageous where this operator is used
in conjunction with others, since it could move the search
into other areas of the solution space which might otherwise
not be investigated if this operator were not used. To eval-
uate whether this is the case it is necessary to design some
experiments where the capabilities of the DSEMO operator
can be seen working together with other operators which do
not depend on the full assignment of flights to BSSs for a
solution.

The search is said to be stagnated when it is confined to
a part of the solution space where there are no fitter solu-
tions than those which have already been found. Figure 20
also gives an indication of this situation, as it presents the
average time at which the last fitter solution was found for
both the C1P and C2P operators and the different replace-
ment strategies considered in the experiments conducted. The
time between the last fitter solution found and that taken to
complete all of the generations gives an idea as to whether
the algorithm for a given operator and replacement strategy
has become stagnated. In the case of 1-point and 2-point
crossovers, IS1ES preserves the search pressure and diver-
sity better than the other replacement strategies, as shown in
Fig. 20. It does not merely continue to find solutions for a
longer time, but these solutions are better, as shown previ-
ously.

RMEFNR2 on its own also provides fitter solutions than
any of the other operators considered on their own for the
normal operational range of BSSs at an airport, i.e. N ≥
LMAP, and the data set of H1T091216, as shown in Table
10. On the other hand, for a less dense schedule represented
by the data set of H1T100301 this range is reduced to N ≥
UMAP, as shown in Tables 11 and 12.

8.6 Trade-off between objectives

Figure 21 shows the non-dominated solutions obtained by
different runs with single operators for 27 BSSs (UMAP)
for the data set H1T091216, which illustrates the trade-off

Fig. 20 Last solution found for SSEA1, 1-point and 2-point crossovers
for 194 flights (H1T091216) and a 3-pier topology for 800,000 total
iterations

between distance and reduction in service. It shows that the
improvement in one objective corresponds to a deterioration
in the other. Given that the number of BSSs is the UMAP, full
assignment of all of the flights is achievable without needing
to reduce the service time, which removes the need to plot the
first and most important objective, the maximisation of the
assignment. It should be noted that the first solution plotted
corresponds to the situation where there is no reduction in
service, which is possible given that 27 BSSs correspond to
the UMAP.

9 Conclusions

The aim was to present the algorithm, operators, selectors
and see how well the SSEA performs and to gain more gen-
eral insights into the appropriate operator choices for the
SSEA, especially since some operators (such as crossover)
are slower to apply than others.

The SSEA, operators and selectors were presented. The
empirical results for the SSEA show that this algorithm per-
forms better than the other algorithms considered, which
suggests a potential application to the problem under consid-
eration as well as other resource assignment problems such
as the AGAP.

The DSEMO extends the search to other areas of the
search space which may help to improve the solutions, but
it is only useful when there are unassigned flights, e.g. for
N < LMAP. In the case of N ≥ LMAP, the DSEMO should
only be used when the solution selected from the population
has unassigned flights, most commonly closer to the start of
the search.

The different Multi-Exchange Mutation Operators pre-
sented here do not have the ability to increase the number
of assignments, so for solutions which do not have maxi-
mum assignment and when maximum assignment is one of
the most important objectives, these operators should not be
used on their own. Given that each of the operators presented
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Fig. 21 Trade-offs between objectives for 4-pier topology, 194flights, 27BSSs andSUMS for the operatorsMEBPFNRn,MEBPRNR10,MEFNRn,
MERNR10, RMEFNRn, RMERNR10, C1P, C2P and DSEMO with n ∈ [2 . . . 10]

has particularities, these could be used to guide the search by
deciding which operators should be considered, based on the
stage the search has reached at each time, e.g. if the popula-
tion at a specific point in the search contains only solutions
with full assignment, then the DSEMO operator should not
be used.

The results presented here corroborate the importance of
choosing a population size which is not only determined by
the problem under consideration, but also by the operator
used. The best population sizes for different operators have
been shown to be very different, so there is potential for
improving the performance of the algorithm when multiple
operators are used by considering, for each particular opera-
tor, a sub-population of the size best suited to the operator.

Given the diverse ways in which the operators work, it
is expected that their combination will further improve the
solutions. Furthermore, the combination of different opera-
tors together with an adaptive method of selecting operators
seems to be the most promising approach for future work.
This approach could be extended to consider the number of
iterations in a generation (�), the value of which could be
adjusted as the search progresses, to take account of the par-
ticular situation at each time.

Futurework should consider extending themodel to exam-
ine the capacity of each BSS, so that a more realistic number
of BSSs required to service each flight can be established.
The number of BSSs for each flight may initially be obtained
from historical data providing the number of passengers and
baggage. Furthermore, better results and robustness may be

obtained if the number of BSSs required for each flight is not
fixed, but depends on the capacity of the BSSs assigned to
each flight and the expected checked-in baggage load each
time. This means that the model not only evaluates the BSSs
assigned to each flight, but alsowhen each assignment should
commence, since they may not start at the same time, thus
increasing the availability of the BSSs for use in servicing
other flights or absorbing disruption on the day of operation.
It has been assumed that the end of the service time for all
the BSS assignments to the same flight will also be the same,
as it is anticipated that the volume of checked-in baggage
increases as it nears the check-in desk closing time and the
time for flight departures.
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