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Hypoxia imaging with [18F]HX4 PET in squamous cell head
and neck cancers: a pilot study for integration into treatment
planning
Helen M. Bettsa,d, Richard A. O’Connorb, Judith A. Christianc,
Vidhiya Vinayakamoorthyb, Karen Fowerakerc, Abigail C. Pascoec

and Alan C. Perkinsa,d

Background Radical chemoradiotherapy is the primary
treatment for head and neck cancers in many hospitals.
Tumour hypoxia causes radiotherapy resistance and is an
indicator of poor prognosis for patients. Identifying hypoxia to
select patients for intensified or hypoxia-modified treatment
regimens is therefore of high clinical importance.

Patients and methods We evaluated hypoxia in a group of
patients with newly diagnosed squamous cell head and
neck cancer using the hypoxia-selective radiotracer [18F]
HX4. Patients underwent a single [18F]HX4 PET/computed
tomography scan prior to beginning chemoradiotherapy.

Results Three out of eight patients recruited were scanned
with [18F]HX4. Two out of three had pretreatment [18F]FDG
PET/computed tomography scans available for review. [18F]
HX4 tumour uptake varied between patients, with tumour to
mediastinal ratios ranging from 1 to 3.5.

Conclusion The spectrum of [18F]HX4 uptake in this small
series of patients exemplifies the difference in oxygenation
profiles between histologically similar tumours. Performing

an additional PET scan with [18F]HX4 prior to
chemoradiotherapy treatment was logistically challenging
in a routine setting, and therefore validation of its clinical
impact should be the focus of future studies [EudraCT
number 2013-003563-58]. Nucl Med Commun 00:000–000
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Introduction
Radical radiotherapy with curative intent has become the

standard of care for patients with head and neck cancers in

many institutions, particularly for patients with advanced

tumours where disease is difficult to resect surgically.

Recent advances in chemoradiotherapy mean that overall

survival after chemoradiation and surgery are equivalent.

Treatment selection is now based on patient preference

and the potential complications of each treatment modality

for an individual tumour [1].

In cases where chemoradiotherapy is being considered, its

planning could be refined to account for the low oxygen

concentration (hypoxia) found in some, but not all, head and

neck squamous cell carcinomas (HNSCC). Hypoxia con-

tributes to radiotherapy resistance and patients who have

hypoxic tumours have a poorer prognosis [2–4]. Accurate

evaluation of hypoxia before chemoradiotherapy could help

clinicians to divert patients to more suitable treatments

like surgery, or to justify radiotherapy dose escalation,

radiosensitising agents, or in the future, hypoxia-activated

cytotoxins [5,6].

Hypoxia specific radiotracers for PET imaging offer prac-

tical advantages for routine clinical use over the invasive

oxygen-sensitive electrode [7,8]. [18F]HX4, (3-[18F]fluoro-2-

{4-[(2-nitro-1H-imidazol-1-yl)methyl]-1H-1,2,3-triazol-1-yl}

propan-1-ol) is a hydrophilic variant of the 2-nitroimidazole

class of radiotracers that includes [18F]FMISO, and is

proposed to have faster clearance from normally oxyge-

nated sites than structurally related compounds [9,10].

Achieving optimum tumour-to-background ratios rapidly is

desirable to reduce the scan appointment times for these

often very unwell patients. Furthermore, a short radiotracer

uptake time improves throughput in busy PET/computed

tomography (CT) departments with limited patient accom-

modation. Our aim was to perform a preliminary evaluation

of [18F]HX4 PET in the diagnostic pathway of HNSCC
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patients, who were being prepared for radical radiotherapy

with curative intent.

Patients and methods
Ethics approval and consent

The Nottingham OXYPET trial (EudraCT 2013-003563-

58), in which [18F]HX4 was defined as an Investigational

Medicinal Product, was reviewed and approved by the UK

Medicines and Healthcare products Regulatory Agency and

the Northampton Research Ethics Committee (reference 13/

EM/0377). [18F]HX4 is an investigational radiotracer that

does not have approval for routine clinical use. Administration

of Radioactive Substances Advisory Committee approval and

local National Health Service permission were granted prior

to study commencement. All participants gave written

informed consent prior to taking part.

Participants

Inclusion criteria for the study were biopsy-proven

HNSCC without distant metastases (primary tumour and

loco-regional lymph nodes only) and a treatment plan of

radical chemoradiotherapy with curative intent. Eight par-

ticipants were recruited between July 2015 and April 2017.

Only three participants were eventually scanned with [18F]

HX4 due to logistical constraints. Two participants were

male and one female. Their age range was 53–71 years.

[18F]HX4 and scanning protocols

All three patients underwent pretreatment staging with a

CT scan of the neck and chest, MR scan of the neck, and

in two cases [18F]FDG PET/CT. [18F]HX4 PET/CT

was performed between completion of staging and the

start of treatment.

[18F]HX4 was prepared according to good manufacturing

practice at the Nottingham PET/CT centre, using our pre-

viously reported method [11]. The radiosynthesis followed a

one-pot, nucleophilic 18F-fluorination-deprotection sequence

on a GE TracerLab MX-FDG automated module (GE

Healthcare, Little Chalfont, Buckinghamshire, UK). [18F]

HX4 was purified by high-performance liquid chromato-

graphy and passed through sterilising filters prior to quality

control and Qualified Person release.

Without prior fasting, patients were administered with

312–383MBq, with a planned uptake period of 180min.

Whole-body imaging was performed using a GE Discovery

710 PET/CT scanner (GE Healthcare, Little Chalfont,

Buckinghamshire, UK). The estimated average effective

dose for the [18F]HX4 component of the scan was 11mSv

based on literature values [12]. Due to the Investigational

Medicinal Product classification of [18F]HX4 and no prior

clinical experience of [18F]HX4 at our institution, partici-

pants were asked to remain within the PET centre between

injection and scan, to monitor for adverse events. Patients

were given a contact number in case of feeling unwell after

leaving the PET/CT centre, and their general practitioner

notified of trial participation to assist in collecting adverse

event data (≤72 h postadministration). Hospital admission

systems were checked for unplanned attendances.

Image analysis was performed on a Hermes workstation.

Maximum standardised uptake value (SUVmax) of the

most active site of tumour was recorded in addition to the

mediastinal and hepatic SUVmax values. The tumour to

mediastinal activity ratio was calculated. In each patient,

the volume of the recorded tumour site was measured

from the staging contrast-enhanced CT scan. Due to the

exploratory nature of this study, hypoxia-guided treat-

ment modifications based on the [18F]HX4 PET/CT

results were not permitted in the Protocol.

Results
All patients underwent [18F]HX4 PET/CT scanning

without adverse events. The uptake period ranged from

175 to 211 min. Patient characteristics and [18F]HX4

SUVmax measurements are presented in Table 1.

In line with previous reports, and in contrast with the [18F]

FDG scans, [18F]HX4 had low uptake in the brain (Figs 1–

4) and myocardium (Figs 2 and 3) [12]. Excretion was

primarily through the urinary bladder. In one patient [18F]

HX4 uptake was observed in the gall bladder, indicating

some biliary excretion of the radiotracer (Fig. 3b).

Patient 1 demonstrated a large nodal mass in the left neck at

the staging CT scan. This might have been expected to be

hypoxic due to disorganised internal vasculature (as mani-

fested by the heterogeneous contrast enhancement) but the

mass was negative for hypoxia by [18F]HX4 PET, with

Table 1 Participant characteristics and PET scan parameters

Patient

1 2 3

Sex Male Female Male
Weight (kg) 49 69 68
Primary tumour site Tongue base Oropharynx Right tonsil
TNM staging T4N2cM0 T2N2bM0 T2N2cM0
Site evaluated Left neck

nodal mass
Right neck
nodal mass

Right neck
nodal mass

Gross tumour volume of
evaluated site/cm3

134 83 60

[18F]HX4
SUVmax primary
tumour region

0.9 2.5 1.4

SUVmean nodal
disease

1.0 5.2 2.0

SUVmax mediastinal
activity

1.0 1.5 1.1

SUVmax liver activity 1.5 2.4 1.4
Tumour to mediastinal
ratio

1.0 3.5 1.8

Injection to scan time
(target 180 min)
(min)

211 182 175

[18F]FDG
SUVmax nodal disease NA 15 10
Clinical follow-up
(months)

15 6 20

NA, not available; SUVmax, maximum standardised uptake value.
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Fig. 1

(a) (b)

(a) Axial contrast-enhanced computed tomography scan of Patient 1 at diagnosis. A large tumour mass in the anterior oropharynx was
observed which extended from a primary lesion in the tongue base. There was a large left neck nodal mass with internal low attenuation
and peripheral enhancement (arrow), thought to represent necrosis. Air in the soft tissues is iatrogenic following an emergency tracheostomy
to relieve airway obstruction by the tumour. (b) Axial [18F]HX4 PET image at the same level shows no particular accumulation of activity
above background tissues. A photopenic region was noted in the anterior aspect of the mass which could be due to nonperfused necrotic
tissue.

Fig. 2

(a) Maximum intensity projection (MIP) image of pretreatment [18F]FDG PET scan of Patient 2. Increased activity was observed in the right
oropharyngeal primary tumour and right neck nodal mass. (b) [18F]HX4 PET MIP, showing marked accumulation of radiotracer in the right neck
lymph nodal mass, in keeping with a localised area of hypoxia. There was no significant accumulation of [18F]HX4 in the primary tumour.

Hypoxia Imaging with [18F]HX4 in HNSCC Betts et al. 3



a tumour to mediastinum SUVmax ratio of 1 (Fig. 1 and

Table 1). This patient demonstrated a photopenic region in

the anterior aspect of the mass which might have been due

to necrosis. It should be noted that 2-nitroimidazole radio-

tracers are not retained in regions of necrosis as they require

active reductase enzymes to activate the hypoxia trapping

mechanism [13]. While necrotic-hypoxic regions can there-

fore, give rise to false negative scans for hypoxia, the ability

to differentiate viable-hypoxic from necrotic-hypoxic cells is

considered an advantage for this class of radiotracer [13].

Fig. 3

(a) Maximum intensity projection (MIP) of pretreatment [18F]FDG PET scan in Patient 3. Markedly increased activity was observed in the right
oropharyngeal primary tumour and extensive bilateral neck lymphadenopathy. (b) [18F]HX4 PET MIP in Patient 3, showing low-grade activity at
these sites.

Fig. 4

(a) Axial [18F]FDG PET; (b) contrast-enhanced T1-weighted MRI scan; (c) [18F]HX4 PET in Patient 3. In the pretreatment [18F]FDG staging scan, a
focal area of uptake was found in the sellar region. MRI showed appearances much more in keeping with an incidental pituitary macroadenoma than
tumour spread to the cavernous sinus. [18F]HX4 imaging showed no significant uptake in this position. After 20 months of clinical follow-up the patient
had not developed any neurological symptoms, suggesting that the diagnosis was correct.
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The [18F]HX4 scan for Patient 2 was clearly positive for

hypoxia with a tumour to mediastinal SUVmax ratio of 3.5

(Fig. 2b and Table 1). The patient had an oropharyngeal

primary tumour and right jugular nodal mass clearly

visible on the [18F]FDG PET scan. Only the nodal mass

showed significant [18F]HX4 uptake which was hetero-

geneous. This scan exemplifies how hypoxia may not be

uniformly distributed throughout a tumour and conse-

quently it may be beneficial to tailor treatment to dif-

ferent sites of disease within the same patient.

Patient 3 showed [18F]HX4 uptake of intermediate

intensity (Fig. 3b). Visual assessment was more sub-

jective in this case because selective windowing could

make the lesion appear clearly positive or negative. The

tumour to mediastinal ratio was 1.8 which other studies

of [18F]HX4 have interpreted as positive for hypoxia

[9,14–16]. Patient 3 was incidentally noted to have a

metabolically active mass in the sellar region by [18F]

FDG PET. Initially, this was feared to be tumour spread

into the cavernous sinus. However, MRI examination

showed a pituitary mass in keeping with a macroadenoma

(Fig. 4). On the [18F]HX4 scan this area was negative

for hypoxia.

Discussion
Diagnostic quality [18F]HX4 PET images were acquired

3 h after administration for all patients, although previous

studies have indicated that contrast continues to improve

up to 4 h after injection [17]. Limited capacity in the

PET centre uptake rooms prevented us from scanning

more than one [18F]HX4 patient per day. A 3 h, rather

than 4 h uptake period thus helped to maintain capacity

for routine PET scans. In the future, when additional

safety data is available it may not be necessary for

patients to wait in the PET centre during the [18F]HX4

uptake period, which would facilitate routine use.

It was a practical challenge to scan participants with [18F]

HX4 in the short window between completion of staging

and start of their treatment. These patients were often

emaciated at diagnosis and had a rapidly deteriorating

clinical condition, and it was imperative to begin treat-

ment urgently. In preparation for chemoradiotherapy,

patients had a busy schedule of priority appointments

which included dental examination and gastrostomy

placement, which are routine for HNSCC patients in our

institution. Competing demands at the cyclotron and

radiosynthesis facility presented a further limitation,

meaning [18F]HX4 was not available daily. Combined,

these constraints resulted in five out of eight consented

patients being unable to participate.

Despite the limited size of the study, the findings show

how [18F]HX4 uptake was variable between three patients

with histologically similar HNSCC, and heterogeneous

between disease sites within the same patient. These

observations highlight a key benefit of whole disease

hypoxia evaluation by PET compared with single site

sampling methods. Advances in genomic tumour analysis

are providing new ways to characterise tumours, including

their hypoxia signatures [18–20] however these techniques

cannot provide the same comprehensive oxygenation map

between sites of disease within the same patient.

Further work is needed to establish the clinical impact of

[18F]HX4 imaging in patients with HNSCC. Routine

evaluation of tumour hypoxia is only likely to happen

when complementary hypoxia-modified treatment sche-

dules demonstrate a significant survival advantage.

Hypoxia imaging has a role to play in stratifying patients

for clinical trials of these treatments.

Conclusion
This article describes the first clinical study of [18F]HX4

based in the UK. [18F]HX4 imaging identified a spec-

trum of hypoxia in patients with HNSCC. Routine

hypoxia imaging in HNSCC treatment planning would

require investment, efficient scheduling, and a flexible

radiotracer supply. Until a clinically significant ther-

apeutic modification is validated and adopted for treating

hypoxic lesions, it seems likely that radiotracers for

hypoxia including [18F]HX4 will remain a research tool.
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