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Abstract—This paper proposes and investigates an 

innovative methodology that can have a significant impact on 
the market potential of wound field, small-medium size 
synchronous generators. The technique proposed here is 
aimed at removing the need for the traditional stator skewing 
that is so commonly used in synchronous generators to 
achieve acceptable values of voltage total harmonic distortion. 
To do this, a non-standard damper cage configuration is 
proposed that comprises modulation of the damper bars’ 
positioning. An off-the-shelf, 400kVA generator is used as a 
benchmark machine. Its rotor is optimized and modified 
according to the proposed technique. The results of the final 
machine are then compared to the benchmark machine 
highlighting the excellent advantages that can be achieved 
through this technique. A full-scale prototype of the modified 
generator is then built to experimentally validate the concept. 
Finally, a detailed analysis on all the performance aspects of 
the prototype is done, to guarantee that the proposed 
technique has no negative impact whatsoever on the 
generator’s performance. 

 
Index Terms—Asymmetrical Windings, Circuital 

Modelling, Damper Windings, Efficiency, Genetic 
Algorithms, Modulated Bars, Optimizations, Power 
Quality, Skewing, Synchronous Generators, Total 
Harmonic Distortion. 

I. INTRODUCTION 

N essential component for any electrical power 

generation and power system is the wound-field, 
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synchronous generator (SG), which today still represents the 

most common method for reliable mechanical to electrical 

energy conversion. However, the ever-more stringent quality 

compliancy and grid-code standards [1], [2] are pushing the 

need for better power quality at all levels, including at 

component (SG) level [3]. When it comes to relatively low-to-

medium rated wound-field SGs, the most common/popular 

methodologies employed to improve their power quality 

performance in terms of voltage total harmonic distortion 

(THD), include 

1) Special designs of the rotor geometry, where the shape of 

the salient poles is structured to have a non-constant 

airgap, resulting in improved output waveform shapes. 

This is a very popular optimization design process in SGs 

[4]. 

2) Appropriate winding configurations aimed at improving 

the quality of the output waveforms [5], [6]. 

3) Skewing of the stator to mitigate the effects that the 

presence of slot openings induces in the form of high-

order, parasitic harmonics on the airgap flux density and 

in turn, on the voltage waveform at the stator terminals of 

SGs. Usually an angular offset of one slot pitch along the 

axial length of the stator pack is used [6], [7]. 

4) Non-standard damper cage configurations, where recent 

studies have shown that moving the bars of the damper 

cage winding along the radial and/or tangential directions 

can improve the voltage THD in salient-pole SGs [8]. In 

[9], it has been proven that non-complete end-connections 

attenuate the “slot” harmonics. However, such techniques 

usually come at the cost of inducing more elevated 

currents (and thus losses) in this additional, rotor winding 

[10]. To circumvent this issue, an innovative technique 

has been proposed in [11], consisting in optimally 

tailoring the bars’ position.  

From all the above, the most common methodology for 

THD improvement is by far stator skewing. This technique 

and its THD benefits are well consolidated. However it does 

compromise the overall electromagnetic performance of the 

machine and most importantly it also results in a significant 
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increase in manufacturing complexity and therefore 

manufacturing costs. 

Although the concept of modulating the damper cage has 

been already proposed by [11] to address losses in salient-pole 

SGs, it must be noted that the 4MVA machine investigated in 

[11] was an ideal vehicle to reduce the bar losses, as these 

present very high values due to the open-slot stator structure. 

Considering the above, in this paper an optimal damper 

cage topology is found for a smaller platform, i.e. a 400kVA 

generator, and for a different objective, consisting in achieving 

an acceptable value of voltage THD without having to rely on 

the invasive skewing of the stator. Although international 

standards specify a THD limit of 5% for generators [2], this 

works aims at achieving a THD less than 3%, as the SG 

manufacturers believe that in the near future the power quality 

requirements and the nature of their customers’ demands will 

be even more stringent than they are today. To achieve this 

objective, the methodology is expanded and updated with 

respect to [11]. Also, this paper presents the first known 

experimental validation of the proposed modulated bar 

technique when applied to classical SGs. To the authors’ 

knowledge, no other existing work has proposed and validated 

such a technique as investigated in this work.  

II. THE PLATFORM 

As vehicle to test the proposed concept, an ‘off-the-shelf’ 

salient-pole 400kVA SG is considered, whose main parameters 

are given in Table I and which is shown in Fig. 1a. For the 

scope of this paper, this machine will be henceforth known as 

Machine A. 

Important aspects of this machine which have a major 

impact on its voltage THD include 1) the salient poles (whose 

angular span is equal to 70º) are shaped to have a constant air-

gap thickness (i.e. 2mm) along their tangential development, 

2) the ratio between the outer rotor and outer stator radii is 

equal to 0.7, 3) the ratio between the stator slot opening width 

and the minimum air-gap thickness is equal to 2.5, 4) the 

stator winding has a double-layer structure, with 16 coils-per-

phase, 2 parallel circuits and a 2/3rd short-pitching, 5) the 

stator is skewed by one slot pitch, 6) the damper bars are 

symmetrically displaced around the central axes of the poles, 

7) the damper bar pitch is equal to 9° and 8) the damper cage 

end connections are realized through press-plates laminations. 

TABLE I 
SYNCHRONOUS GENERATOR MAIN PARAMETERS 

Parameter Value 

Rated Power 400kVA 

Rated Voltage 400V 

Rated Frequency 50HZ 

Rated Power Factor 0.8 

Rotor Pole Number  4 

Stator Slot Number 48 

Damper Bar Number 24 

Outer Stator Diameter 500mm 

Axial length 500mm 

 
Fig. 1. a) Machine A – benchmark machine, consisting of a rotor 
equipped with symmetrically displaced damping bars and a skewed 
stator; b) Machine B – machine featured by a rotor equipped with 
symmetrically displaced damping bars and a skew-less stator; c) 
Machine C – optimal machine, consisting of a rotor equipped with a 
modulated damper cage and a skew-less stator.  

III. THE INVESTIGATION PROCESS 

To study the proposed concept on this platform, the 

investigation process that is used is described as follows: 

1) Analytical and finite element (FE) models of Machine A 

are built and validated against experimental results. 

Although a 3-D FE analysis is the most accurate 

methodology to describe all the effects due to the stator 

skew, however today quite accurate (but fast) techniques, 

such as the single-slice 2-D method [12] can also be used. 

In fact it is this single slice method which is implemented 

in MagNet Infolytica environment for FE evaluations. 

2) The stator skewing on the model of Machine A is then 

removed to achieve a skew-less machine as shown in Fig. 

1b, henceforth known as Machine B, which however still 

comprises the same rotor as Machine A. This machine is 

also modelled with accurate analytical and 2-D FE models 

and it is shown how the removal of the skew results in a 

considerable deterioration of the voltage THD. 

3) Finally the proposed technique of modulating the damper 

bars is implemented. A detailed investigation via FE and 

genetic algorithm (GA) based methodologies is carried 

out to identify an optimal damper cage configuration that 

will justify (in terms of voltage THD values) the removal 

of skewing from the 400kVA SG. The model of this 

resulting machine is shown in Fig. 1c and will henceforth 
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be known as Machine C. The modification on the rotor of 

the alternator is then physically implemented onto a full-

scale prototype of the 400kVA SG for experimental 

validation. 

The new prototype’s performance (i.e. Machine C) is then 

compared to that of the original Machine A. This experimental 

work validates the proposed concept and proves that it is 

possible to remove the need for skew without compromising 

the steady state and transient performance of the machine. 

IV. PERFORMANCE OF MACHINES A AND B 

In order to fully understand the operation of the benchmark 

Machine A and the effects that stator skewing has on the SG, 

accurate FE models of Machine A and Machine B are built. 

Physical prototypes of these machines were also built. The 

detailed description of the development of these machines’ 

models, as well as all the experimental activity done to 

validate these machines go beyond the scope of this paper and 

are therefore not given here, but can be found in [12] and [13]. 

Also, simulation and experimental results of these two 

machines are used in the comparisons against the performance 

of Machine C, later in the paper. 

However, considering the critical importance of the voltage 

THD for this work, then the relevant results for both machines 

are presented in Table II. Excellent similarity can be observed 

between the FE results and the experimentally-evaluated THD 

values of the no-load, line-to-line voltage for the two versions 

of the 400kVA SG platform. 

TABLE II 
FE VS. EXPERIMENTAL RESULTS: NO-LOAD VOLTAGE THD 

Platform Simulations Experimental Error 

Machine A 1.26% 1.34% 5.97% 

Machine B 5.58% 5.94% 6.11% 

V. THE PROPOSED CONCEPT 

Traditionally, the damper cage windings are fitted with bars 

that comprise a constant pitch and this is also the case of the 

alternator considered in this paper, as shown in Fig. 1a. The 

proposed concept consists in having a non-constant bar pitch, 

resulting in an unconventionally displaced winding, such as 

can be observed in Fig. 1c.  

The aim of this section is that of recalling the general theory 

and the perceived advantages of the asymmetrical bar 

distribution. A comprehensive, theoretical insight of the 

modulated technique is given in [11], where equivalent 

functions describing the machine windings and geometrical 

features have been used to exploit a general expression of the 

inductance matrix [14]. In [11], it was found that both damper 

cage currents and voltage THD can be minimized by 

opportunely modifying the amplitude and phase harmonic 

components of the equivalent functions involved in the 

inductance expression, including those describing the damper 

winding. In [11], it was also shown that only the terms 

representing the mutual couplings between the armature 

winding and the rotor damper cage circuits can affect the 

terminal voltage shape.  

Another way to get to the same results as in [11] is that of 

exploiting the term in (1) relative to the derivative of the flux 

vector   with respect to time. In (1), the basic voltage 

equation derived from the classical equivalent circuit approach 

of electrical machines is provided. Here, the vector i  is 

composed by the currents entering the machine phases, α is 

the angular position of rotor vs. stator and the matrices R and 

L represent the resistances and inductances characterising the 

machine, respectively.  

Assuming that the damper cage is modelled as b loops 

delimited by any couple of adjacent bars (where b is the 

number of bars), the dimension of the system (1) is equal to 

b+(3+1)=28 for the considered generator platform. The 

exploitation of the flux vector derivative leads to obtain (2), 

where only the effects on one stator phase are considered (e.g. 

phase A). As the main target of this work is the no-load 

voltage THD, (2) is written upon the assumption that the stator 

phase currents are null. It can be observed that, apart from the 

mutual inductance LA,f between the stator phase and the field 

winding, the machine flux and thus the voltage of phase A are 

also dependent on the mutual inductances LA,b1, LA,b2, …, LA,b24 

between the phase A and all the 24 rotor loops relative to the 

damper cage.  
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It is then clear that by changing the position of the damping 

bars, the relevant rotor loops link a different flux from that of 

the standard machine, as all the mutual inductances involved 

in (2) are modified by the bar repositioning. It is therefore 

perceived that there exists a particular, optimal pattern of these 

rotor loops that minimizes the interaction between the 

irregular damper pitch and the stator slot openings, potentially 

allowing to reduce the airgap parasitic harmonics and in turn 

the THD of the stator phase voltage. 

VI. FIRST DESIGNS AND OPTIMIZATIONS 

 The initial model 

The complex electromagnetic phenomena related to the 

damper winding of SGs have been extensively dealt with in 

literature. While the theoretical treatment of such aspects is 

still dominated by classical methods or approximated 

approaches [16], FE-based techniques represent today very 

accurate tools for the design and the analysis of such short-

circuited rotor winding. In fact, phenomena such as skin 

effect, high-order parasitic harmonics (e.g. the slot harmonics) 

and armature reaction effects on the damper cage, under any 

operating condition, can be modelled and analyzed in a very 

accurate way through the implementation of this numerical 

approach. Considering therefore that the damper cage 
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behavior plays a key role for the purposes of this work (as it 

significantly affects the voltage THD in salient-pole SGs), 

then the optimal version of Machine C is developed via FE 

analysis, aided by a GA-based optimization tool. As a starting 

point, the FE models of Machine A and Machine B are taken. 

In Fig. 2, the details of the mesh used in the main air-gap and 

in the damping bars are shown. It can be observed that a) the 

air-gap is divided into four layers of equal thickness along the 

radial direction, b) each layer edge features a uniform node 

subdivision along the tangential direction and c) the damping 

bars are characterized by a dense mesh to capture any non-

uniform current density effect possibly due to high-frequency 

phenomena. The mesh presented in Fig. 2 was achieved by 

adopting the “insensitivity of the solved quantity to further 

model refinement” criterion, i.e. by performing an iterative 

accuracy improvement process associated with a numerical 

sensitivity analysis. 

 

 
 

Fig. 2.  Detail of the mesh used in air-gap and damping bars for FE 
analyses. 

 The GA Optimization Tool 

Having validated the FE model of the benchmark Machine 

A and Machine B, this can then be used to analyze several 

damper cage topologies with the aim of meeting the stringent 

THD requirements without resorting to skewing. The chosen 

process to do this has the following major features: 

1) Interface – the commercial, GA-based software 

ModeFrontier of Esteco is utilized for the optimization, 

due to its high flexibility in terms of interoperability with 

other applications (i.e. Matlab and MagNet of Infolytica) 

during the pre-processing, the solving and post-processing 

phases. 

2) Input parameters – in order to take advantage of the 

periodicities of the machine and to reduce the 

computational resources associated with the FE and the 

GA analyses, only a quarter of the machine model is 

considered meaning that only the positions of the bars 

embedded in one salient pole are optimized, while the 

same positions are then used for the bars over the adjacent 

(not modelled) poles. Thus as the number of bars-per-pole 

is equal to 6, this is also the number of the input variables, 

which are opportunely constrained in such a way that two 

consecutive bars never interfere with each other. 

3) Optimization Strategy – the first phase is performed by 

using design of experiments (DoE) techniques [17]. 

Although these are used for many applications, here a 

DoE based on a random sequence is used to provide (to 

the optimization algorithm) an initial population of 50 

individuals. The second phase of the procedure is that of 

performing a first exploration of the design space by using 

a multi-objective genetic-algorithm (MOGA), which is 

based on a scheduler designed for fast Pareto convergence 

and whose main features are described by [18]. In the end, 

a refinement is then carried out according to the results 

obtained in the first, preliminary phase (i.e. using the best 

solutions as initial population for a second round of 

optimizations). 

4) Output variables - the objective is that of minimizing no-

load, line-to-line voltage THD and, at the same time, the 

damper cage loss. The main focus is however given to the 

voltage THD (set to 3%), as for this paper this is the most 

important requirement to achieve. On the other hand, 

although previous studies [13] have shown that the 

damper cage does not represent a significant loss 

contributor in the 400kVA SG, it is essential to maintain 

losses below acceptable limits. Therefore, the loss 

threshold is taken as any value which is lower than the 

actual no-load damper cage loss found into the benchmark 

machine (i.e. ≈70W). 

 Preliminary Results 

A generic machine scheme which highlights all the input 

variables used for the optimization study is given in Fig. 3. All 

the FE evaluations are carried out at no-load and the 

optimization results are plotted in Fig. 4. Considering that the 

simulated THD of the no-load voltage for Machine B is equal 

to 5.58% then from Fig. 4, it can be observed that improved 

solutions already exist, even if the bars are repositioned over 

one salient pole only (with the other poles copying the ‘new’ 

structure). However, for this case, the best solution in terms of 

voltage shape exhibits a THD of ≈4.6% while the 

improvement in losses is minimal. This confirms that to 

achieve feasible results in terms of both THD and losses, 

additional input variables need to be considered.  

 

 
Fig. 3:  Input parameters of the preliminary damper cage optimization 
study. 
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Fig. 4:  Preliminary optimization results: damper cage loss vs. voltage 
THD.  

 Further Remarks 

Before further going into the details of the investigation 

with modulation, it is important to consider that a number of 

“simpler” methods have already been investigated to address 

voltage THD requirements in SGs. As mentioned in Section I, 

one of the most common techniques consists in “shifting” the 

damper cage around the polar axes in alternating directions on 

each pole [15]. This design feature is commonly used today in 

industrial generators to remove the need for skew [8], [12]. 

However, the shifted damper cage methodology is mainly 

suitable for SGs featuring relatively low ratios between slot 

opening width and air-gap thickness (this typically occurs in 

medium-large SGs), where the “slotting effect” in the air-gap 

flux density is thus attenuated. In SGs where the ratios 

between slot opening width and air-gap thickness is relatively 

high (as in the alternator analyzed in this paper), the “slotting 

effect” can be significant and the shifted damper cage may be 

not sufficient to keep the THD below the 3% limit. This is 

proven by the work presented in [13], where the shifted 

damper cage technique is implemented on the same 400kVA 

platform analysed in this paper. Another important aspect to 

consider is that the shifted damper cage can lead to increased 

bar currents and thus ohmic losses in the bars when specific 

salient poles’ profiles are adopted [11]. 

Amongst the “simpler” methods, also the effects on the 

voltage THD of the angular pole span and of the pole tips 

shape (i.e. having a non-constant air-gap thickness) have been 

investigated in [13] onto the same 400kVA SG. The results 

have shown that, although some slight improvements are 

possible, these are again not enough to allow the removal of 

stator skew.  

Finally, in Section VI.C, the position of the bars embedded 

onto one salient pole has been modified with the aim of 

addressing losses and THD, showing that the best achieved 

solution does not comply with the objective of having a 

voltage THD lower than 3%. 

A summary aimed at comparing the effects of these 

methods is done. The 400kVA SG without skewing is 

considered and the results in terms of damper cage losses and 

voltage THD are compared in Table III. Machine B is used as 

benchmark. As already anticipated above, the THD 

improvements are not significant. Also, noticing the small 

values of the damper cage losses in relation to the SG rated 

power, it can be concluded that their impact on the machine 

efficiency can be neglected, justifying the main focus given to 

the THD minimization objective.  

TABLE III 
COMPARISON AMONGST TECHNIQUES – FE RESULTS 

Technique No-load bar losses THD 

Machine B 71.2W 5.58% 

Non-constant air-gap 42.7W 4.96% 

Optimal pole span 70.8W 5.12% 

Shifted damper cage 82.5W 4.05% 

Modulation over one pole 110W 4.61% 

 

VII. MACHINE C OPTIMIZATION RESULTS AND FINAL 

PROPOSED SOLUTION 

As can be observed in Fig. 4 and Table III, by considering 

“standard techniques” and bar repositioning only over one 

salient pole, then the objective of having a voltage THD lower 

than 3% is not achieved. Hence, a variant of the proposed 

technique is proposed, consisting in using additional degrees 

of freedom. A repositioning process for the bars distributed 

along two adjacent poles (one pole pair) is investigated, 

resulting in a doubled number (from 6 to 12) of input 

parameters. This variant allows for a significant increase in the 

number of possible combinations to consider, at the cost of 

increasing the required computational resources, as the 

minimum angular cross-section to model and solve via FE 

analysis now corresponds to 180°. 

 Optimization Results 

The results obtained from the no-load optimization 

procedure with 12 variables are shown in Fig. 5. Few designs 

satisfy the objective constraints of 70W and 3%, for the losses 

and the THD respectively. These achievements are highlighted 

in the target area in Fig. 5. Among the best solutions, the one 

presenting the minimum THD and an acceptable value of 

damper cage loss is selected for the comparison with the 

actual design. The best performing solution is presented as a 

red dot in Fig. 5. Its rotor is illustrated in Fig. 6, where the 

particular pattern of the bar pitch modulation can be observed. 

For the sake of completeness and for a clear understanding 

of the modulation mechanism, the final values of the 12 

variables are listed in Table IV. Each variable is given as the 

angular distance between the original and the optimal 

positions of the damping bars, normalized over the original 

bar pitch (i.e. 9°). The sign of these variables is indicative of 

the direction of the bar repositioning with respect to the 

original location, having chosen the anticlockwise direction as 

the positive one. Referring to Fig. 1c, the variables are 

numbered from 1 to 12 in the anticlockwise direction.  
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Fig. 5.  Final optimization results: damper cage loss vs. voltage THD. 

 
Fig. 6.  Modulated damper cage: optimal pattern of the modulated bar 
pitch.  

TABLE IV 
OPTIMAL FINAL VALUES OF THE 12 INPUT OPTIMIZATION VARIABLES 

Variable 

Number 

Optimal  

Value 

Variable 

Number 

Optimal  

Value 

1 -0.219 7 -0.162 

2 -0.371 8 -0.428 

3 -0.294 9 -0.752 

4 -0.523 10 +0.049 

5 -0.142 11 +0.315 

6 +0.047 12 +0.181 

 

 Final Proposed Solution 

This optimal solution (Machine C) is compared at 

modelling-level in this section with Machine A and Machine 

B. The comparison between Machine B and Machine C is the 

fairest one, as both present a skew-less stator and, therefore, it 

provides the real effectiveness of the proposed concept on the 

voltage waveform quality. However, since a manufacturer will 

mainly be interested in improvement over his current product, 

it is worth to show how the optimal machine compares with 

Machine A, as the latter represents the actual market product.  

Firstly, the air-gap flux densities of the three machines are 

compared in Fig 7a. Here, the improvements achieved by 

Machine C (with the modulated damper cage) over Machine B 

can be observed, whereas Machine A presents the “cleaner” 

flux density waveform due to the presence of skewing. 

However, in Fig. 7a, it can be noticed how a skew-less 

machine can achieve a flux density waveform similar to that 

of a skewed machine thanks to the implementation of a 

modulated damper cage. The relevant amplitude harmonic 

spectra shown in Fig. 7b confirm that the modulated damper 

cage permits to significantly attenuate the slot harmonics. 

Other significant harmonic components (the 11th above all) are 

also reduced. On the other hand, the asymmetries introduced 

by the different bar patterns between north and south poles 

lead to the introduction of even harmonics in the air-gap flux 

density of Machine C, potentially resulting in higher parasitic 

shaft voltages [19]. Also, always referring to Fig. 7b, it can be 

noted that the air-gap flux density of Machine C presents an 

increased third harmonic in comparison with Machines A and 

B, although triplen harmonics are overall reduced. However, 

given the 2/3 short pitching layout of the armature winding, 

this does not come at the cost of compromising the 

achievement of the main objectives of this paper. In fact in 

Fig. 8, where the comparison between the no-load line-to-line 

voltage waveforms is provided, it can be observed that a more 

than halved value of the THD (from 5.58% to 2.56%) is 

achieved by Machine C when compared with Machine B. In 

Fig. 8b, the comparison in terms of amplitude harmonic 

spectrum is also provided, confirming that the THD 

improvement is mainly due to the heavy attenuation of the 

groups of slotting harmonics, as highlighted in green in the 

same figure, where the amplitudes (on the y-axis) are provided 

in percentage of the fundamental harmonic (not shown in the 

graph).  

The same comparison is carried out between Machine A 

and Machine C. In Fig. 9, it can be observed how Machine A 

presents a “cleaner” voltage shape than the optimal machine, 

with a THD=1.26%. This is expected, as the skewing has the 

effect of almost eliminating the slotting harmonics.  

 
Fig. 7.  Effects of modulation on the air-gap flux density – comparison 
between the three machines: a) flux density waveforms b) flux density 
harmonic spectra, with zoom on the first group of slot harmonics. 



IEEE TRANSACTIONS ON INDUSTRIAL ELECTRONICS 

 

 
Fig. 8.  Effects of modulation on the no-load voltage – comparison 
between Machine A and Machine B: a) voltage waveforms, b) voltage 
harmonic spectra. 

 
Fig. 9.  No-load, line-to-line voltage waveforms: comparison between 
Machine A and Machine C. 
 

A summary of the comparison amongst the three topologies 

is shown in Table V, where the voltage THD as well as the 

damper cage loss at no-load operation are compared. The 

benchmark Machine A, still achieves a lower THD value than 

the proposed Machine C, however it is important to note that 

Machine C complies with the set target of less than 3% THD. 

In terms of losses, it can be concluded that Machine C 

achieves a reduction of 1.58% and 21.6% at no-load, 

respectively with respect to Machine A and Machine B. 

TABLE V 

COMPARISON AMONGST THE THREE CASE STUDIES – FE RESULTS 

Machine Topology No-load bar losses THD 

Machine A 56.8W 1.26% 

Machine B 71.3W 5.58% 

Machine C 55.9W 2.56% 

VIII. EXPERIMENTAL RESULTS  

To validate the proposed concept, a 400kVA generator 

equipped with a skew-less stator and a rotor with a modulated 

damper cage has been built in order to experimentally prove 

the proposed concept. 

The ‘new’ rotor lamination of Machine C was manufactured 

in house, via an EDM process [20] and the laminations are 

shown in Fig. 10, where the pattern of the unconventionally 

displaced damper bars’ holes can be observed. The test bench 

with the fully assembled machine (with a skew-less stator) can 

be observed in Fig. 11. 

 
Fig. 10.  Rotor lamination showing the modulated holes for the 
damping bars. 

 Validation of the proposed concept: waveform 
analysis 

The purpose of this test is to confirm the design impact of 

the unconventionally displaced damper cage on the voltage 

waveform. This section therefore represents the core of this 

work, as it is aimed at confirming the validity of the proposed 

concept by demonstrating that a THD lower than 3%, at no-

load operation, is achievable without implementing stator slot 

skew onto the 400kVA SG. 

The experimental platform shown in Fig. 11 consists of an 

induction machine drive, acting as the prime mover, whose 

speed loop controls the frequency of the SG, which is mounted 

on the same shaft of the motor. The test is carried out on a 

cold machine to be coherent with the corresponding FE 

evaluation. 

 

 

Fig. 11: Prototype test bench. 
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The experimental results of the no-load line to line voltages 

are compared with the FE results in Fig. 12. An excellent 

match between numerical and experimental results can be 

observed. This is also confirmed by the comparison, shown in 

the same picture, between the THD of such output voltages, 

where the relevant error is ≈10%. This proves the feasibility of 

the modulated damper cage concept for power quality 

improvement purposes. In fact, the study has demonstrated 

that this design technique is able to guarantee a THD<3% 

without resorting to the skewing.  

 
Fig. 12.  No-load, line-to-line voltage waveforms: FE vs. experimental 
results. 

 
Fig. 13.  No-load, line-to-line voltage: comparison between a) voltage 

waveforms of Machine B and Machine C, b) voltage waveforms of 

Machine A and Machine C, c) harmonic amplitude voltage spectra of 

the three machines. 

For the sake of completeness, the measured voltage 

waveforms are compared with those relative to Machine A and 

Machine B. This comparison, shown in Fig. 13, confirms the 

results provided in Section VI.B (Table V), where it can be 

observed that  

1) the THD improvement due to the modulated rotor with 

respect to the normal rotor is mainly due to the heavy 

attenuation of the first group of slotting harmonics; 

2) the “cleaner” voltage shape of the benchmark machine 

with respect to the prototyped machine is obtained 

through the disruptive and costly technique of skewing. 

It can be concluded that the results presented in this section 

confirm the validity of the GA-FE-based methodology aimed 

at finding an optimal damper cage topology. Having therefore 

found out that a skew-less configuration can still meet very 

stringent power quality requirements if combined with an 

optimal damper winding design, then in the next sections a 

comparison between the performance of the new prototype 

and the benchmark machine at no-load, short-circuit (SC), 

full-load and overload operations will be presented and 

discussed. For a fair judgement of the accuracy of the 

comparative results, it is important to note that the method 

used for machining the rotor laminations of Machine C (i.e. 

the EDM) is different from the standard stamping technology 

used to cut the laminations of the “off-the-shelf” Machine A. 

However, it is important to observe that main aim of the next 

sections is to prove that the new prototype does not affect the 

overall, steady-state and transient performance of the current 

generator. Therefore, the dissimilarities (in terms of 

mechanical stress on the materials, main dimensions, etc.) 

potentially ensuing from the different cutting methods should 

not influence the main achievement of the last part of this 

work. 

 No-load Characteristic 

The investigation was carried out on a cold machine with 

the output terminal open-circuited, the automatic voltage 

regulator (AVR) disconnected and the field winding terminals 

directly connected to an external controllable DC supply. Slip 

rings, such as can be seen in Fig. 11 were used to record the 

main field winding voltage and current. The alternator was run 

at rated speed and the excitation increased in incremental 

steps. The line-to-line voltage vs. rotor field current is plotted 

and compared in Fig. 14 against the available experimental 

no-load curve relative to Machine A. It can be observed the 

perfect match between the two curves and, in particular, it is 

found that the new Machine C prototype achieves the rated 

voltage value with a field current reduced by 0.7% in 

comparison with the original Machine A. 

 Short-circuit Characteristic  

This test is aimed at determining the excitation 

requirements and capabilities of the machine under test. Also, 

it is possible to determine the unsaturated synchronous 

reactance. As well as for the no-load characteristic, the SC 

curves of the new prototype and the benchmark machine are 

compared to prove that the new design does not affect 
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negatively the performance. In Fig. 15, the excellent match 

between the characteristics can be observed, resulting in a 

very good match also in respect to the unsaturated 

synchronous reactance (3.38p.u. for the new prototype against 

3.35p.u. for the existing machine). 

The investigation is carried out on a cold machine. A short 

circuit is applied to the generator’s terminals. As well as for 

the no-load test, the AVR was disconnected and a DC supply 

was used. The generator was run at rated speed and then the 

excitation was increased in discrete steps until the output 

current was 50% above the rated value. At each step, the 

values of stator current, exciter field voltage and current and 

the generator field voltage and current (through the slip rings) 

were recorded. It was finally possible to plot the line current 

vs. the rotor field current figure shown above in comparison 

with the one available for the current alternator.  The last step 

was that of evaluating the unsaturated synchronous reactance 

as the ratio of the excitation current required to sustain the 

rated SC current, to the excitation current required to sustain 

rated open circuit voltage. This second value is derived from 

the air gap line extrapolated from the no-load curve, as shown 

in Fig. 14, as this line represents the unsaturated excitation 

requirement. 

 
Fig. 14.  No-load characteristics: experimental comparison between 
Machine A and Machine C. 

 
Fig. 15.  SC characteristics: experimental comparison between 
Machine A and Machine C. 

 Power Loss and Efficiency 

To determine the overall machine efficiency, the 

“summation of separate losses” method suggested by [21] for 

synchronous machines with electrical excitation was used. In 

particular, the no-load test performed as in Section VIII.B was 

used to record the shaft torque and thus to determine the shaft 

power. The constant losses were thus obtained as suggested in 

[21] and used to firstly extrapolate the windage and friction 

losses and then to determine the iron loss contribution. A rated 

full-load temperature test was carried out for the armature 

winding and the field winding losses. The excitation losses 

were added by assuming an efficiency of the exciter of 90% 

(i.e. excitation losses were taken equal to the 10% of the field 

winding loss). Although this is an approximation, given the 

comparative purposes of this section, it has to be noticed that 

both machines were equipped with the same excitation system, 

consisting of a typical brushless three-phase layout [17]. 

Finally, from the short-circuit test (with coupled machine) 

performed as in Section VIII.C, the additional losses were 

determined.  

Table VI shows the comparison in terms of losses and 

efficiencies between the skew-less Machine C and the original 

Machine A. The excellent match between the machines’ 

efficiencies prove that no significant performance 

deterioration has been generated. It is interesting to note that 

the loss reduction achieved by the optimal Machine C comes 

mainly from the field winding contribution, which results in a 

slight efficiency improvement (by 0.23%). This is partially 

due to the positive effects (e.g. lower field current and lower 

rotor temperatures) resulting from the removed skewing and 

the modulated bar pattern. 

TABLE VI 
COMPARISON BETWEEN OPTIMAL AND EXISTING MACHINE – EFFICIENCY 

CALCULATION BY LOSS SUMMATION METHOD 

Loss Component Machine C Machine A 

Windage & Friction 2.387kW 2.141kW 

Iron (Fe) 3.933kW 3.884kW 

Armature Winding (Cu) 9.599kW 9.593kW 

Field Winding (Cu) 4.993kW 5.433kW 

Excitation 0.493kW 0.544kW 

Additional (Stray) 2.450kW 3.111kW 

Total 23.855kW 24.706kW 

Efficiency 93.06% 92.83% 

 Dynamic Parameters 

One of the most important and critical aspect to consider for 

a comprehensive study of the renewed platform equipped with 

the unconventionally displaced damper cage, is related to its 

behavior during transient operations. The aim of this section is 

therefore that of proving that the new design does not modify 

the parameters corresponding to the generator SC 

performance. In order to determine these characteristic values, 

a suddenly applied three-phase SC test was performed. In this 

test, the alternator is coupled to a slave generator by a ring 

feeder coupling. A suitable DC power supply is connected to 

the exciter field winding and, after the generator is run at its 

rated speed and the output voltage is at its rated value, then it 
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becomes possible to apply the three-phase SC. The dynamic 

parameters determination is performed according to the 

classical method described in [22] and the comparison 

between the existing and the novel prototype in terms of these 

quantities is summarized in Table VII. Here, some 

discrepancies between the results can be observed, mainly due 

to the different design features of the optimal Machine C 

against the benchmark Machine A. In fact, the absence of 

skew in Machine C can lead to a slightly decreased leakage 

inductance, while the modulated bar arrangement obviously 

results in a dissimilar behavior of the relevant currents. Also 

the field currents feeding the short-circuited armature winding 

is different between the two machines. However, given that 

the maximum error between the results summarized in Table 

VII is less than 10%, it can be concluded that besides the 

overall performance of the machine, also the dynamic 

behavior of the generator remains almost unmodified.  

TABLE VII 
DYNAMIC PARAMETERS – COMPARISON OF EXPERIMENTAL RESULTS 

Dynamic Parameters Machine C Machine A Error 

Synchronous Reactance Xd 2.40p.u. 2.63p.u. 8.75%. 

Transient Reactance Xd
’ 0.122p.u. 0.129p.u. 5.74%. 

Sub-transient Reactance Xd
’’ 0.083p.u. 0.091p.u. 8.79%. 

Transient SC time constant Td
’ 0.056s 0.062s 9.68% 

Sub-transient SC time constant Td
’’ 0.01226s 0.01299s 5.62% 

 

Besides those on the efficiency and the dynamic 

performance, other important implications that the new 

damper cage pattern can have are related to the vibration and 

noise levels. Although the full description of the relevant tests 

goes beyond the main scope of this paper, it is worth to 

mention that no significant differences were registered 

between the two machines and that the vibration and noise 

levels are well below the standard limits indicated by [2].  

IX. CONCLUSIONS 

This paper has shown the significant effect that damper 

windings can have on the operation but also on the 

manufacturing processes of wound-field, salient-pole SGs. An 

innovative damper cage scheme based on asymmetrically 

distributed bars was proposed and investigated. It was shown 

how, through the implementation of this unconventional, 

modulated bar displacement, the need for stator skewing can 

be removed without impacting the power quality requirements 

(related to the no-load voltage THD) and the overall machine 

efficiency and general performance.  

The proposed concept has been experimentally validated on 

a full-scale prototype. The prototype achieved a THD equal to 

2.29% and an improved efficiency of 0.23%, while keeping 

the no-load, full-load and transient requirements the same as 

the existing alternator.  

As a main outcome of not needing skew, from preliminary 

calculations (done in collaboration with a prominent SG 

manufacturer) it is predicted that, without the need for the 

skewing process, a prototype will get off the assembly line 

approximately in twenty minutes time less. This translates to a 

cost saving of approximately 5 – 8% per machine. The 

modulated damper cage, as proposed in this paper, therefore 

represents a fantastic opportunity to improve the market 

potential of these classical machines without compromising 

power quality and efficiency. 
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