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Abstract. The Max-Cut problem is a well known combinatorial optimization
problem. In this paper we describe a fast approximation method. Given a

graph G, we want to find a cut whose size is maximal among all possible cuts.

A cut is a partition of the vertex set of G into two disjoint subsets. For an
unweighted graph, the size of the cut is the number of edges that have one

vertex on either side of the partition; we also consider a weighted version of

the problem where each edge contributes a nonnegative weight to the cut.
We introduce the signless Ginzburg–Landau functional and prove that this

functional Γ-converges to a Max-Cut objective functional. We approximately
minimize this functional using a graph based signless Merriman–Bence–Osher

(MBO) scheme, which uses a signless Laplacian. We derive a Lyapunov func-

tional for the iterations of our signless MBO scheme. We show experimentally
that on some classes of graphs the resulting algorithm produces more accurate

maximum cut approximations than the current state-of-the-art approximation

algorithm. One of our methods of minimizing the functional results in an al-
gorithm with a time complexity of O(|E|), where |E| is the total number of

edges on G.

1. Introduction.

1.1. Maximum cut. Given an undirected (edge-)weighted graph G = (V,E, ω), a
cut V−1|V1 is a partition of the node set V into two disjoint subsets V−1 and V1.
The size of a cut C = V−1|V1, denoted by s(C), is the sum of all the weights corre-
sponding to edges that have one end vertex in V−1 and one in V1. The maximum
cut (Max-Cut) problem is the problem of finding a cut C∗ such that for all cuts
C, s(C) ≤ s(C∗). We call such a C∗ a maximum cut and say mc(G) := s(C∗) is
the maximum cut value of the graph G. The Max-Cut problem for an unweighted
graph is a special case of the Max-Cut problem on a weighted graph which we ob-
tain by assuming all edge weights are 1. Finding an unweighted graph’s Max-Cut is
equivalent to finding a bipartite subgraph with the largest number of edges possible.
In fact, for an unweighted bipartite graph mc(G) = |E|.
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2 BLAINE KEETCH AND YVES VAN GENNIP

The Max-Cut problem is an NP-hard problem; assuming P 6= NP no solution
can be acquired in polynomial time. There are a variety of polynomial time ap-
proximation algorithms for this problem [25, 15, 53]. Some Max-Cut approxima-
tion algorithms have a proven lower bound on their accuracy, which asserts the
existence of a β ∈ [0, 1] such that, for all output cuts C obtained by the algo-
rithm, s(C) ≥ βmc(G). We call such a β a performance guarantee. For algo-
rithms that incorporate stochastic steps, such a lower bound typically takes the
form E[s(C)] ≥ βmc(G) instead, where E[s(C)] denotes the expected value of the
size of the output cut.

In recent years a new type of approach to approximating such graph problems
has gained traction. Models from the world of partial differential equations and
variational methods that exhibit behaviour of the kind that could be helpful in
solving the graph problem are transcribed from their usual continuum formulation
to a graph based model. The resulting discrete model can then be solved using
techniques from numerical analysis and scientific computing. Examples of problems
that have successfully been tackled in this manner include data classification [11],
image segmentation [16], and community detection [33]. In this paper we use a
variation on the graph Ginzburg–Landau functional, which was introduced in [11],
to construct an algorithm which approximately solves the Max-Cut problem on
simple undirected weighted graphs.

We compare our method with the Goemans–Williamson (GW) algorithm [25],
which is the current state-of-the-art method for approximately solving the Max-Cut
problem. In [25] the authors solve a relaxed Max-Cut objective function and inter-
sect the solution with a random hyperplane in a n-dimensional sphere. It is proven
that if gw(C) is the size of the cut produced by the Goemans–Williamson algorithm,
then its expected value E[gw(C)] satisfies the inequality E[gw(C)] ≥ βmc(G) where
β = 0.878 (rounded down). If the Unique Games Conjecture [36] is true, the GW
algorithm has the best performance guarantee that is possible for a polynomial time
approximation algorithm [37]. It has been proven that approximately solving the
Max-Cut problem with a performance guarantee of 16

17 ≈ 0.941 or better is NP-hard
[52].

Finding mc(G) is equivalent to finding the ground state of the Ising Hamiltonian
in Ising spin models [31], and 0/1 linear programming problems can be restated as
Max-Cut problems [38].

1.2. Signless Ginzburg–Landau functional. Spectral graph theory [18] explores
the relationships between the spectra of graph operators, such as graph Laplacians
(see Section 2.1), and properties of graphs. For example, the multiplicity of the
zero eigenvalue of the (unnormalised, random walk, or symmetrically normalised)
graph Laplacian is equal to the number of connected components of the graph. Such
properties lie at the basis of the successful usage of the graph Laplacian in graph
clustering, such as in spectral clustering [58] and in clustering and classification
methods that use the graph Ginzburg–Landau functional [11]

fε(u) :=
1

2

∑
i,j∈V

ωij(ui − uj)2 +
1

ε

∑
i∈V

W (ui). (1)

Here u : V → R is a real-valued function defined on the node set V , with value ui
on node i, ωij is a positive weight associated with the edge between nodes i and
j (and ωij = 0 if such an edge is absent), and W (x) := (x2 − 1)2 is a double-well
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potential with minima at x = ±1. In Section 2.1 we will introduce our setting and
notation more precisely.

The method we use in this paper is based on a variation of fε, we call the signless
Ginzburg–Landau functional :

f+
ε (u) :=

1

2

∑
i,j∈V

ωij(ui + uj)
2 +

1

ε

∑
i∈V

W (ui). (2)

This nomenclature is suggested by the fact that the signless graph Laplacians are
related to f+

ε in a similar way as the graph Laplacians are related to fε, as we will
see in Section 2.1. Signless graph Laplacians have been studied because of the con-
nections between their spectra and bipartite subgraphs [21]. In [32, 55] the authors
derive a graph difference operator and a graph divergence operator to form a graph
Laplacian operator. In this paper we mimic this framework by deriving a signless
difference operator and a signless divergence operator to form a signless Laplacian
operator. Whereas the graph Laplacian operator is a discretization of the contin-
uum Laplacian operator, the continuum analogue of the signless Laplacian is the
subject of current and future research. Preliminary calculations for specific graph
structures suggest that the continuum signless Laplacian is an integral operator
[34].

The functional fε is useful in clustering and classification problems, because
minimizers of fε (in the presence of some constraint or additional term, to prevent
trivial minimizers) will be approximately binary (with values close to ±1), because
of the double-well potential term, and will have similar values on nodes that are
connected by highly weighted edges, because of the first term in fε. This intuition
can be formalised using the language of Γ-convergence [20]. In analogy with the
continuum case in [44, 45], it was proven in [55] that if ε ↓ 0, then fε Γ-converges
to

f0(u) :=

{
2TV(u), if u only takes the values ± 1,

∞, otherwise,

where TV(u) := 1
2

∑
i,j∈V ωij |ui − uj | is the graph total variation1. Together with

an equi-coercivity property, which we will return to in more detail in Section 4,
this Γ-convergence result guarantees that minimizers of fε converge to minimizers
of f0 as ε ↓ 0. If u only takes the values ±1, we note that TV(u) = 2s(C), where
C = V−1|V1 is the cut given by V±1 := {i ∈ V : ui = ±1}. Hence minimizers
uε of fε are expected to approximately solve the minimal cut problem, if we let
V±1 ≈ {i ∈ V : uεi ≈ ±1}.

In Section 4 we prove that f+
ε Γ-converges to a limit functional whose minimizers

solve the Max-Cut problem. Hence, we expect minimizers uε of f+
ε to approximately

solve the Max-Cut problem, if we consider the cut C = V−1|V1, with V±1 = {i ∈
V : uεi ≈ ±1}.

1.3. Graph MBO scheme. There are various ways in which the minimization of
f+
ε can be attempted. One such way, which can be explored in a future publication,

is to use a gradient flow method. In the case of fε the gradient flow is given by an
Allen–Cahn type equation on graphs [11, 56],

dui
dt

= −(∆u)i −
1

ε
d−ri W ′(ui), (3)

1The multiplicative factor 2 in f0 above differs from that in [55] because in the current paper

we choose different locations for the wells of W .
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where ∆u is a graph Laplacian of u, di the degree of node i, and r ∈ [0, 1] a param-
eter (see Section 2.1 for further details). This can be solved using a combination of
convex splitting and spectral truncation. In the case of f+

ε such an approach would
lead to a similar equation and scheme, with the main difference being the use of a
signless graph Laplacian instead of a graph Laplacian.

In this paper, however, we have opted for an alternative approach, which is
also inspired by similar approaches which have been developed for the fε case.
The continuum Merriman–Bence–Osher (MBO) scheme [41, 42] involves iteratively
solving the diffusion equation over a small time step τ and thresholding the solution
to an indicator function. For a short diffusion time τ this scheme approximates
motion by mean curvature [10]. This scheme has been adapted to a graph setting [40,
56]. Heuristically it is expected that the outcome of the graph MBO scheme closely
approximates minimizers of fε, as the diffusion step involves solving dui

dt = −(∆u)i
and the thresholding step has a similar effect as the nonlinearity − 1

εW
′(ui) in (3).

Experimental results strengthen this expectation, however rigorous confirmation is
still lacking.

In order to approximately minimize f+
ε , and consequently approximately solve

the Max-Cut problem, we use an MBO type scheme in which we replace the graph
Laplacian in the diffusion step by a signless graph Laplacian. We use two methods
to compute this step: (1) a spectral method, adapted from the one in [11], which
allows us to use a small subset of the eigenfunctions, which correspond to the
smallest eigenvalues of the graph Laplacian, and (2) an Euler method. Moreover,
we show (Section 6) that this variant of the graph MBO scheme has a Lyapunov
functional associated with it which Γ-converges to a Max-Cut objective functional
(i.e. a functional whose minimizers solve the Max-Cut problem) as the signless
‘diffusion’ time τ ↓ 0.

The usefulness of (normalised) signless graph Laplacians when attempting to find
maximum cuts can be intuitively understood from the fact that their spectra are in a
sense (which is made precise in Proposition 2) the reverse of the spectra of the corre-
sponding (normalised) graph Laplacians. Hence, where a standard graph Laplacian
driven diffusion leads to clustering patterns according to the eigenfunctions corre-
sponding to its smallest eigenvalues, ‘diffusion’ driven by a signless graph Laplacian
leads to patterns resembling the eigenfunctions corresponding to the smallest ei-
genvalues of that signless graph Laplacian and thus the largest eigenvalues of the
corresponding standard graph Laplacian.

1.4. Structure of the paper. In Section 2 we explain the notation we use in this
paper and give some preliminary results. Section 3 gives a precise formulation of
the Max-Cut problem and discusses the Goemans–Williamson algorithm in more
detail. In Section 4 we introduce the signless graph Ginzburg–Landau functional
f+
ε and use Γ-convergence techniques to prove that minimizers of f+

ε can be used
to find approximate maximum cuts. We describe the signless MBO algorithm we
use to find approximate minimizers of f+

ε in Section 5 and discuss the results we
get in Section 7. In Section 6 we derive a Lyapunov functional whose value is
non-increasing along (MBO+) iterations, and show that subject to a re-scaling this
functional Γ-converges to a total variation objective functional, which is shown to
be related to maximum cuts. We analyse the influence of our parameter choices in
Section 8 and conclude the paper in Section 9.

2. Setup and notation.
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2.1. Graph based operators and functionals. In this paper we will consider
non-empty finite, simple2, undirected graphs G = (V,E, ω) without isolated nodes,
with vertex set (or node set) V , edge set E ⊂ V 2 and non-negative edge weights ω.
We denote the set of all such graphs by G. By assumption V has finite cardinality,
which we denote by n := |V | ∈ N3. We assume a node labelling such that V =
{1, . . . , n}. When i, j ∈ V are nodes, the undirected edge between i and j, if present,
is denoted by (i, j). The edge weight corresponding to this edge is ωij > 0. Since
G is undirected, we identify (i, j) with (j, i) in E. Within this framework we can
also consider unweighted graphs, which correspond to the cases in which, for all
(i, j) ∈ E, ωij = 1.

We define V to be the set consisting of all node functions u : V → R and E
to be the set of edge functions ϕ : E → R. We will use the notation ui := u(i)
and ϕij := ϕ(i, j) for functions u ∈ V and ϕ ∈ E , respectively. For notational
convenience, we will typically associate ϕ ∈ E with its extension to V 2 obtained by
setting ϕij = 0 if (i, j) 6∈ E. We also extend ω to V 2 in this way: if (i, j) 6∈ E, then
ωij = 0. Because G ∈ G is undirected, we have for all (i, j) ∈ E, ωij = ωji. Because
G ∈ G is simple, for all i ∈ V , (i, i) /∈ E. The degree of a node i is di :=

∑
j∈V ωij .

Because G ∈ G does not contain isolated nodes, we have for all i ∈ V, di > 0.
As shown in [32], it is possible for V and E to be defined for directed graphs, but

we will not pursue these ideas here.
To introduce the graph Laplacians and signless graph Laplacians we use and

extend the structure that was used in [32, 55, 56]. We define the inner products on
V and E as

〈u, v〉V :=
∑
i∈V

uivid
r
i , 〈ϕ, φ〉E :=

1

2

∑
i,j∈V

ϕijφijω
2q−1
ij ,

where r ∈ [0, 1] and q ∈ [ 1
2 , 1]. If r = 0 and di = 0, we interpret dri as 0. Similarly

for ω2q−1
ij and other such expressions below.

We define the graph gradient operator (∇ : V → E) by, for all (i, j) ∈ E,

(∇u)ij := ω1−q
ij (uj − ui).

We define the graph divergence operator (div : E → V) as the adjoint of the gradient,
and a graph Laplacian operator (∆r : V → V) as the graph divergence of the graph
gradient: for all i ∈ V ,

(divϕ)i :=
1

2
d−ri

∑
j∈V

ωqij(ϕji−ϕij), (∆ru)i := (div(∇u))i = d−ri
∑
j∈V

ωij(ui−uj).

(4)
We note that the choices r = 0 and r = 1 lead to ∆r being the unnormalised graph
Laplacian and random walk graph Laplacian, respectively [46, 58]. Hence it is useful
for us to explicitly incorporate r in the notation ∆r for the graph Laplacian.

In analogy with the graph gradient, divergence, and Laplacian, we now define
their ‘signless’ counterparts. We define the signless gradient operator (∇+ : V → E)
by, for all (i, j) ∈ E,

(∇+u)ij := ω1−q
ij (uj + ui).

2By ‘simple’ we mean ’without self-loops and without multiple edges between the same pair of
vertices’. Note that removing self-loops from a graph does not change its maximum cut.

3For definiteness we use the convention 0 6∈ N.
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Then we define the signless divergence operator (div+ : E → V) to be the adjoint
of the signless gradient, and the signless Laplacian operator (∆+

r : V → V) as the
signless divergence of the signless gradient4: for all i ∈ V ,

(div+ϕ)i :=
1

2
d−ri

∑
j∈V

ωqij(ϕji+ϕij), (∆+
r u)i := (div+(∇+u))i = d−ri

∑
j∈V

ωij(ui+uj).

By definition we have

〈∇u, φ〉E = 〈u,div φ〉V , 〈∇+u, φ〉E = 〈u,div+φ〉V .

Proposition 1. The operators ∆r : V → V and ∆+
r : V → V are self-adjoint and

positive-semidefinite.

Proof. Let u, v ∈ V. Since 〈u,∆rv〉V = 〈∇u,∇v〉E = 〈∆ru, v〉V and 〈u,∆+
r v〉V =

〈∇+u,∇+v〉E = 〈∆+
r u, v〉V , the operators are self-adjoint. Positive-semidefiniteness

follows from 〈u,∆ru〉V = 〈∇u,∇u〉E ≥ 0 and 〈u,∆+
r u〉V = 〈∇+u,∇+u〉E ≥ 0.

In the literature a third graph Laplacian is often used, besides the unnormalised
and random walk graph Laplacians. This symmetrically normalised graph Laplacian
[18] is defined by, for all i ∈ V ,

(∆su)i :=
1√
di

∑
j∈V

ωij

(
ui√
di
− uj√

dj

)
.

This Laplacian cannot be obtained by choosing a suitable r in the framework we
introduced above, but will be useful to consider in practical applications. Analo-
gously, we define the signless symmetrically normalised graph Laplacian by, for all
i ∈ V ,

(∆+
s u)i :=

1√
di

∑
j∈V

ωij

(
ui√
di

+
uj√
dj

)
.

There is a canonical way to represent a function u ∈ V by a vector in Rn with
components ui. The operators ∆r and ∆+

r can then be represented by the n × n
matrices Lr := D1−r − D−rA and L+

r := D1−r + D−rA, respectively. Here D is
the degree matrix, i.e. the diagonal matrix with diagonal entries Dii := di, and A
is the weighted adjacency matrix with entries Aij := ωij .

Similarly the operators ∆s and ∆+
s are then represented by Ls := I−D−1/2AD−1/2

and L+
s := I +D−1/2AD−1/2, respectively, where I denotes the n× n identity ma-

trix. Any eigenvalue-eigenvector pair (λ, v) of Lr, L
+
r , Ls, L

+
s corresponds via the

canonical representation to an eigenvalue-eigenfunction pair (λ, φ) of ∆r, ∆+
r , ∆s,

∆+
s , respectively. We refer to the eigenvalue-eigenvector pair (λ, v) as an eigenpair.
For a vertex set S ⊂ V , we define the indicator function (or characteristic func-

tion)

χS :=

{
1, if i ∈ S,
0, if i /∈ S.

4In some papers the space E is defined as the space of all skew-symmetric edge functions. We
do not require the skew-symmetry condition here, hence ∇+u ∈ E, having div+ act on ∇+u is

consistent with our definitions, and div+ϕ is not identically equal to 0 for all ϕ ∈ E.
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We define the inner product norms ‖u‖V :=
√
〈u, u〉V , ‖φ‖E :=

√
〈φ, φ〉E which

we use to define the Dirichlet energy and signless Dirichlet energy,

1

2
‖∇u‖2E =

1

4

∑
i,j∈V

ωij(ui − uj)2 and
1

2
‖∇+u‖2E =

1

4

∑
i,j∈V

ωij(ui + uj)
2.

In particular we recognise that the graph Ginzburg–Landau functional fε : V → R
from (1) and the signless graph Ginzburg–Landau functional f+

ε : V → R from (2)
can be written as

fε(u) = ‖∇u‖2E +
1

ε

∑
i∈V

W (ui) and f+
ε (u) = ‖∇+u‖2E +

1

ε

∑
i∈V

W (ui).

It is interesting to note here an important difference between the functionals fε
and f+

ε . Most of the results that are derived in the literature for fε (such as the
Γ-convergence results in [55]) do not crucially depend on the specific locations of
the wells of W . For example, in fε the wells are often chosen to be at 0 and 1,
instead of at −1 and 1. However, for f+

ε we have less freedom to choose the wells
without drastically altering the properties of the functional. The wells have to be
placed symmetrically with respect to 0, because we want (ui+uj)

2 to be zero when
ui and uj are located in different wells. In particular, we see that placing a well at
0 would have the undesired consequence of introducing the trivial minimizer u = 0.
This points to a second, related, difference. Whereas minimization of fε in the
absence of any further constraints or additional terms in the functional leads to
trivial minimizers of the form u = cχV , where c ∈ R is one of the values of the wells
of W (so c ∈ {−1, 1} for our choice of W ), minimizers of f+

ε are not constant, if the
graph has more than one vertex. The following lemma gives the details.

Lemma 2.1. Let G ∈ G with n ≥ 2, let ε > 0, and let u be a minimizer of
f+
ε : V → R as in (2). Then u is not a constant function.

Proof. Let c ∈ R and i∗ ∈ V . Define the functions u, ū ∈ V by u := cχV and

ūi :=

{
c, if i 6= i∗,

−c, if i = i∗.

Since W is an even function, we have
∑
i∈V W (ūi) =

∑
i∈V W (ui). Moreover, since

for all j ∈ V , ωi∗j = 0 or uj = −ui∗ , we have

‖∇+ū‖2E =
1

2

∑
i∈V
i 6=i∗

∑
j∈V

ωij(2c)
2 <

1

2

∑
i,j∈V

ωij(2c)
2 = ‖∇+u‖2E .

The inequality is strict, because per assumption G has no isolated nodes and thus
there is a j ∈ V such that ωi∗j > 0. We conclude that f+

ε (ū) < f+
ε (u), which proves

that u is not a minimizer of f+
ε .

We define the graph total variation TV : V → R as

TV(u) := max{〈u,div ϕ〉V : ϕ ∈ E ,∀i, j ∈ V |ϕij | ≤ 1} =
1

2

∑
i,j∈V

ωqij |ui − uj |. (5)

The second expression follows since the maximum in the definition is achieved by
ϕ = sgn(∇u) [56]. We can define an analogous (signless total variation) functional
TV+ : V → R, using the signless divergence:

TV+(u) := max{〈u,div+ ϕ〉V : ϕ ∈ E ,∀i, j ∈ V |ϕij | ≤ 1}.
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Lemma 2.2. Let u ∈ V, then TV+(u) = 1
2

∑
i,j∈V ω

q
ij |ui + uj |.

Proof. Let ϕ ∈ E such that, for all i, j ∈ V , |ϕij | ≤ 1. We compute

〈u,div+ ϕ〉V =
1

2

∑
i,j∈V

ωqijui(ϕji + ϕij) =
1

2

∑
i,j∈V

ωqijϕij(ui + uj)

≤ 1

2

∑
i,j∈V

ωqij |ϕij ||ui + uj | ≤
1

2

∑
i,j∈V

ωqij |ui + uj |.

Moreover, since ϕ = sgn(∇+u) is an admissable choice for ϕ and

〈sgn
(
∇+u

)
,div+ ϕ〉V =

1

2

∑
i,j∈V

ωqij |ui + uj |,

the result follows.

Note that the total variation functional that was mentioned in Section 1.2 cor-
responds to the choice q = 1 in (5). This is the relevant choice for this paper and
hence from now on we will assume that q = 1. Note that the choice of q does not
have any influence on the form of the graph (signless) Laplacians.

One consequence of the choice q = 1 is that TV and TV+ are now closely
connected to cut sizes: If S ⊂ V and C = S|Sc is the cut induced by S, then

TV (χS − χSc) = 2TV (χS) = 2s(C) and TV+ (χS − χSc) =
∑
i,j∈V

ωij − 2s(C).

(6)
We will give a precise definition of s(C) in Definition 3.1 below.

Definition 2.3. Let G ∈ G. Then G is bipartite if and only if there exist A ⊂ V ,
B ⊂ V , such that all the conditions below are satisfied:

• A ∪B = V ,
• A ∩B = ∅, and
• for all (i, j) ∈ E, i ∈ A and j ∈ B, or i ∈ B and j ∈ A.

In that case we say that G has a bipartition (A,B).

Definition 2.4. An Erdös-Rényi graph G(n, p) is a realization of a random graph
generated by the Erdös-Rényi model, i.e. it is an unweighted, undirected, simple
graph with n nodes, in which, for all unordered pairs {i, j} of distinct i, j ∈ V , an
edge (i, j) ∈ E has been generated with probability p ∈ [0, 1].

2.2. Spectral properties of the (signless) graph Laplacians. We consider the
Rayleigh quotients for ∆r and ∆+

r defined, for u ∈ V , as

R(u) :=
〈u,∆ru〉V
‖u‖2V

=
‖∇u‖2E
‖u‖2V

=
1
2

∑
i,j∈V ωij(ui − uj)2∑

i∈V d
r
iu

2
i

,

R+(u) :=
〈u,∆+

r u〉V
‖u‖2V

=
‖∇+u‖2E
‖u‖2V

=
1
2

∑
i,j∈V ωij(ui + uj)

2∑
i∈V d

r
iu

2
i

,

respectively. By Proposition 1, ∆r and ∆+
r are self-adjoint and positive-semidefinite

operators on V, so their eigenvalues will be real and non-negative. The eigenvalues of
∆r and ∆+

r are linked to the extremal values of their Rayleigh quotients by the min-
max theorem [19, 26]. In particular, if we denote by 0 ≤ λ1 ≤ . . . ≤ λn the (possibly
repeated) eigenvalues of ∆+, then λ1 = min

u1∈V\{0}
R+(u1) and λn = max

un∈V\{0}
R+(un).
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In the following proposition we extend a well-known result for the graph Lapla-
cians [58] to include signless graph Laplacians.

Proposition 2. Let r ∈ [0, 1]. The following statements are equivalent:

1. λ is an eigenvalue of L1 with corresponding eigenvector v;
2. λ is an eigenvalue of Ls with corresponding eigenvector D1/2v;
3. 2− λ is an eigenvalue of L+

1 with corresponding eigenvector v;

4. 2− λ is an eigenvalue of L+
s with corresponding eigenvector D1/2v;

5. λ and v are solutions of the generalized eigenvalue problem Lrv = λD1−rv.

Proof. For r = 1 the matrix representations of the graph Laplacian and signless
graph Laplacian satisfy L+

1 = I + D−1A = 2I − (I −D−1A) = 2I − L1. Hence λ
is an eigenvalue of L1 with corresponding eigenvector v if and only if 2 − λ is an
eigenvalue of L+

1 with the same eigenvector.

Because Ls = D1/2L1D
−1/2, λ is an eigenvalue of L1 with eigenvector v if and

only if λ is an eigenvalue of Ls with eigenvector D1/2v. Moreover, since L+
s =

2I − Ls, we have that 2 − λ is an eigenvalue of L+
s with eigenvector D1/2v if and

only if λ is an eigenvalue of Ls with eigenvalue D1/2v.
Finally, for r ∈ [0, 1], we have Lr = D1−rL1, hence λ is an eigenvalue of L1 with

corresponding eigenvector v if and only if Lrv = λD1−rv.

Inspired by Proposition 2, we define, for a given graph G ∈ G and node subset
S ⊂ V , the rescaled indicator function χ̃S ∈ V, by, for all j ∈ V ,

(χ̃S)j := d
1
2
j (χS)j . (7)

Proposition 3. The graph G = (V,E, ω) ∈ G has k connected components if
and only if ∆ ∈ {∆r,∆s} (r ∈ [0, 1]) has eigenvalue 0 with algebraic and geometric
multiplicity equal to k. In that case, the eigenspace corresponding to the 0 eigenvalue
is spanned by

• the indicator functions χSi , if ∆ = ∆r, or
• the rescaled indicator functions χ̃Si

(as in (7)), if ∆ = ∆s.

Here the node subsets Si ⊂ V , i ∈ {1, . . . , k}, are such that each connected compo-
nent of G is the subgraph induced by an Si.

Proof. We follow the proof in [58]. First we consider the case where ∆ = ∆r,
r ∈ [0, 1]. We note that ∆r is diagonizable in the V inner product and thus the
algebraic multiplicity of any of its eigenvalues is equal to its geometric multiplicity.
In this proof we will thus refer to both simply as ‘multiplicity’.

For any function u ∈ V we have that 〈u,∆ru〉V =
1

2

∑
i,j∈V

ωij(ui − uj)2. We have

that 0 is an eigenvalue if and only if there exists a u ∈ V \ {0} such that

〈u,∆ru〉V = 0. (8)

This condition is satisfied if and only if, for all i, j ∈ V for which ωij > 0, ui = uj .
Now assume that G is connected (hence G has k = 1 connected component), then

(8) is satisfied if and only if, for all i, j ∈ V , ui = uj . Therefore any eigenfunction
corresponding to the eigenvalue λ1 = 0 has to be constant, e.g. u = χV . In
particular, the multiplicity of λ1 is 1.

Now assume that G has k ≥ 2 connected components, let Si, i ∈ {1, . . . , k} be the
node sets corresponding to the connected components of the graph. Via a suitable
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reordering of nodes G will have a graph Laplacian matrix of the form

Lr =


L

(1)
r 0 · · · 0

0 L
(2)
r · · · 0

...
...

. . .
...

0 0 · · · L
(k)
r

 ,

where each matrix L
(i)
r , i ∈ {1, . . . , k} corresponds to ∆r restricted to the connected

component induced by Si. This restriction is itself a graph Laplacian for that

component. Because each L
(i)
r has eigenvalue zero with multiplicity 1, Lr (and thus

∆r) has eigenvalue 0 with multiplicity k. We can choose the eigenvectors equal to
χSi

for i ∈ {1, . . . , k} by a similar argument as in the k = 1 case.
Conversely, if ∆r has eigenvalue 0 with multiplicity k, then G has k connected

components, because if G has l 6= k connected components, then by the proof above
the eigenvalue 0 has multiplicity l 6= k.

For ∆s we use Proposition 2 to find that the eigenvalues are the same as those
of ∆r, with the corresponding eigenfunctions rescaled as stated in the result.

Proposition 4. Let G = (V,E, ω) ∈ G have k connected components and let the
node subsets Si ⊂ V , i ∈ {1, . . . , k} be such that each connected component is
the subgraph induced by one of the Si. We denote these subgraphs by Gi. Let
∆+ ∈ {∆+

r ,∆
+
s } (r ∈ [0, 1]) and let 0 ≤ k′ ≤ k. Then ∆+ has an eigenvalue equal

to 0 with algebraic and geometric multiplicity k′ if and only if k′ of the subgraphs
Gi are bipartite. In that case, assume the labelling is such that Gi, i ∈ {1, . . . , k′}
are bipartite with bipartition (Ti, Si \ Ti), where Ti ⊂ Si. Then the eigenspace
corresponding to the 0 eigenvalue is spanned by

• the indicator functions χTi
− χSi\Ti

, if ∆+ = ∆+
r , or

• the rescaled indicator functions χ̃Ti
− χ̃Si\Ti

(as in (7)), if ∆+ = ∆+
s .

Proof. First we consider the case where ∆+ = ∆+
r , r ∈ [0, 1]. For any vector u ∈ V

we have that

〈u,∆+
r u〉V =

1

2

∑
i,j∈V

ωij(ui + uj)
2.

Let k = 1, then λ1 = 0 is an eigenvalue if and only if there exists u ∈ V \ {0} such
that 〈u,∆+

r u〉V = 0. This condition is satisfied if and only if, for all i, j ∈ V for
which ωij > 0 we have

ui = −uj . (9)

We claim that this condition in turn is satisfied if and only if G is bipartite. To
prove the ‘if’ part of that claim, assume G is bipartite with bipartition (A,Ac) for
some A ⊂ V , and define u ∈ V such that u|A = −1 and u|Ac = 1. To prove the
‘only if’ statement, assume G is not bipartite, then there exists an odd cycle in G
[12, Theorem 1.4]. Let i ∈ V be a vertex on this cycle, then by applying condition
(9) to all the vertices of the cycle, we find ui = −ui = 0. Since G is connected, it
now follows, by applying condition (9) to all vertices in V , that u = 0, which is a
contradiction.

The argument above also shows that, if G is bipartite with bipartition (A,Ac),
then any eigenfunction corresponding to λ1 = 0 is proportional to u = χA − χAc .
Therefore the eigenvalue 0 has geometric multiplicity 1. Since ∆+

r is diagonizable
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in the V inner product the algebraic multiplicity of λ1 is equal to its geometric
multiplicity.

Now let k ≥ 2 and let Si, i ∈ {1, . . . , k} be the node sets corresponding to the
connected components of the graph. Via a suitable reordering of nodes the graph
G will have a signless Laplacian matrix of the form

L+
r =


L(1)+ 0 · · · 0

0 L(2)+ · · · 0
...

...
. . .

...
0 0 · · · L(k)+

 ,

where each matrix L(i)+, i ∈ {1, . . . , k} corresponds to ∆+
r restricted to the con-

nected component induced by Si. This restriction is itself a signless Laplacian for
that connected component. Hence, we can apply the case k = 1 to each component
separately to find that the (algebraic and geometric) multiplicity of the eigenvalue
0 of ∆+

r is equal to the number of connected components which are also bipartite.
If G has k′ ≤ k connected components which are also bipartite, then, without

loss of generality, assume that these components correspond to Si, i ∈ {1, . . . , k′}.
Then the corresponding eigenspace is spanned by functions u(i) = χTi

−χSi\Ti
∈ V,

i ∈ {1, . . . , k′}, where Ti ⊂ Si and (Ti, Si \ Ti) is the bipartition of the bipartite
component induced by Si.

For ∆+
s we use Proposition 2 to find the appropriately rescaled eigenfunctions as

given in the result.

Corollary 1. The eigenvalues of ∆1, ∆+
1 , ∆s, and ∆+

s are in [0, 2].

Proof. For ∆1 the proof can be found in [56, Lemma 2.5]. For completeness we
reproduce it here. By Proposition 1 we know that ∆1 has non-negative eigenvalues.
The upper bound is obtained by maximizing the Rayleigh quotient R(u) over all
nonzero u ∈ V. Since (ui − uj)2 ≤ 2(u2

i + u2
j ) we have that

max
u∈V\{0}

R(u) = max
u∈V\{0}

1
2

∑
i,j∈V ωij(ui − uj)2∑

i∈V diu
2
i

≤ max
u∈V\{0}

2
∑
i∈V diu

2
i∑

i∈V diu
2
i

= 2.

From Proposition 2 it then follows that the eigenvalues of the other operators
are in [0, 2] as well.

3. The Max-Cut problem and Goemans–Williamson algorithm.

3.1. Maximum cuts. In order to identify candidate solutions to the Max-Cut
problem with node functions in V, we define the subset of binary {−1, 1}-valued
node functions,

Vb := {u ∈ V : ∀ i ∈ V, ui ∈ {−1, 1}}.
For a given function u ∈ Vb we define the sets Vk := {i ∈ V, ui = k} for k ∈ {−1, 1}.
We say that the partition C = V−1|V1 is the cut induced by u. We define the set of
all possible cuts, C := {C : there exists a u ∈ Vb such that u induces the cut C}.

Definition 3.1. Let G = (V,E, ω) ∈ G and let V1 and V−1 be two disjoint subsets
of V . The size of the cut C = V−1|V1 is

s(C) :=
∑
i∈V−1

j∈V1

ωij .
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A maximum cut of G is a cut C∗ ∈ C such that, for all cuts C ∈ C, s(C) ≤ s(C∗).
The size of the maximum cut is

mc(G) := max
C∈C

s(C).

Note that if the cut C in Definition 3.1 is induced by u ∈ Vb, then

s(C) =
1

4
〈u,∆ru〉V . (10)

Moreover, if C = ∅|V1 or C = V−1|∅, then s(C) = 0.

Definition 3.2 (Max-Cut problem). Given a simple, undirected graphG = (V,E, ω) ∈
G, find a maximum cut for G.

For a given G ∈ G we have |E| < ∞, hence a maximum cut for G exists, but
note that this maximum cut need not be unique.

The cardinality of the set Vb is equal to the total number of ways a set of n
elements can be partitioned into two disjoint subsets, i.e. |Vb| = 2n. This highlights
the difficulty of finding mc(G) as n increases. It has been proven that the Max-Cut
problem is NP-hard [24]. Obtaining a performance guarantee of 16

17 or better is also
NP-hard [52]. The problem of determining if a cut of a given size exists on a graph
is NP-complete [35].

3.2. The Goemans–Williamson algorithm. The leading algorithm for polyno-
mial time Max-Cut approximation is the Goemans–Williamson (GW) algorithm
[25], which we present in detail below in Algorithm (GW). A problem equivalent to
the Max-Cut problem is to find a maximizer which achieves

max
u

1

2

∑
i,j

ωij(1− uiuj) subject to ∀i ∈ V, ui ∈ {−1, 1}.

The GW algorithm solves a relaxed version of this integer quadratic program, by
allowing u to be an n-dimensional vector with unit Euclidean norm. In [25] it is
proved that the n-dimensional vector relaxation is an upper bound on the orig-
inal integer quadratic program. This relaxed problem is equivalent to finding a
maximizer which achieves

Z∗P := max
Y

1

2

∑
i,j∈V,i<j

ωij(1− yij), (11)

where the maximization is over all n by n real positive-semidefinite matrices Y =
(yij) with ones on the diagonal. This semidefinite program has an associated dual
problem of finding a minimizer which achieves

Z∗D :=
1

2

∑
i,j∈V

ωij +
1

4
min
γ∈Rn

∑
i∈V

γi, (12)

subject to A+ diag(γ) being positive-semidefinite, where A is the adjacency matrix
of G and diag(γ) is the diagonal matrix with diagonal entries γi.

As mentioned in Section 1.1, Algorithm (GW) is proven to have a performance
guarantee of 0.878. In Algorithm (GW) below, we use the unit sphere Sn := {x ∈
Rn : ‖x‖ = 1}, where ‖·‖ denotes the Euclidean norm on Rn. For vectors w, w̃ ∈ Rn,
w · w̃ denotes the Euclidean inner product.

Other polynomial time Max-Cut approximation algorithms can be found in
[15, 53]. Because of the high proven performance guarantee of (GW), we focus
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Algorithm (GW): The Goemans–Williamson algorithm

Data: The weighted adjacency matrix A of a graph G ∈ G, and a tolerance
ν.

Relaxation step: Use semidefinite programming to find approximate
solutions Z̃∗P and Z̃∗D to (11) and (12), respectively, which satisfy

|Z̃∗P − Z̃∗D| < ν. Use an incomplete Cholesky decomposition on the matrix

Y that achieves Z̃∗P in (11) to find an approximate solution to

w∗ ∈ argmax
w∈(Sn)n

1

2

∑
1≤i,j,≤n
i<j

ωij(1− wi · wj).

Hyperplane step: Let r ∈ Sn be a random vector drawn from the
uniform distribution on Sn. Define the cut C := V−1|V1, where

V1 := {i ∈ V |wi · r ≥ 0} and V−1 := V \ V1.

on comparing our algorithm against it. In [53] the authors use the eigenvector cor-
responding to the smallest eigenvalue of ∆+

0 , showing that thresholding this eigen-
vector in a particular way achieves a Max-Cut performance guarantee of β = 0.531,
which with further analysis was improved to β = 0.614 [51]. Algorithms which
provide a solution in polynomial time exist if the graph is planar [30], if the graph
is a line graph [29], or if the graph is weakly bipartite [27]. Comparing against
[53, 30, 29, 27] is a topic of future research.

4. Γ-convergence of f+
ε . In (2) we introduced the signless Ginzburg–Landau

functional f+
ε : V → R. In this section we prove minimizers of f+

ε converge to
solutions of the Max-Cut problem, using the tools of Γ-convergence [13].

We need a concept of convergence in V. Since we can identify V with Rn and
all norms on Rn are topologically equivalent, the choice of a particular norm is not
of great importance. For definiteness, however, we say that sequence {uk}k∈N ⊂ V
converges to a u∞ ∈ V in V if and only if ‖ûk − û∞‖V → 0 as k → ∞, where
ûk, û∞ ∈ Rn are the canonical vector representations of uk, u∞, respectively.

We will prove that f+
ε Γ-converges to the functional f+

0 : V → R∪ {+∞}, which
is defined as

f+
0 (u) :=

{∑
i,j∈V ωij |ui + uj |, if u ∈ Vb,

+∞, if u ∈ V \ Vb.
(13)

Lemma 4.1. Let G ∈ G. For every u ∈ Vb, let Cu ∈ C be the cut induced by u,
then for all u ∈ V,

f+
0 (u) =

{
2
∑
i,j∈V ωij − 4s(Cu), if u ∈ Vb,

+∞, if u ∈ V \ Vb.

In particular, if u∗ ∈ argmin
u∈V

f+
ε (u), then u∗ ∈ Vb and Cu∗ is a maximum cut of G.

Proof. Because, for u ∈ Vb, f+
0 (u) = 2TV+(u) (with q = 1), the result follows by

(6).
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Lemma 4.2. Let G ∈ G and ε > 0. There exist minimizers for the functionals
f+
ε : V → R and f+

0 : V → R ∪ {+∞} from (2) and (13), respectively. Moreover, if
u ∈ V is a minimizer of f+

0 , then u ∈ Vb.

Proof. The potential W satisfies a coercivity condition in the following sense. There
exist a C1 > 0 and a C2 such that, for all x ∈ R,

|x| ≥ C1 ⇒ C2(x2 − 1) ≤W (x). (14)

Combined with the fact that ‖∇+u‖E ≥ 0, this shows that f+
ε is coercive. Since f+

ε

is a (multivariate) polynomial, it is continuous. Thus, by the direct method in the
calculus of variations [20, Theorem 1.15] f+

ε has a minimizer in V.
Since n ≥ 1, Vb 6= ∅ and thus inf

u∈V
f+

0 (u) < +∞. In particular, any minimizer of

f+
0 has to be in Vb. Since |Vb| <∞ the minimum is achieved.

Lemma 4.3. Let G ∈ G and let f+
ε and f+

0 be as in (2) and (13), respectively.
Then f+

ε Γ-converges to f+
0 as ε ↓ 0 in the following sense: If {εk}k∈N is a sequence

of positive real numbers such that εk ↓ 0 as k →∞ and u0 ∈ V, then the following
lower bound and upper bound conditions are satisfied:

(LB) for every sequence {uk}∞k=1 ⊂ V such that uk → u0 as k → ∞, it holds that
f+

0 (u0) ≤ lim inf
k→∞

f+
εk

(uk);

(UB) there exists a sequence {uk}∞k=1 ⊂ V such that uk → u0 as k → ∞ and
f+

0 (u0) ≥ lim sup
k→∞

f+
εk

(uk).

Proof. This proof is an adaptation of the proofs in [55, Section 3.1].
Note that

f+
ε (u) =

1

2

∑
i,j∈V

ωij(ui + uj)
2 + wε(u),

where we define wε : V → R by

wε(u) :=
1

ε

∑
i∈V

W (ui).

First we prove that wε Γ-converges to w0 as ε ↓ 0, where

w0(u) :=

{
0, if u ∈ Vb,
+∞, if u ∈ V \ Vb.

Let {εk}k∈N be a sequence of positive real numbers such that εk ↓ 0 as k →∞ and
u0 ∈ V.

(LB) Note that, for all u ∈ V we have wε(u) ≥ 0. Let {uk}∞k=1 be a sequence
such that uk → u0 as k →∞. First we assume that u0 ∈ Vb, then

w0(u0) = 0 ≤ lim inf
k→∞

wεk(uk).

Next suppose that u0 ∈ V \ Vb, then there is an i ∈ V such that (u0)i 6∈ {−1, 1}.
Since uk → u0 as k → ∞, for every η > 0 there is an N(η) ∈ N such that for all
k ≥ N(η) we have that dri |(u0)i − (uk)i| < η. Define

η̄ :=
1

2
dri min {|1− (u0)i|, | − 1− (u0)i|} > 0,

then, for all k ≥ N(η̄),

|1− (uk)i| ≥
∣∣|1− (u0)i| − |(u0)i − (uk)i|

∣∣ ≥ 1

2
|1− (u0)i| > 0.
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Similarly, for all n ≥ N(η̄), | − 1 − (uk)i| ≥ 1
2 | − 1 − (u0)i| > 0. Hence, there is a

c > 0 such that, for all k ≥ N(η̄), |(uk)i| ≤ 1− c. Thus there is a C > 0 such that,
for all k ≥ N(η̄), W ((uk)i) ≥ C. It follows that

lim inf
k→∞

wεk(uk) ≥ lim inf
k→∞

1

εk
W ((uk)i) =∞ = w0(u0).

(UB) If u0 ∈ V\Vb, then w0(u0) and the upper bound condition is trivially satisfied.
Now assume u0 ∈ Vb. Define the sequence {uk}∞k=1 by, that for all k ∈ N, uk = u0.
Then, for all k ∈ N, wεk(uk) = 0 and thus lim sup

k→∞
wεk(uk) = 0 = w0(u0). This

concludes the proof that wε Γ-converges to w0 as ε ↓ 0.
It is known that Γ-convergence is stable under continuous perturbations [20,

Proposition 6.21], [13, Remark 1.7]; thus wε + p Γ-converges to w0 + p for any
continuous p : V → R. Since u 7→ 1

2

∑
i,j∈V ωij(ui + uj)

2 is a polynomial and hence

a continuous function on V, we find that, as ε ↓ 0, f+
ε Γ-converges to g : V →

R ∪ {+∞}, where

g(u) :=
1

2

∑
i,j∈V

ωij(ui + uj)
2 + w0(u).

If u ∈ V\Vb, then g(u) = +∞. If u ∈ Vb, then, for all i, j ∈ V , (ui+uj)
2 = 2|ui+uj |,

hence
1

2

∑
i,j∈V

ωij(ui + uj)
2 =

∑
i,j∈V

ωij |ui + uj |.

Thus g = f+
0 and the theorem is proven.

Lemma 4.4. Let G ∈ G and let f+
ε be as in (2). Let {εk}k∈N ⊂ (0,∞) be a

sequence such that εk ↓ 0 as k → ∞, then the sequence {f+
εk
}k∈N satisfies the

following equi-coerciveness property: If {uk}k∈N ⊂ V is a sequence such that there
exists C > 0 such that, for all k ∈ N, f+

εk
(uk) < C, then there exists a subsequence

{uk′}k′∈N ⊂ {uk}k∈N and a u0 ∈ Vb such that uk′ → u0 as k →∞.

Proof. This proof closely follows [55, Section 3.1].
From the uniform bound f+

εk
(uk) < C, we have that, for all k ∈ N and all

i ∈ V , 0 ≤ W ((uk)i) ≤ C. Because of the coercivity property (14) of W , the
uniform bound on W ((uk)i) gives, for all i ∈ V , boundedness of {dri (uk)2

i }k∈N and
thus {uk}k∈N is bounded in the V-norm. The result now follows by the Bolzano-
Weierstrass theorem.

With the Γ-convergence and equi-coercivity results from Lemmas 4.3 and 4.4,
respectively, in place, we now prove that minimizers of f+

ε converge to solutions of
the Max-Cut problem.

Theorem 4.5. Let G ∈ G. Let {εk}k∈N ⊂ (0,∞) be a sequence such that εk ↓ 0
as k → ∞ and, for each k ∈ N, let f+

εk
be as in (2) and let uεk be a minimizer of

f+
εk

. Then min
u∈V

f+
εk

(u) → min
u∈V

f+
0 (u) as k → ∞. Furthermore, there exists u0 ∈ Vb

and a subsequence {uεk′}k′∈N ⊂ {uεk}k∈N, such that ‖uεk′ − u0‖V → 0 as k′ →∞.

Moreover, u0 ∈ argmin
u∈V

f+
0 (u), where f+

0 is as in (13). In particular, if Cu0
∈ C is

the cut induced by u0, then Cu0
is a maximum cut of G.

Proof. It is a well-known result from Γ-convergence theory [20, Corollary 7.20],
[13, Theorem 1.21] that the equi-coercivity property of {fεk}k∈N from Lemma 4.4
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combined with the Γ-convergence property of Lemma 4.3 implies that min
u∈V

f+
εk

(u)

converge to min
u∈V

f+
0 (u) as k → ∞, and, up to taking a subsequence, minimizers of

f+
εk

converge to a minimizer of f+
0 as k →∞. By Lemma 4.2, if u0 ∈ argmin

u∈V
f+

0 (u),

then u0 ∈ Vb. By Lemma 4.1, the cut Cu0
induced by u0 is a maximum cut of

G.

5. The signless MBO algorithm.

5.1. Algorithm. One way of attempting to find minimizers of f+
ε is via its gradient

flow [6]. This is, for example, the method employed in [11] to find approximate
minimizers of fε. In that case the gradient flow is given by a graph-based analogue
of the Allen–Cahn equation [5]. To find the V-gradient flow of f+

ε we compute the
first variation of the functional f+

ε : for t ∈ R, u, v ∈ V, we have

d

dt
f+
ε (u+ tv)|t=0 = 〈∆+

r u, v〉V +
1

ε
〈D−rW ′ ◦ u, v〉V ,

where we used the notation (D−rW ′ ◦u)i = d−ri W ′(ui). This leads to the following
V-gradient flow: for all i ∈ V ,{

dui

dt = −(∆+
r u)i − 1

εd
−r
i W ′(ui), for t > 0,

ui = (u0)i, for t = 0.
(15)

Since f+
ε is not convex, as t→∞ the solution of the V-gradient flow is not guaran-

teed to converge to a global minimum, and can get stuck in local minimizers.
In this paper we will not attempt to directly solve the gradient flow equation.

That could be the topic of future research. Instead we will use a graph MBO type
scheme, which we call the signless MBO algorithm. It is given in (MBO+). Despite
there currently not being any rigorous results on the matter, the outcome of this
scheme is believed to approximate minimizers of f+

ε . The original MBO scheme
(or threshold dynamics scheme) in the continuum was introduced to approximate
motion by mean curvature flow [41, 42]. It consists of iteratively applying (N times)
two steps: diffusing a binary initial condition for a time τ and then thresholding
the result back to a binary function. In the (suitably scaled) limit τ ↓ 0, N → ∞,
solutions of this process converge to solutions of motion by mean curvature [10]. It
is also known that solutions the continuum Allen–Cahn equation (in the limit ε ↓ 0)
converge to solutions of motion by mean curvature [14]. Whether something similar
is true for the graph MBO scheme or graph Allen–Cahn equation [56] or something
analogous is true for the signless graph MBO scheme are as of yet open questions,
but it does suggest that solutions of the MBO scheme (signless MBO scheme) could
be closely connected to minimizers of fε (f+

ε ). In practice, the graph MBO scheme
has proven to be a fast and accurate method for tackling approximate minimization
problems of this kind [40, 11].

We see in (MBO+) that in the signless diffusion step the equation that is solved is
the gradient flow equation from (15) without the double well potential term. Since
we expect the double well potential term in (15) to force the solution to take values
close to ±1, the signless diffusion step in (MBO+) is followed by a thresholding
step. Note that, despite our choice of nomenclature, the signless graph ‘diffusion’
dynamics is expected to be significantly different from standard graph diffusion.

In Figures 1 and 2 we show the minimization of f+
ε using (MBO+) with the

spectral method (which is explained in Section 5.2) on the AS8 graph and the
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Algorithm (MBO+): The signless graph MBO algorithm

Data: A signless graph Laplacian ∆+ ∈ {∆+
0 ,∆

+
1 ,∆

+
s } corresponding to a

graph G ∈ G, a signless diffusion time τ > 0, an initial condition
µ0 := χS0 − χSc

0
corresponding to a node subset S0 ⊂ V , a time step

dt, and a stopping criterion tolerance η.
Output: A sequence of functions {µj}Nj=0 ⊂ Vb giving the signless MBO

evolution of µ0, a sequence of corresponding cuts {Cj}Nj=0 ⊂ C
and their sizes {s(Cj)}Nj=0 ⊂ [0,∞), with largest value s∗.

for j = 1 to stopping criterion is satisfied, do
Signless diffusion step: Compute u∗(τ), where u∗ ∈ V is the solution
of the initial value problem{

du(t)
dt = −∆+u(t), for t > 0,

u(0) = µj .
(16)

Threshold step: Define µj ∈ Vb by, for i ∈ V ,

µji := T (u∗i (τ)) :=

{
1, if u∗i (τ) > 0,

−1, if u∗i (τ) ≤ 0.
(17)

Define the cut Cj := V j−1|V
j
1 , where V j±1 := {i ∈ V : µji = ±1} and

compute s(Cj).
Set N = j.

if
‖µj−µj−1‖22
‖µj‖22

< η then

Stop

Find the largest cut size: Set s∗ := max1≤j≤N s(C
j).

GNutella09 graph (see Section 7.3). The (MBO+) iteration numbers j are indicated
along the x-axis. The y-axis shows the value of f+

ε (µj). What we see in both figures
is that the overall tendency is for the (MBO+) algorithm to decrease the value of
f+
ε (µj), however, in some iterations the value increases. This is why in (MBO+) we

output the cut size which is largest among all iterations computed and use that as
the final output, if it outperforms the cut C which (MBO+) returns. Alternatively,
in order to save on computing memory, one could also keep track of the largest cut
size found so far in each iteration and discard the other cut sizes, or accept the final
cut size s(CN ) as approximation to s∗ . The result we report in this paper are all
based on the output s∗.

In our experiments we choose the stopping criterion tolerance η = 10−8.

5.2. Spectral decomposition method. In this paper we will compare two im-
plementations of the (MBO+) algorithm, which differ in the way they solve (16)
for t ∈ [0, τ ]. In the next section we consider an explicit Euler method, but first
we discuss a spectral decomposition method. In order to solve (16) we use spectral
decomposition of the signless graph Laplacian ∆+ ∈ {∆+

0 ,∆
+
1 ,∆

+
s }. Let λk ≥ 0,

k ∈ {1, . . . , n} be the eigenvalues of ∆+. We assume λ1 ≤ λ2 ≤ . . . λn and list
eigenvalues multiple times according to their multiplicity. Let φk ∈ V be an eigen-
function corresponding to λk, chosen such that {φk}nk=1 is a set of orthonormal
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Figure 1. The value f+
ε (µj) as a function of the iteration number

j in the (MBO+) scheme on AS8Graph, using the spectral method
and ∆+

1 , with K = 100, and τ = 20. The left hand plot shows
the initial condition and all iterations of the (MBO+) scheme on
AS8Graph, where as the right hand plot displays the 3rd to the
final iterations of the (MBO+) scheme on AS8Graph.

Figure 2. The value f+
ε (µj) as a function of the iteration number

j in the (MBO+) scheme on the GNutella09 graph, using the spec-
tral method and ∆+

1 , with K = 100, and τ = 20. The left hand
plot shows the initial condition and all iterations of the (MBO+)
scheme on GNutella09, where as the right hand plot displays all it-
erations of the (MBO+) scheme on GNutella09, without the initial
condition.

functions in V. We then use the decomposition

u∗(τ) =

n∑
k=1

e−λkτ 〈φk, u(0)〉V φk (18)

to solve (16).
For ∆+

s we use the Euclidean inner product instead of the V inner product in
(18), because the Laplacian ∆+

s is not of the form as given in (4). The optimal
choice for τ with respect to the cut size obtained by (MBO+) is a topic for future
research. Based on trial and error, we decided to use τ = 20 in the results we
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present in Section 7, when using ∆+
1 or ∆+

s as our operator. We use τ = 40
λn

when

using ∆+
0 as our operator, where λn is the largest eigenvalue of ∆+

0 . The division
of τ by half of the largest eigenvalue of ∆+

0 is justified in Section 5.4. In Section 8
we investigate how cut sizes change with varying τ .

A computational advantage of the spectral decomposition method is that we do
not necessarily need to use all of the eigenvalues and eigenfunctions of the signless
Laplacian. We can use only the K eigenfunctions corresponding to the smallest
eigenvalues in our decomposition (18). To be explicit, doing this replaces n in (18)
by K. In Section 8 we show how increasing K beyond a certain point has little effect
on the size of the cut obtained by (MBO+) for three examples. We refer to using the
K eigenfunctions corresponding to the smallest eigenvalues in the decomposition as
spectral truncation.

By Proposition 2, we can compute the K smallest eigenvalues λk (k ∈ {1, . . . ,K})
of ∆+

1 and ∆+
s by first computing theK largest eigenvalues λ̂l (l ∈ {n−K+1, . . . , n})

of ∆1 and ∆s respectively instead and then setting λk = 2− λ̂n−k+1. There is not a
similar property for ∆+

0 however. Proving upper bounds on the largest eigenvalues
of ∆0 and ∆+

0 is an active area of research. [28, 49, 59].
We use the MATLAB eigs function to calculate the K eigenpairs of the sign-

less Laplacian. This function [39] uses the Implicitly Restarted Arnoldi Method
(IRAM) [50], which can efficiently compute the largest eigenvalues and correspond-
ing eigenvectors of sparse matrices. The function eigs firstly computes the or-
thogonal projection of the matrix you want eigenpairs from, and a random vector,
onto the matrix’s K-dimensional Krylov subspace. This projection is represented
by a smaller K ×K matrix. Then eigs calculates the eigenvalues of this K ×K
matrix, whose eigenvalues are called Ritz eigenvalues. The Ritz eigenvalues are
computed efficiently using a QR method [23]. Computationally these Ritz eigenva-
lues typically approximate the largest eigenvalues of the original matrix. The time
complexity of IRAM is currently unknown, but in practice it produces approximate
eigenpairs efficiently.

If the matrix of which the eigenvalues are to be computed is symmetric, the MAT-
LAB eigs function simplifies to the Implicitly Restarted Lanczos Method (IRLM)
[17], therefore typically in practice eigs will usually compute the eigenvalues and
eigenfunctions of ∆+

s faster than those of ∆+
1 .

Using the IRLM for computing the eigenpairs of ∆+
0 corresponding to its smallest

eigenvalues is inefficient. In our experiments using the MATLAB eig function to
calculate all eigenpairs of ∆+

0 and choosing the K eigenpairs corresponding to the
smallest eigenvalues for the decomposition (18) was faster than using the IRLM to
calculate the K eigenpairs of ∆+

0 . Hence, the results discussed in this paper are
obtained with eig when using ∆+

0 and eigs when using ∆+
1 or ∆+

s .
If we use the MATLAB eigs function when using our spectral decomposition

method we cannot a priori determine the time complexity for (MBO+), because
practical experiments have shown the complexity of the IRAM and IRLM methods
is heavily dependent on the matrix to which they are applied [47]. If we choose
to use the MATLAB eig function then the time complexity of (MBO+) is O(n3),
which is the time complexity of computing all eigenpairs of an n × n matrix. All
other remaining steps of (MBO+) require fewer operations to compute.
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5.3. Explicit Euler method. We also compute the solution of (16) for t ∈ [0, τ ]
using an explicit finite difference scheme,{

um+1 = um −∆+umdt, for m ∈ {0, 1, . . . ,M},
u0 = u(0)

(19)

for the same choice of τ as in (18). For M ∈ N, dt = τ
M , and we set u∗(τ) = uM .

If G ∈ G then (MBO+) using the Euler method will have a time complexity of
O(|E|), because of the sparsity of the signless Laplacian matrix. When zero entries
are ignored, the multiplication of the vector um by ∆+ takes 4|E|+ 2n operations
to compute. Since G ∈ G has no isolated nodes, |E| ≥ n − 1, therefore, when n
is large enough, 4|E| > 2n and hence the time complexity of the multiplication is
O(|E|). All other remaining steps in (MBO+) using the Euler method require fewer
operations to compute.

In Section 8.3 we show some results for (MBO+) when solving (16) using an
implicit finite difference scheme, comparing against the results of (MBO+) obtained
using (19) to solve (16).

5.4. (MBO+) pinning condition. For (MBO+) we have that choosing τ too
small causes trivial dynamics in the sense that, for any j, µj = µ0 in (MBO+). In
this section we prove a result which shows that such a τ is inversely proportional
to the largest eigenvalue of the signless Laplacian chosen for (MBO+).

We define d− := min
i∈V

di, and d+ := max
i∈V

di. Let ∆+ ∈ {∆+
0 ,∆

+
1 ,∆

+
s }, then the

operator norm ‖∆+‖V is defined by

‖∆+‖V := sup
u∈V\{0}

‖∆+u‖V
‖u‖V

We define the maximum norm of V by ‖u‖V,∞ := max{|ui| : i ∈ V }.

Lemma 5.1. Let ∆+ ∈ {∆+
0 ,∆

+
1 ,∆

+
s }. The operator norm ‖∆+‖V and the largest

eigenvalue λn of ∆+ are equal. This implies that, for all u ∈ V,

‖∆+u‖V ≤ λn‖u‖V .

Proof. See [56, Lemma 2.5].

Lemma 5.2. The norms ‖ · ‖V and ‖ · ‖V,∞ are equivalent, with optimal constants
given by

d
r
2
−‖u‖V,∞ ≤ ‖u‖V ≤ ‖χV ‖V‖u‖V,∞.

Proof. See [56, Lemma 2.2].

Theorem 5.3. Let G ∈ G, and let λn be the largest eigenvalue of the signless
Laplacian ∆+ ∈ {∆+

0 ,∆
+
1 ,∆

+
s }. Let S0 ⊂ V , µ0 := χS0

− χSc
0
, and let µ1 ∈ Vb be

the result of applying one (MBO+) iteration to µ0. If

τ < λ−1
n log(1 + d

r
2
−‖χV ‖−1

V ),

then µ1 = µ0.

Proof. This proof closely follows the proof of a similar result in [56, Section 4.2].

If ‖e−τ∆+

µ0 − µ0‖V,∞ < 1, then µ1 = µ0. Using Lemma 5.2, we compute

‖e−τ∆+

µ0 − µ0‖V,∞ ≤ d
− r

2
− ‖e−τ∆+

µ0 − µ0‖V ≤ d
− r

2
− ‖e−τ∆+

− Id‖V ‖µ0‖V .



MAX-CUT APPROXIMATION: GRAPH BASED MBO SCHEME 21

Moreover, since 〈χS0 , χSc
0
〉V = 0, we have ‖µ0‖2V = ‖χS0‖2V + ‖χSc

0
‖2V = ‖χS0 +

χSc
0
‖2V = ‖χV ‖2V .

Using the triangle inequality and the submultiplicative property (see [48] for

example) of ‖ · ‖V , we compute ‖e−τ∆+ − Id‖V ≤
∑∞
k=1

1
k! (τ‖∆

+‖V)k = eλnτ − 1.

Therefore, if τ < λ−1
n log(1 + d

r
2
−‖χV ‖−1), then µ1 = µ0.

As stated in Section 5.2, we choose τ = 20 as diffusion time for (MBO+) using
∆+

1 or ∆+
s , and τ = 40

λn
when using (MBO+) with ∆+

0 as the choice of operator.

This is due to τ = 20 often being too large when using (MBO+) with ∆+
0 . Choosing

τ = 20 for (MBO+) using ∆+
0 causes the solution to converge to u(τ) = 0 to machine

precision. We therefore choose τ = 40
λn

for ∆+
0 since 5.3 implies a suitable choice

of τ for (MBO+) with respect to obtaining non-trivial output cuts is inversely
proportional to the largest eigenvalue of the chosen operator ∆+. Since λn = 2 for
∆+

1 and ∆+
s we choose to divide τ by λn

2 for ∆+
0 .

6. Γ-convergence of the Lyapunov functional for (MBO+) evolutions.

6.1. Lyapunov functional. In this section, in (20), we introduce a Lyapunov
functional for (MBO+). We prove that, when properly rescaled, this functional
Γ-converges to the signless total variation. In our setup and proofs we follow earlier
similar work in [56, 57] which in turn was inspired by results in the continuum
setting obtained in [22]. We first introduce some needed notation.

Define the space of functions K := {u ∈ V : ∀i ∈ V, ui ∈ [−1, 1]}. In analogy with
[56] we use our operators to define a graph curvature using our signless definitions.
If C = S|Sc we define the signless normal of a set by

νSij := sgn((∇+(χS − χSc)ij) =


1, if i, j ∈ S,
−1, if i, j ∈ Sc,
0, otherwise,

and our curvature as

(κq,r,+S )i := (div+νS)i = d−ri

{∑
j∈S ω

q
ij , if i ∈ S,

−
∑
j∈Sc ω

q
ij , if i ∈ Sc.

By direct computation we note that ∆+(χS−χSc)i = 2κ1,r,+
S . We define the volume

of a node set S ⊆ V by

VolS := ‖χS‖2V =
∑
i∈S

dri .

Proposition 5. Let G ∈ G and for r ∈ [0, 1], let ∆+ = ∆+
r . Then, for all u ∈ V\{0}

we have that

〈u, e−τ∆+

u〉V =
∑
i∈V

e−τλi〈u, φi〉2V > 0.

Proof. This has been proved in [57] using the operator ∆ instead of ∆+. Our
proof here, which we include for completeness, is similar. We expand u on the
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V-orthonormal basis formed by the eigenfunctions {φi}ni=1:

〈u, e−τ∆+

u〉V =

〈∑
i∈V
〈u, φi〉V φi,

∑
j∈V

e−τλj 〈u, φj〉V φj
〉
V

=
∑
i,j∈V

e−τλj 〈u, φi〉V 〈u, φj〉V δij =
∑
i∈V

e−τλi〈u, φi〉2V ,

where δij is the Kronecker delta function. This expression is strictly positive since
u is not the zero function.

Proposition 6. Let G ∈ G and let C ∈ C. Then for S ⊆ V we have that

TV+(χS − χSc) = 〈κ1,r,+
S , χS − χSc〉V .

Proof. By direct computation we show that

〈κq,r,+S , χS−χSc〉V = dri
∑
i∈S

(
∑
j∈S

d−ri ωqij)−d
r
i

∑
i∈Sc

(−
∑
j∈Sc

d−ri ωqij) =
∑
i,j∈S

ωqij+
∑
i,j∈Sc

ωqij .

By setting q = 1 we see that if C = S|Sc, then∑
i,j∈S

ωqij+
∑
i,j∈Sc

ωqij =
∑
i,j∈V

ωij−2(
∑

i∈S,j∈Sc

ωij) =
∑
i,j∈V

ωij−2s(C) = TV+(χS−χSc).

Proposition 7. Let G ∈ G and, for r ∈ [0, 1], let ∆+ = ∆+
r . Let (λi, φ

i)
(i ∈ {1, . . . , n}) denote the eigenpairs of ∆+, where the eigenfunctions are V-
orthonormal. Then for S ⊆ V we have that

TV+(χS − χSc) =
1

2

∑
i∈V

λi〈χS − χSc , φi〉2V .

Proof. By Proposition 6 we have

TV+(χS − χSc) = 〈κ1,r,+
S , χS − χSc〉V ,

which can be expressed as〈
κ1,r,+
S ,

∑
i∈V
〈χS − χSc , φi〉V φi

〉
V

=
∑
i∈V
〈κ1,r,+
S , φi〉V 〈χS − χSc , φi〉V .

We have that ∆+(χS − χSc) = 2κ1,r,+
S , therefore

TV+(χS − χSc) =
1

2

∑
i∈V
〈∆+(χS − χSc), φi〉V 〈χS − χSc , φi〉V .

Since ∆+ is self-adjoint in the V inner product by Proposition 1, we have that

1

2

∑
i∈V
〈∆+(χS − χSc), φi〉V 〈χS − χSc , φi〉V =

1

2

∑
i∈V
〈χS − χSc ,∆+φi〉V 〈χS − χSc , φi〉V

=
1

2

∑
i∈V
〈χS − χSc , λiφ

i〉V 〈χS − χSc , φi〉V =
1

2

∑
i∈V

λi〈χS − χSc , φi〉2V .
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Lemma 6.1. Let G ∈ G, τ > 0, and for r ∈ [0, 1], let ∆+ = ∆+
r . Define Jτ : V → R

by

Jτ (u) := −〈u, e−τ∆+

u〉V + VolV. (20)

Then the following hold.

1. The functional Jτ (u) is strictly concave and Fréchet differentiable.
2. Its derivative at u ∈ V in the direction of v ∈ V is given by

dJuτ (v) = −2〈e−τ∆+

u, v〉V .
3. Let µ0 := χS0

−χSc
0

for some S0 ⊂ V and let {µj}Nj=1 be a sequence generated

by (MBO+). For all j ∈ {1, . . . , N}, µj minimizes dJµ
j−1

τ (·) over K:

µj ∈ argmin
v∈K

dJµ
j−1

τ (v). (21)

4. For all j ∈ {1, . . . , N}, Jτ (µj) ≤ Jτ (µj−1), with equality attained if and only
if µj = µj−1.

Remark 1. The final property in the lemma above shows that Jτ is a Lyapunov
functional for (MBO+). All the results in Lemma 6.1 remain true if a constant term
is added to Jτ . In particular, they remain true if the term VolV is removed from
(20). We included this term in the definition of Jτ , however, because it is needed
in Section 6.2 for our Γ-convergence results.

Proof of Lemma 6.1. In [56, Lemma 4.5, Proposition 4.6] and [57, Lemma 5.5] the
authors derive similar Lyapunov functionals for two graph based MBO schemes
similar to (MBO+). This proof is similar to those proofs.

We first compute the Gateaux derivative at u ∈ V in the direction of v ∈ V. Let
ε ∈ R, then

dJuτ (v) :=
dJτ (u+ εv)

dε
|ε=0 = −2〈e−τ∆+

u, v〉V ,

where we have applied the fact that ∆+, and thus also e−τ∆+

are self-adjoint. Since
u 7→ dJuτ (v) is continuous, Jτ is also Fréchet differentiable. Moreover, if v ∈ V\{0}
the second directional derivative is given by

d2Jτ (u+ εv)

dε2
|ε=0 = −2〈v, e−τ∆+

v〉V

which, by Proposition 5, is strictly negative. Therefore Jτ is strictly concave.
To prove the third property, let j ∈ {1, . . . , N}. Then µj is generated by (MBO+)

and thus it takes values in {−1, 1}. Let µ∗ ∈ K\{µj} and let i ∈ V be such that µ∗i 6=
µji . Assume first that µji = 1 and hence µ∗i ∈ [−1, 1). Then, by (16), (17), we have(
e−τ∆+

µj−1
)
i
> 0 and thus −2

(
e−τ∆+

µj−1
)
i
driµ

j
i < −2

(
e−τ∆+

µj−1
)
i
driµ
∗
i . If,

on the other hand i ∈ V is such that µji = −1 and hence µ∗i ∈ (−1, 1], then(
e−τ∆+

µj−1
)
i
≤ 0 and thus −2

(
e−τ∆+

µj−1
i driµ

j
)
i
≤ −2

(
e−τ∆+

µj−1
)
i
driµ
∗
i .

Hence, for all µ∗ ∈ K \ {µj}, we have dJµ
j−1

τ (µj) ≤ dJµ
j−1

τ (µ∗) and therefore
µj is a minimizer.

Since Jτ is strictly concave and dJµ
j−1

τ is linear we conclude that if µj 6= µj+1,
then

Jτ (µj+1)− Jτ (µj) < dJµ
j

τ (µj+1 − µj) = dJµ
j

τ (µj+1)− dJµ
j

τ (µj) ≤ 0.

The inequality follows from (21). If µj+1 = µj then Jτ (µj+1)− Jτ (µj) = 0.
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Remark 2. Our proof of (21) above also shows that minimizers in (21) need not be

unique: at vertices i ∈ V where
(
e−τ∆+

µj−1
)
i
6= 0 any minimizer has to agree with

µj obtained by (MBO+), but at vertices i where
(
e−τ∆+

µj−1
)
i

= 0 minimizers can

take any value in [−1, 1].

6.2. Γ-convergence proof. Let r ∈ [0, 1] and ∆+ = ∆+
r . For τ > 0 we define a

rescaled version of Jτ , restricted to K: define Ĵτ : K → R ∪ {∞} by Ĵτ := 1
τ Jτ |K,

i.e.

Ĵτ (u) := −1

τ
〈u, e−τ∆+

u〉V +
1

τ
VolV. (22)

We prove that for τ ↓ 0 this functional Γ-converges to Ĵ0 : K → R∪{∞} defined by

Ĵ0(u) :=

{
2TV+(u), if u ∈ Vb,
+∞, if u ∈ K\Vb,

(23)

where q = 1. Note that Ĵ0 = f+
0

∣∣
K, where f+

0 is as in Lemma 4.1. We use the same
notion of convergence in V is the same as in Section 4.

Lemma 6.2. Let G ∈ G and let Ĵτ and Ĵ0 be as in (22) and (23), respectively.

Then Ĵτ Γ-converges to Ĵ0 as τ ↓ 0 in the following sense: If {τk}k∈N is a sequence
of positive real numbers such that τk ↓ 0 as k →∞ and u0 ∈ K, then the following
lower bound and upper bound conditions are satisfied:

(LB) for every sequence {uk}∞k=1 ⊂ K such that uk → u0 as k → ∞, it holds that

Ĵ0(u0) ≤ lim inf
k→∞

Ĵτk(uk);

(UB) there exists a sequence {uk}∞k=1 ⊂ K such that uk → u0 as k → ∞ and

Ĵ0(u0) ≥ lim sup
k→∞

Ĵτk(uk).

Proof. (LB) By Proposition 5 we can express (22) as

Ĵτ (u) = −1

τ

∑
i∈V

e−τλi〈u, φi〉2V+
1

τ
VolV = −

∑
i∈V

e−τλi − 1

τ
〈u, φi〉2V−

1

τ

∑
i∈V
〈u, φi〉2V+

1

τ
VolV.

Since τk ↓ 0 as k → ∞, we have
e−τkλi − 1

τk
→ d

dt
e−tλi

∣∣∣∣
t=0

as k → ∞. Moreover,

since uk → u0 as k →∞, we deduce that, for all i ∈ V , − lim
k→∞

e−τkλi − 1

τk
〈uk, φi〉2V =

λi〈u0, φ
i〉2V . It follows that

lim inf
k→∞

Ĵτ (uk) =
∑
i∈V

λi〈u0, φ
i〉2V + lim inf

k→∞

1

τk

(
volV −

∑
i∈V
〈uk, φi〉2V

)
. (24)

Since uk ∈ K, we have, for all i ∈ V , (uk)2
i ≤ 1 and thus∑

i∈V
〈uk, φi〉2V = 〈u2

k, χV 〉V ≤ 〈χV , χV 〉V = VolV. (25)
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For the first equality we have used [57, Lemma 4.6] (which in its original form
is formulated for eigenfunctions of the graph Laplacian, but holds without fur-
ther change for any functions φi which form an orthonormal basis of V). Hence

lim inf
k→∞

1

τk

(
volV −

∑
i∈V
〈uk, φi〉2V

)
≥ 0.

Now assume that u0 ∈ Vb, then u0 = χS − χSc for some S ⊆ V . It follows from
the above, combined with Proposition 7, that

lim inf
k→∞

Ĵτ (uk) ≥
∑
i∈V

λi〈u0, φ
i〉2V = 2TV+(u0) = Ĵ0(u0).

Next assume that u0 ∈ K\Vb. Then there is a j ∈ V such that (u0)j ∈ (−1, 1).
Since uk → u0 as k →∞, there exists an η ∈ (0, 1) such that, for all k large enough,
(uk)2

j ∈ [0, 1− η]. Using the fact that, for all i ∈ V , we have dri
(
1− (uk)2

i

)
≥ 0, we

find that, for large k,

volV−
∑
i∈V
〈uk, φi〉2V =

∑
i∈V

(
dri − dri (uk)2

i

)
≥ drj

(
1−(uk)2

j

)
≥ drj

(
1−(1−η)

)
= ηdrj > 0.

Therefore, using (24), we have

lim inf
k→∞

Ĵτk(uk) ≥ lim inf
k→∞

1

τk
drjη = +∞ = Ĵ0(u0).

(UB) If u0 ∈ K\Vb then the upper bound is trivially satisfied. If u0 ∈ Vb, then
we define our recovery sequence {uk} such that, for all k ∈ N, uk := u0. As in the
proof of (LB) above, we have that

lim sup
k→∞

Ĵτ (u0) =
∑
i∈V

λi〈u0, φ
i〉2V+lim sup

k→∞

1

τk

(
volV −

∑
i∈V
〈u0, φ

i〉2V

)
= 2TV+(u0) = Ĵ0(u0),

where we used Proposition 7 for the second equality, combined with the fact that,

as in (25),
∑
i∈V
〈u0, φ

i〉2V = 〈u2
0, χV 〉V = 〈χV , χV 〉V = VolV.

Lemma 6.3. Let G ∈ G and let {τk}k∈N be a sequence of positive real numbers
such that τk ↓ 0 as k →∞ and let {uk}k∈N be a sequence in K. Assume that there

exists a C > 0 such that for all k ∈ N we have Ĵτ (uk) ≤ C. Then there exists a
subsequence {uk′}k′∈N ⊂ {uk}k∈N and a u0 ∈ Vb such that uk′ → u0 as k′ →∞.

Proof. This proof closely resembles the proof in [57, Theorem 5.23].
As explained in Section 4, to each u ∈ V we can assign a canonical vector

representation û ∈ Rn. Let ‖u‖2 denote the Euclidean norm of û. Since {uk}k∈N ⊂
K we have that for all k ∈ N, 0 ≤ ‖uk‖2 ≤

√
n. By the Bolzano-Weierstrass theorem

it follows that a subsequence {uk′}k′∈N ⊂ {uk}k∈N exists which converges to a limit
u0 ∈ V with respect to ‖ · ‖2 and hence also with respect to the topologically
equivalent norm ‖ · ‖V . Moreover, by componentwise convergence and preservation
of inequalities in the limit, K is closed (with respect to either norm) and thus u0 ∈ K.

Assume that u0 ∈ K\Vb, then there exists a j ∈ V such that (u0)j ∈ (−1, 1) and
thus there exists an η ∈ (0, 1) such that, for all large enough l′ ∈ N, (ul′)

2
j ∈ [0, 1−η].
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Since for all i ∈ {1, . . . , n} we have λi ≥ 0, it follows by (25) that

VolV −
∑
i∈V

e−τl′λi〈ul′ , φi〉2V ≥ VolV −
∑
i∈V
〈ul′ , φi〉2V = VolV − 〈u2

l′ , χV 〉2V = 〈χV − u2
l′ , χV 〉V

≥ ηdrj . (26)

Moreover, by assumption and using Proposition 5 we have, for all k′ ∈ N,

τk′ Ĵτk′ (u) = VolV −
∑
i∈V

e−τk′λi〈uk′ , φi〉2V ≤ Cτk′ .

Choose l′ to be large enough such that Cτl′ < ηdrj and large enough so that (26)

holds. Then we arrive at a contradiction and thus u0 ∈ Vb.

Theorem 6.4. Let G ∈ G. Let {τk}k∈N ⊂ (0,∞) be a sequence such that τk ↓ 0

as k →∞ and, for each k ∈ N, let Ĵτk be as in (22) and let uτk be a minimizer of

Ĵτk . Then min
u∈K

Ĵτk(u) → min
u∈K

Ĵ0(u) as k → ∞. Furthermore, there exists u0 ∈ Vb

and a subsequence {uτk′}k′∈N ⊂ {uτk}k∈N, such that ‖uτk′ − u0‖V → 0 as k′ →∞.

Moreover, u0 ∈ argmin
u∈K

Ĵ0(u), where Ĵ0 is as in (23). In particular, if Cu0
∈ C is

the cut induced by u0, then Cu0
is a maximum cut of G.

Proof. By standard Γ-convergence properties [20, Corollary 7.20], [13, Theorem
1.21], the equi-coercivity proven in Lemma 6.3 and the Γ-convergence of Lemma 6.2

together imply that min
u∈K

Ĵτk(u) → min
u∈K

Ĵ0(u) as k → ∞. Furthermore, up to a

subsequence, minimizers of Ĵτk converge to a minimizer of Ĵ0 as k → ∞. By
Lemma 6.3, this minimizer, u0 is in Vb. The final statement follows in the same
way as in the proof of Theorem 4.5.

Remark 3. Even though the results of Theorem 6.4 suggest that minimizers of Ĵτ
(or Jτ ) for small τ > 0 are good approximations to the solution of the Max-Cut
problem, this is not a guarantee that solutions of the (MBO+) scheme are as well.
In fact, as we have seen in Section 5.4, for small τ > 0 the (MBO+) dynamics is
trivial and thus will not produce an (approximate) solution to the Max-Cut problem
unless the initial condition already is one.

7. Results.

7.1. Method. In Section 7 we compare the results of our new algorithm (MBO+)
with the results obtained by (GW). In Sections 7.2–7.6 we display the results of
(MBO+) using both the spectral decomposition method and the explicit Euler
method, fixing the variable τ for both methods. We run all our tests on a Windows
7 PC with 16GB RAM and an Intel(R) Core(TM) i5-4590 CPU with clock speed
3.30GHz. For both (MBO+) and (GW) we use MATLAB, which is convenient to
use when dealing with large sparse matrices.

For all of our tests using the spectral decomposition method we choose K =
b n

100c. In practice it reduces the computation time without sacrificing much accu-
racy in the cut approximations. We further analyse this choice in Section 8. For all
of our tests using the Euler method we set M = 100, in order to keep dt small so as
to ensure stability on our explicit scheme. We compute the (MBO+) evolutions for
50 initial conditions chosen at random from Vb. In the tables which we refer to in
this section, we state the greatest (Best), average (Avg), and smallest (Least) sizes
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(a) Web graph, maximum cut approximation
(b) Square-triangle mesh maximum cut ap-
proximation

Figure 3. Visualisation of maximum cut approximations (best
viewed in colour)

of cuts obtained by these 50 runs of (MBO+). We run (MBO+) using ∆+
0 , ∆+

1 and
∆+
s , fixing the initial conditions for each operator, using both the spectral method

and the Euler method for each operator, and compare the results.
We compare the results of (MBO+) with those of (GW). To compute the re-

laxation step of (GW) we use SDPT3 MATLAB software [54] as it exploits the
sparse structure of the matrices we work on. According to [43] it is best suited for
both smaller problems and for larger problems with sparse matrices. The stopping
tolerance is set as |Z∗P − Z∗D| < 10−6. The recommended tolerance for the SDPT3
software is set as 10−8. However, in our experiments increasing this tolerance to
10−6 reduced the computation time of (GW), without any change in output cut
sizes. After the relaxation step, we perform the hyperplane step 50 times, ran-
domly choosing a vector r each time. Each choice of r leads to a resulting cut;
in the tables referred to in this section, we list the highest (Best), average (Avg),
and lowest (Least) sizes of these cuts. In each of these categories in our tables we
highlight the method that obtained the best result, (MBO+) using ∆+

0 , (MBO+)
using ∆+

1 , (MBO+) using ∆+
s , or (GW). We do the same for the run times (Time)

of each method.
For both (MBO+) and (GW) only the adjacency matrix and the parameter choice

η is initially provided, therefore the reported run times cover all calculations from
that starting point. For each graph we remove the isolated nodes by removing all
rows and columns of the graph’s adjacency matrix which have all zero entries. (This
does not affect the size of any cut of the graph.) For the spectral decompostion
variant of (MBO+) using ∆+

1 and ∆+
s this includes removing all isolated nodes,

computing the matrices L1 and Ls, finding their K eigenpairs corresponding to the
leading eigenvalues in order to use Proposition 2, to compute the eigenpairs corre-
sponding to the trailing eigenvalues of L+

1 and L+
s respectively, generating initial

conditions, running the signless diffusion and thresholding steps, and computing
the size of the cut from each MBO iteration. For ∆+

s the computation time in-
cludes calculating L1 in order to compute the size of the output cuts using (10).
The computation time for (MBO+) using ∆+

0 includes removing all isolated nodes,
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computing the matrix L+
0 , finding all its eigenpairs, choosing the largest eigenva-

lue for the time step τ , and using the K eigenpairs corresponding to the smallest
eigenvalues for the remaining steps.

For the explicit Euler method variant of (MBO+) the computation time includes
removing all isolated nodes, computing L+ ∈ {L+

0 , L
+
1 , L

+
s }, generating initial con-

ditions, running the signless diffusion and thresholding steps, and computing the
size of the cut induced by each MBO iteration. For L = Ls we also compute L1 to
obtain the size of the output cut using (10).

For every graph there exists a τmax such that for all τ ≥ τmax the solution to (16)
computed using (MBO+) converges to u(τ) = 0 to machine precision. In practice
τmax is dependent on the operator ∆+. In our experiments we see that choosing a τ
which is in between the pinning condition in Theorem 5.3 and τmax is difficult due
to the difference between them being small when ∆+

0 is our operator for (MBO+).
In Section 7.3 and Section 7.5 we run our experiments on graphs with a scale free
structure (see Section 7.3). When running (MBO+) using the explicit Euler method
and ∆+

0 we encounter problems in choosing suitable τ and dt for such graphs. This
is due to the inflexibility of choosing τ such that it is less than τmax and also greater
than the bound in Theorem 5.3. Since the Euler method is an approximation of
the spectral method, we encounter problems in this case. If (MBO+) returns a
cut which has pinned due to Theorem 5.3 or is zero due to the solution of (16)
converging to zero to machine precision then we refer to the cut as a trivial cut. In
Section 8.3 we show that it is possible to obtain non-trivial cut sizes using (MBO+)
with ∆+

0 by solving (16) using an implicit Euler scheme.
Figure 3 shows two examples of approximate maximum cuts obtained with the

(MBO+) algorithm. The black nodes are in V1 and the white nodes are in V−1. An
edge is coloured red, if it connects two nodes of different colour, i.e. if it contributes
to the size of the cut. If it does not, it is black.

Figure 3a shows an unweighted web graph which has 201 nodes and 400 edges.
We set τ = 20 in (MBO+) using ∆+

1 and the Euler method to solve (16). The
resulting approximation of the maximum cut value is 350. The run time is 0.09
seconds. Figure 3b shows an unweighted triangle-square graph which has 162 nodes
and 355 edges. We set τ = 20 and K = 20 in (MBO+) using ∆+

1 and the spectral
method to solve (16). The approximation of the maximum cut value is 295 and the
run time is 0.14 seconds.

7.2. Random graphs. In Figures 4, 5, and 6 we list results obtained for Erdös-
Rényi graphs.

For each of G(1000, 0.01) (Figure 4), G(2500, 0.4) (Figure 5), and G(5000, 0.001)
(Figure 6) we create 100 realisations. We then run (MBO+) with both the spectral
method and the Euler method, and we run (GW). For both of the (MBO+) methods
we choose either ∆+

0 , ∆+
1 , or ∆+

s , setting τ = 20 for all tests. The bar chart
represents the mean of the best, average, and least cuts over all 100 realisations
of the chosen random graph. The error bars are the corrected sample standard
deviation5 of the results obtained over all 100 realisations. Figure 4 shows that
(MBO+) using either the spectral method or Euler method for ∆+

1 and ∆+
s produces

better mean best, mean average, and mean least cuts than (GW) on this set of
graphs. Figure 5 shows that (MBO+) using the spectral method and either ∆+

1

5The corrected sample standard deviation is computed using MATLAB’s std code in all ex-
periments in this paper.
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Figure 4. Bar chart of Max-Cut approximations on 100 realisa-
tions of G(1000, 0.01).

Graph ∆+
1 (S) ∆+

1 (E) ∆+
s (S) ∆+

s (E) ∆+
0 (S) ∆+

0 (E) GW
G(1000, 0.01) 0.20 1.58 0.34 1.52 0.56 1.06 5.25
G(2500, 0.4) 8.04 172.91 13.33 181.40 6.40 172.73 55.36
G(5000, 0.001) 4.38 16.96 6.37 14.95 24.99 6.97 257.09

Table 1. Average (MBO+) and (GW) run-times for each realisa-
tion of G(n, p), time in seconds.

or ∆+
s produces better mean cut approximations than (GW) on this set of graphs.

Figure 6 shows the same conclusions as Figure 4 for this set of graphs. Table 1
shows that (MBO+) using the spectral method produces the fastest run times on
all three types of Erdös-Rényi graphs that we test on. We note that (GW) has
a superior run time over (MBO+) using the Euler method on the realisations of
G(2500, 0.4).

7.3. Scale-free graphs. The degree distribution P : N → R of an unweighted

graph G is given by P (j) := |{i∈V : di=j}|
n . Random graphs such as the ones discussed

in Section 7.2 have a degree distribution which resembles a normal distribution. The
graph G ∈ G is a scale-free graph if its degree distribution roughly follows a power
law, i.e P (j) ≈ j−γ , where often in practice, γ ∈ (2, 3) [7]. Scale-free graphs have
become of interest as graphs such as internet networks, collaboration networks, and
social networks are conjectured to more closely resemble scale-free graphs instead
of random graphs [8].
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Figure 5. Bar chart of Max-Cut approximations on 100 realisa-
tions of G(2500, 0.4).

In Table 6 we list results for some scale free graphs. We test the algorithms on
8 autonomous systems internet graphs, ASi, i ∈ {1, . . . , 8}. These graphs represent
smaller imitations of an internet network, which were acquired from the website [1].
We also test on the graph Gnutella09 which is a model of a peer to peer file sharing
network, and the graph WikiVote, which is a network representing a Wikipedia
administrator election, both obtained from [3]. All of the scale free graphs in this
section are unweighted and undirected graphs.

Table 2 displays some properties of the random graphs in Section 7.2 and the
scale-free graphs we test on. Figure 7 displays the average degree distribution of
100 realisations of G(2500, 0.4), in Figure 7a, and the degree distribution of the AS1
Graph, in Figure 7b. In Figure 7a the yellow points indicate the degree distribution,
and the orange lines indicate the corrected sample standard deviation of the average
degree distribution. In Figure 7b the blue dots indicate the degree distribution. As
we see, the average degree distribution of the realisations of G(2500, 0.4) is similar
to a normal distribution, and the degree distribution of the AS1 graph resembles a
power law, as expected.

For all graphs listed in Table 6, using either ∆+
1 or ∆+

s (MBO+) using the Euler
method or the spectral method outperforms (GW) with respect to the average and
least obtained cut sizes and the run time, but (GW) obtains the best results when
considering the greatest obtained cuts. For any choice of ∆+

1 and ∆+
s and for any

choice of signless diffusion solver the greatest cuts obtained by (MBO+) are all at
least 98.1% of the greatest cut size obtained by (GW). The difference in run times is
notable though. The time taken by (MBO+) stays below 30 seconds for all graphs
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Figure 6. Bar chart of Max-Cut approximations on 100 realisa-
tions of G(5000, 0.001).

(a) Degree distribution of a realisation of
G(2500, 0.4).

(b) Degree distribution of the AS1 Graph.

Figure 7. Average degree distribution of 100 realisations of a ran-
dom graph and the degree distribution of a scale free graph.

in Table 6, irrespective of choice of Laplacian and signless diffusion solver. However,
the (GW) algorithm’s run times range between 9 and 44 minutes. These results
suggest that (MBO+) using ∆+

1 or ∆+
s , and using either signless diffusion solver

offers a significant decrease in run time at the cost of about 1-2% accuracy in the
resulting cut size, in comparison with (GW), when applied to the graphs in Table 6.
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Graph |V | |E| d− d+

G(1000, 0.01)(1) 1000 4919 1 21
G(1000, 0.01)(2) 1000 4939 2 21
G(2500, 0.4)(1) 2500 1248937 910 1079
G(2500, 0.4)(2) 2500 1251182 904 1081
G(5000, 0.001)(1) 4962 12646 1 16
G(5000, 0.001)(2) 4969 12642 1 16

Graph |V | |E| d− d+

AS1 12694 26559 1 2566
AS2 7690 15413 1 1713
AS3 8689 17709 1 1911
AS4 8904 17653 1 1921
GNutella09 8114 26013 1 102
Wiki-Vote 7115 100762 1 1065

Table 2. Properties of G(n, p) graph realisations vs scale free graphs.

Graph ∆+
1 (S) Best ∆+

1 (S) Avg ∆+
1 (S) Least ∆+

1 (S) Time
AS1 22744 22542.20 22183 15.85
AS2 13249 13153.72 13054 3.55
AS3 15118 15027.22 14907 4.73
AS4 15194 15143.44 15042 5.67
AS5 14080 13988.90 13928 4.82
AS6 18053 17964.74 17876 10.06
AS7 22741 22535.00 22150 17.82
AS8 22990 22720.36 22334 17.22
GNutella09 20280 20143.74 19983 8.16
WikiVote 72981 72856.40 72744 2.46

Graph ∆+
1 (E) Best ∆+

1 (E) Avg ∆+
1 (E) Least ∆+

1 (E) Time
AS1 22798 22670.76 22268 23.62
AS2 13281 13199.72 13120 8.76
AS3 15175 15095.46 15007 9.95
AS4 15270 15202.70 15117 10.88
AS5 14120 14020.62 13944 9.50
AS6 18134 18034.10 17933 16.50
AS7 22826 22696.42 22525 25.78
AS8 23070 22951.54 22550 25.38
GNutella09 20437 20361.92 20295 17.14
WikiVote 73159 73126.34 73086 9.06

Table 3. (MBO+) cut approximations using ∆+
1 on graphs with

a scale free structure, time in seconds.



MAX-CUT APPROXIMATION: GRAPH BASED MBO SCHEME 33

Graph ∆+
s (S) Best ∆+

s (S) Avg ∆+
s (S) Least ∆+

s (S) Time
AS1 22809 22620.8 22325 17.83
AS2 13271 13178.86 13103 4.12
AS3 15166 15082.1 14992 4.66
AS4 15237 15166.24 15077 5.78
AS5 14075 14011.96 13911 5.47
AS6 18088 17968.04 17859 9.14
AS7 22822 22629.66 22218 15.73
AS8 23061 22884.8 22547 15.46
GNutella09 20282 20186.32 20101 6.82
WikiVote 73169 73003.44 72917 2.25

Graph ∆+
s (E) Best ∆+

s (E) Avg ∆+
s (E) Least ∆+

s (E) Time
AS1 22789 22629.62 22261 27.63
AS2 13256 13176.64 13094 9.09
AS3 15139 15059.54 14967 10.24
AS4 15234 15159.76 15079 11.57
AS5 14096 14011.9 13930 10.47
AS6 18088 17994.66 17876 16.12
AS7 22823 22639.58 22237 24.5
AS8 23036 22865 22440 25.08
GNutella09 20397 20332.28 20170 18.75
WikiVote 72993 72772.26 72549 9.00

Table 4. (MBO+) cut approximations using ∆+
s on graphs with

a scale free structure, time in seconds.

Graph ∆+
0 (S) Best ∆+

0 (S) Avg ∆+
0 (S) Least ∆+

0 (S) Time
AS1 22578 22303.10 21844 297.79
AS2 13081 12935.80 12763 62.41
AS3 14995 14869.52 14702 90.32
AS4 15097 14994.92 14885 88.53
AS5 13952 13795.24 13561 70.81
AS6 17836 17672.50 17527 149.60
AS7 22571 22328.18 21932 294.26
AS8 22824 22585.88 22075 287.79
GNutella09 19079 18419.36 17951 72.03
WikiVote 65504 60599.74 56917 46.11

Table 5. (MBO+) cut approximations using ∆+
0 on graphs with

a scale free structure, time in seconds.

7.4. Random modular graphs. Modular graphs have a community structure.
Nodes in a community have many connections with other members of the same
community and noticeably fewer connections with members of other communities.
In Figure 8 we show what our Max-Cut approximation looks like on a random
modular graph. We generate realisations of random unweighted modular graphs
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Graph GW Best GW Avg GW Least GW Time
AS1 22864 22346.26 20546 2324.98
AS2 13328 13039.10 12048 594.29
AS3 15240 14961.56 14050 826.65
AS4 15328 15015.34 14072 832.28
AS5 14190 13810.82 12922 721.51
AS6 18191 17851.24 16483 1368.35
AS7 22901 22421.80 21244 2321.34
AS8 23170 22593.10 21110 2613.62
GNutella09 20658 20242.02 18815 1095.04
Wiki-Vote 73363 71510 62886 1074.98

Table 6. (GW) cut approximations on graphs with a scale free
structure, time in seconds.

Figure 8. A Max-Cut approximation on a random 4-modular
graph (best viewed in colour).

R(n, c, p, r) using the code provided at [2]. The variables for the graph are the
number of nodes n, the number c ∈ N of communities that the graph contains, a

probability p such that the graph will have an expected number of n2

2p edges, and a

ratio r ∈ [0, 1], with r|E| being the expected number of edges connecting nodes in
the same community and (1− r)|E| being the expected number of edges connecting
nodes in different communities.

In Figures 9, 10, and 11 we display results obtained for random modular graphs.
For each of R(2500, 2, 0.009, 0.8) (Figure 9), R(4000, 20, 0.01, 0.7) (Figure 10), and
R(10000, 10, 0.01, 0.8) (Figure 11) we create 100 realisations. We then run (MBO+)
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Figure 9. Bar chart of Max-Cut approximations on 100 realisa-
tions of R(2500, 2, 0.009, 0.8).

Graph ∆+
1 (S) ∆+

1 (E) ∆+
s (S) ∆+

s (E) ∆+
0 (S) ∆+

0 (E) GW
R(2500, 2, 0.009, 0.8) 0.80 10.43 0.79 10.26 4.36 6.13 56.30
R(4000, 20, 0.01, 0.7) 4.05 30.46 4.49 29.52 16.26 18.19 248.25
R(10000, 10, 0.01, 0.8) 49.98 266.10 52.85 266.40 210.94 194.52 3893.87

Table 7. Average (MBO+) and (GW) run-times for each realisa-
tion of R(n, c, p, r), time in seconds.

with both the spectral method and the Euler method, and we run (GW). For both
of the (MBO+) methods we choose either ∆+

0 , ∆+
1 , or ∆+

s , setting τ = 20 for all
tests. The bar chart represents the mean of the best, average, and least cuts over
all 100 realisations of the chosen random modular graph. The error bars are the
corrected sample standard deviation of the results obtained over all 100 realisations.

In Figures 9, 10, and 11 we see that using either ∆+
1 or ∆+

s (MBO+) with
both the spectral method and the Euler method outperforms (GW) with respect
to the best, average, and least cuts. In Table 7 we see that for any choice of
operator and method, (MBO+) is faster on average than (GW) for our choices
for random modular graphs. We note in particular that for our realisations of
R(10000, 10, 0.01, 0.8) the average (GW) test took just below 65 minutes, where as
the average (MBO+) test using the spectral method and either ∆+

1 or ∆+
s took

under a minute, obtaining on average better outcomes.

7.5. Weighted graphs. In this subsection we assign random weights to the edges
of selected graphs from Section 7.2 and Section 7.3. To create the graphs W1 and
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Figure 10. Bar chart of Max-Cut approximations on 100 realisa-
tions of R(4000, 20, 0.01, 0.7).

W2 we use two of the realisations of G(1000, 0.01), and multiply its edges by random
real numbers drawn uniformly from in the range [0, 2] and [0, 20] respectively. W3
and W4 were created by using two of the realisations of G(2500, 0.4) in Section 7.2,
and multiplying its edges by random real numbers drawn uniformly from in the
ranges [0, 5] and [0, 1] respectively. W5, W6, W7 were created by using three of the
realisations of G(5000, 0.001) in Section 7.2, and multiplying its edges by random
real numbers drawn uniformly from in the ranges [0, 1], [0, 15], and [0, 50] respec-
tively. W8 is the AS1 graph, whose edges are multiplied by random real numbers
drawn uniformly from in the range [0, 12], W9 is the AS5 graph whose edges are
multiplied by random real numbers drawn uniformly from in the range [0, 4] and
W10 is the AS8 graph whose edges are multiplied by random real numbers drawn
uniformly from in the range [0, 8]. We run (MBO+) for all three choices of ∆+, on
all of these graphs, and compare against (GW) in Table 11. We set τ = 20 for both
the spectral decomposition method and the Euler method.

We saw that (MBO+) using the spectral method produced larger cuts than (GW)
on the random graphs considered in Section 7.2; when assigning random weights to
the edges of these random graphs the same conclusion holds. We see in Table 11
that for this collection of random graphs (MBO+) using the spectral method (with
either ∆+

1 or ∆+
s used) outperforms (GW) with respect to the best, average, and

smallest obtained cut sizes, and the run time. In Section 7.3 we saw that (MBO+)
using both the spectral method and the Euler method produced better average and
smallest cuts than (GW) on the scale free graphs considered in that section, but
the best cut sizes were produced more often by (GW). These weighted examples
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Figure 11. Bar chart of Max-Cut approximations on 100 realisa-
tions of R(10000, 10, 0.01, 0.8).

support the same conclusions. The blank results in Table 11 for the Euler method
using ∆+

0 are due to (MBO+) producing trivial results for these choices as stated
in Section 7.1.

7.6. Large graphs. Since the Euler method has a time complexity of O(|E|), in
this section we show that (MBO+) using the Euler method can provide Max-Cut
approximations in a respectable time on large sparse datasets. The graphs Ama-
zon0302 and Amazon0601 are networks in which the nodes represent products and
an edge exists between two nodes if the corresponding products are frequently co-
purchased; both of these networks were constructed in 2003. GNutella31 depicts
a peer to peer file sharing network in 2002. PA RoadNet is a road network of
Pennsylvania with intersections and endpoints acting as nodes and roads connect-
ing them acting as edges. Email-Enron is a network where each edge represents an
email being sent between two people. BerkStan-Web is a network of inter-domain
and intra-domain hyperlinks between pages on the domains berkeley.edu and stan-
ford.edu in 2002. Stanford is a network of hyperlinks between pages on the domain
stanford.edu in 2002. All of these datasets were obtained from the website [3]. The
graph WWW1999 is a model of the Internet in 1999 with edges depicting hyper-
links between websites, obtained from [4]. Table 12 displays the properties of these
graphs. Table 13 displays the results we obtained on these graphs choosing ∆+

1
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Graph ∆+
1 (S) Best ∆+

1 (S) Avg ∆+
1 (S) Least ∆+

1 (S) Time
W1 3612.00 3569.08 3537.10 0.47
W2 36487.51 36082.58 35687.87 0.30
W3 1622125.53 1620885.77 1619371.25 8.09
W4 323926.34 323639.05 323321.92 8.59
W5 5054.26 5033.54 5010.38 4.00
W6 74560.24 74218.26 73776.17 3.90
W7 252448.52 251045.03 249459.89 4.18
W8 137202.14 135952.94 133480.08 16.17
W9 28351.01 28194.96 28009.15 3.99
W10 92376.49 91570.35 90172.90 17.02

Graph ∆+
1 (E) Best ∆+

1 (E) Avg ∆+
1 (E) Least ∆+

1 (E) Time
W1 3622.58 3580.53 3548.82 1.41
W2 36530.25 36191.16 35928.56 1.67
W3 1603390.76 1600505.43 1596558.94 185.03
W4 320347.01 319612.93 318849.26 195.66
W5 5104.45 5081.95 5063.64 15.31
W6 75499.50 75175.73 74833.80 15.70
W7 255793.23 254569.97 253091.91 15.71
W8 137569.32 136896.1 136094.60 23.83
W9 28545.45 28369.43 28141.76 9.24
W10 93021.06 92489.04 91626.99 25.37

Table 8. (MBO+) cut approximations using ∆+
1 on randomly

weighted graphs, time in seconds.

as our operator, the Euler method as our signless diffusion solver, and τ = 10.
For these large graphs, we are unable to obtain results for comparison using (GW),
because (GW) requires too much memory for it to run on the same computer setup.

8. Parameter choices.

8.1. Variable K. As stated in Section 5.2, the computational advantage of (MBO+)
using the spectral method is that not all the eigenpairs of ∆+ need to be used. In
practice, if K is large enough, the cut sizes obtained by (MBO+) using the spectral
method does not improve significantly when K is increased further. The plots in
Figure 12 highlight this. For these three tests we fixed the initial conditions, the
choice of operator ∆+

1 , and τ = 20 for each respective graph. For Figure 12a we
plot the best, average, and least cuts for each choice of K. For Figure 12b and
Figure 12c we plot the mean of the best, average, and least cuts over all 100 graphs
for each choice of K. The error bars indicate the corrected sample standard de-
viation of the best, average, and least cuts. We ran (MBO+) using the spectral
method on the AS4 graph, increasing the value for K in increments of 5 from 5
until 100. The plot in Figure 12a shows that at K = 40 the best, average, and least
cut size changes very little for increasing K. For Figure 12b we ran (MBO+) on
the 100 realisations of G(5000, 0.001) from Section 7.2, increasing K in increments
of 10 from 10 until 200. For Figure 12c we ran (MBO+) on the 100 realisations of
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Graph ∆+
s (S) Best ∆+

s (S) Avg ∆+
s (S) Least ∆+

s (S) Time
W1 3601.29 3569.23 3545.85 0.33
W2 36192.09 36059.80 35867.83 0.49
W3 1622372.91 1620484 1618809.76 8.40
W4 323933.40 323642.4 323114.45 7.65
W5 5068.19 5041.94 5015.16 4.50
W6 74844.37 74505.45 73963.79 4.67
W7 253043.96 251668.30 250600.35 4.12
W8 137195.52 136360.17 134856.06 15.38
W9 28389.38 28227.09 28067.66 4.12
W10 92439.42 91952.98 90488.33 15.33

Graph ∆+
s (E) Best ∆+

s (E) Avg ∆+
s (E) Least ∆+

s (E) Time
W1 3614.37 3577.56 3542.19 1.40
W2 36321.80 36150.05 35910.90 1.53
W3 1604257.12 1600145.68 1597577.4 187.88
W4 320691.88 319596.27 318900.13 199.01
W5 5096.55 5072.36 5041.89 15.9
W6 75456.87 75089.73 74745.17 18.09
W7 255316.85 253821.64 252527.13 15.48
W8 137282.02 136475.24 134333.1 24.51
W9 28445.94 28258.64 28101.22 9.18
W10 92731.62 92093.05 90448.61 24.36

Table 9. (MBO+) cut approximations using ∆+
s on randomly

weighted graphs, time in seconds.

R(2500, 2, 0.009, 0.8), increasing K in increments of 5 from 5 until 100. The plots
in Figure 12b and Figure 12c show that for our choices of Erdös-Rényi and random
modular graphs increasing K increases the cut sizes. We also note that the best,
average, and minimum cut sizes plateau.

For large graphs, however, finding the value of K beyond which the produced
cut sizes plateau is problematic. We ran (MBO+) using the spectral method with
∆+

1 on the Amazon0302 graph, increasing K in increments of 100 starting from 100
to 2600. As shown in Figure 13 the best, average, and least outcomes of (MBO+)
are still increasing at the end of the range of K values we plotted. For K = 200 and
K = 2600 the run time of (MBO+) was 12 minutes and 26 hours, respectively; this
increase in computation time resulted in a 3% increase in cut values. Comparing
the cut size obtained for K = 2600 with the cut sizes obtained on Amazon0302 in
Table 13 we see that using the Euler method as the signless diffusion solver is more
accurate and significantly faster.

8.2. Variable τ . Other than the pinning condition stated in Section 5.4, currently
we have very little information on which to base our choice of τ . In this section we
compare the cut sizes obtained by (MBO+) against the variable τ . We choose ∆+

1

as the signless Laplacian operator and the spectral method as the signless diffusion
solver. Figure 14 displays the obtained cut sizes from (MBO+) on three (sets of)
graphs and compares against τ . For Figure 14a we plot the best, average, and least
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(a) AS4: Cut size as function of K, τ = 20.

(b) 100 realisations of G(5000, 0.001): Cut size as function of K,
τ = 20.

(c) 100 realisations of R(2500, 2, 0.009, 0.8): Cut size as function of
K, τ = 20.

Figure 12. Cut size as function of K for three graphs (best viewed
in colour).
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Graph ∆+
0 (S) Best ∆+

0 (S) Avg ∆+
0 (S) Least ∆+

0 (S) Time
W1 3413.96 3345.32 3276.63 0.61
W2 34784.30 34304.33 33627.16 0.51
W3 1602346.52 1600022.33 1595791.12 6.97
W4 320251.52 319940.38 319663.40 6.25
W5 4793.44 4761.72 4715.51 18.66
W6 71219.49 70427.83 69643.31 18.93
W7 239991.72 237647.45 235617.15 19.17
W8 134097.55 131088.97 126123.70 272.56
W9 27528.99 26554.77 25501.34 69.63
W10 90271.70 88031.84 83130.60 264.89

Graph ∆+
0 (E) Best ∆+

0 (E) Avg ∆+
0 (E) Least ∆+

0 (E) Time
W1 3524.24 3456.55 3406.93 1.03
W2 35664.18 35040.71 34383.57 1.03
W3 1605419.97 1602251.82 1597064.59 203.27
W4 320321.63 319809.73 319237.08 192.51
W5 5017.66 4983.90 4954.63 7.76
W6 74195.87 73688.97 73231.67 7.33
W7 251330.73 249754.88 248091.06 7.51
W8 - - - -
W9 - - - -
W10 - - - -

Table 10. (MBO+) cut approximations using ∆+
0 on randomly

weighted graphs, time in seconds.

Graph GW Best GW Avg GW Least GW Time
W1 3585.17 3535.63 3494.26 5.74
W2 36101.30 35698.47 35151.60 6.07
W3 1620705.80 1618813.52 1616502.33 43.58
W4 323573.40 323275.84 322795.83 44.09
W5 5038.00 5000.74 4953.71 265.27
W6 74372.75 73852.36 73293.27 241.33
W7 251802.56 250316.08 248098.85 263.44
W8 138159.14 135899.20 129576.95 2629.60
W9 28705.35 28169.25 26422.54 689.16
W10 93547.26 91571.68 87487.99 2646.94

Table 11. (GW) cut approximations on randomly weighted
graphs, time in seconds.

cuts for each choice of τ . For Figure 14b and Figure 14c we plot the mean of the
best, average, and least cuts over all 100 graphs for each choice of τ . The error bars
indicate the corrected sample standard deviation of the best, average, and least
cuts. We ran (MBO+) using the spectral method on the AS4 graph, increasing the
value for τ in increments of 5 starting from 5 until 500. In Figure 14a we see in this
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Graph |V | |E| d− d+

Amazon0302 262111 899792 1 420
Amazon0601 403394 2443408 1 2752
GNutella31 62586 147892 1 95
PA RoadNet 1088092 1541898 1 9
Email-Enron 36692 183831 1 1383
BerkStan-Web 685230 6649470 1 84290
Stanford 281904 1992636 1 38625
WWW1999 325729 1090108 1 10721

Table 12. Properties of our large datasets we are testing on.

Graph ∆+
1 (E) Best ∆+

1 (E) Avg ∆+
1 (E) Min ∆+

1 (E) Time
Amazon0302 618942 618512.18 618030 0.49
Amazon0601 1580070 1576960.80 1571089 1.90
GNutella31 116552 116213.74 115916 0.06
PA RoadNet 1380131 1379797.90 1379416 0.64
Email-Enron 112665 111680.24 110279 0.02
BerkStan-Web 5335813 5319662.06 5281630 0.83
Stanford 1585802 1580445.14 1570469 0.47
WWW1999 813000 809329.52 806130 0.21

Table 13. Results of (MBO+) using ∆+
1 and the Euler method

on large datasets, time in hours.

Figure 13. Comparison of cut size approximation vs K on Ama-
zon0302 graph.
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Graph ∆+
1 Best ∆+

s Best ∆+
0 Best

AS4 15276 15279 9259
AS8 23083 23033 13725
W9 28553.66 28485.28 17146.69

Graph ∆+
1 Avg ∆+

s Avg ∆+
0 Avg

AS4 15196.52 15175.52 9124.68
AS8 22934.30 22844.16 13585.56
W9 28360.46 28294.40 16847.92

Graph ∆+
1 Least ∆+

s Least ∆+
0 Least

AS4 15124 15056 8964
AS8 22521 22454 13477
W9 28103.28 28075.62 16521.43

Graph ∆+
1 Time ∆+

s Time ∆+
0 Time

AS4 47.83 50.94 7.47
AS8 105.22 114.74 11.48
W9 38.61 42.57 5.26

Table 14. Cut sizes obtained by (MBO+) using the implicit Euler
scheme on scale free graphs, time in seconds.

experiment that 5 ≤ τ ≤ 40 produces the best results with respect to our cut sizes.
We also see that for 330 ≤ τ ≤ 480 the best, average, and least cuts are almost
identical. For Figure 14b we ran (MBO+) on the 100 realisations of G(5000, 0.001)
from Section 7.2, increasing τ in increments of 5 starting from 5 until 125. For Fig-
ure 14c we ran (MBO+) on the 100 realisations of R(4000, 20, 0.01, 0.7), increasing
τ in increments of 5 starting from 5 until 100. In Figure 14b and Figure 14c we
see the general trend that increasing τ beyond 20 decreases the mean over the best,
average, and least cuts over all 100 realisations of G(5000, 0.001).

8.3. Implicit Euler scheme. On the random graphs we tested on in Section 7.2
and Section 7.4 our explicit Euler scheme using ∆+

0 produced non-trivial cut sizes.
However, for the scale free graphs in Section 7.3 and Section 7.5 we did not find
a value of τ or dt such that the cuts induced from (MBO+) were non-trivial. In
this subsection we show that we can solve the Euler equation implicitly in order
to obtain non-trivial cut sizes with the operator ∆+

0 , subject to suitable choices of
dt and τ . However, the results are significantly inferior to the operators ∆+

1 and
∆+
s for the implicit Euler scheme. We also compare the (MBO+) results obtained

using the implicit scheme to the results obtained using the explicit scheme for a set
of random graphs.

We run (MBO+) using the implicit Euler scheme on the AS4 and AS8 graph
from Section 7.3 and the W9 graph from Section 7.5. We choose dt = 0.2 and
τ = 20 when ∆+

1 or ∆+
s is the operator. For ∆+

0 we set dt = 0.0005 and τ = 0.05
for the AS4 graph, and for the AS8 graph and the W9 graph we set dt = 0.0001
and τ = 0.01. Table 14 shows that (MBO+) using the implicit Euler scheme with
∆+

0 and our choice of parameters produces cut sizes, however they are significantly
smaller in comparison to using ∆+

1 or ∆+
s .
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(a) AS4: Cut size as function of τ , K = 89.

(b) 100 realisations of G(5000, 0.001): Cut size as function of τ ,
K = 49.

(c) 100 realisations of R(4000, 20, 0.01, 0.7): Cut size as function of
τ , K = 40.

Figure 14. Cut size as function of τ for three graphs (best viewed
in colour).
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Figure 15. Bar chart of Max-Cut approximations on 100 reali-
sations of G(1000, 0.01) using the implicit Euler method and the
explicit Euler method.

Graph ∆+
1 (I) ∆+

1 (E) ∆+
s (I) ∆+

s (E) ∆+
0 (I) ∆+

0 (E)
G(1000, 0.01) 3.36 1.82 3.28 1.79 2.20 1.19
R(4000, 20, 0.01, 0.7) 62.97 44.23 62.16 44.18 41.53 24.01

Table 15. Average (MBO+) run-times for each realisation of
G(1000, 0.01) and R(4000, 20, 0.01, 0.7), time in seconds. (I) in-
dicates the implicit Euler method and (E) indicates the explicit
Euler method.

We run (MBO+) on the 100 realisations ofG(1000, 0.01) andR(4000, 20, 0.01, 0.7)
in Section 7.2 and Section 7.4 respectively, using the implicit and explicit Euler
method for each operator ∆+ ∈ {∆+

0 ,∆
+
1 ,∆

+
s }. We choose the same values of τ

and dt as chosen in Section 7.2 and Section 7.4, fixing the initial conditions for both
methods. Figure 15 and Figure 16 show that the average obtained cut sizes using
the implicit Euler method are slightly better than the average obtained cut sizes
obtained using the explicit method. However, Table 15 shows that (MBO+) using
the explicit Euler method produces cut sizes in less time than using the implicit
Euler method on these sets of random graphs. This is why we choose the explicit
method for the Euler method in Section 7.
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Figure 16. Bar chart of Max-Cut approximations on 100 realisa-
tions of R(4000, 20, 0.01, 0.7).

9. Conclusions. We have proven that the signless graph Ginzburg–Landau func-
tional f+

ε Γ-converges to a Max-Cut objective functional as ε ↓ 0 and thus min-
imizers of f+

ε can be used to approximate maximal cuts of a graph. We use an
adaptation of the graph MBO scheme involving signless graph Laplacians to ap-
proximately minimize f+

ε . We solve the signless diffusion step of our graph MBO
scheme using a spectral truncation method and an Euler method. We also derived
a Lyapunov functional for our signless MBO scheme and proved that a rescaled
version of this functional Γ-converges to the signless total variation, minimizers of
which correspond to maximum cuts.

We tested the resulting (MBO+) algorithm on various graphs using both these
signless diffusion solvers, and compared the results and run times with those ob-
tained using the (GW) algorithm. In our tests on realizations of random Erdös-
Rényi graphs and on realizations of random modular graphs our (MBO+) algorithm
using the spectral method outperforms (GW) with reduced run times. On our ex-
amples of scale free graphs (GW) usually gives the best maximum cut approxima-
tions, but requires run times that are two orders of magnitude longer than those
of (MBO+), which obtains cut sizes within about 2% of those obtained by (GW).
Similar conclusions follow from our tests on weighted graphs, that used randomly
generated Erdös-Rényi graphs and modular graphs, and some scale free graphs, all
with random edge weights. We have also shown that our algorithm using the Euler
method can be used on large sparse datasets, with reasonable computation times.
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In our tests (and for our parameter choices) we see that (MBO+) using both ∆+
1

and ∆+
s produces larger Max-Cut approximations than ∆+

0 for all of the graphs
that we tested on.

There are still many open questions related to the (MBO+) algorithm, for ex-
ample questions related to a priori parameter choices (such as τ and K), and per-
formance guarantees. These can be the subject of future research.
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[6] L. Ambrosio, N. Gigli and G. Savaré, Gradient flows: in metric spaces and in the space of

probability measures, Springer Science & Business Media, 2008.
[7] A-L. Barabási, Scale-free networks: a decade and beyond, Science, (2002), 412–413.

[8] Scale-free, A-L. Barabási and E. Bonabeau, Scientific American, (2003), 50–59.
[9] An application of combinatorial optimization to statistical physics and circuit layout design,
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