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ABSTRACT: 

Background: Tumour infiltrating lymphocytes are an important component of the 

immune response to cancer and have a prognostic value in breast cancer. Although 

several studies have investigated the role of T-lymphocytes in breast cancer, the role of 

B lymphocytes (TIL-Bs) in Ductal carcinoma in situ (DCIS), remains uncertain. This study 

aimed to assess the role of TIL-Bs in DCIS.  Methods: 80 DCIS cases (36 pure DCIS and 

44 mixed with invasive cancer) were immunohistochemically stained for B lineage 

markers CD19, CD20 and the plasma cell marker CD138. TIL-Bs density and localisation 

were assessed including relation to the in-situ and invasive components. Association with 

clinico-pathological data and patient outcome was performed. Results: Pure DCIS 

showed a higher number of TIL-Bs and lymphoid aggregates than DCIS associated with 

invasion. In pure DCIS, a higher number of peri-tumoural and para-tumoural TIL-Bs was 

significantly associated with large tumour size (p=0.016), hormone receptor (ER/PR) 

negative (p=0.008) and HER2+ status (p=0.010). In tumours with mixed DCIS and 

invasive components, cases with high density B-lymphocytes, irrespective of their 

location or topographic distribution, were significantly associated with variables of poor 

prognosis including larger size, high grade, lymphovascular invasion, lymph node 

metastases, ER/PR negative and HER2+ status. Outcome analysis showed that pure 

DCIS associated with higher numbers of B-lymphocytes had shorter recurrence free 

interval (p=0.04), however the association was not significant with CD138+ plasma cell 

count (p=0.07). Conclusion: Assessment of TIL-B cells based on location and 

topographic distribution can provide prognostic information. Validation in a larger cohort 

is warranted. 
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INTRODUCTION 

Although breast cancer is a heterogeneous disease, there is a great similarity between 

ductal carcinoma in situ (DCIS) and associated invasive carcinoma at the histological and 

molecular levels [1]. Such similarity not only supports DCIS as a pre-invasive stage 

before progression to invasive duct carcinoma (IDC) but also indicates that they share 

molecular and behavioural features [2]. To date, neither histopathological features nor 

conventional breast cancer biomarkers can accurately predict whether DCIS lesions will 

progress to invasive disease or recur [3].  

Evasion of immune surveillance and host immune response is a hallmark of 

carcinogenesis and cancer progression [4]. Furthermore, the intensity of tumour immune 

response influences the effectiveness of cancer therapy, and positively affects clinical 

outcome in several solid tumours [4].  The association with patient outcome in majority 

of the studies have focussed on the role of tumour infiltrating T lymphocytes (TILs) 

[5-9]. However, there is also a suggestion of a critical role of tumour infiltrating B 

lymphocytes (TIL-B) with patient survival [10]. B-cells are commonly activated in cancer 

patients, supporting the possibility of a positive role in tumour immunity [11]. In breast 

tumours, TIL-Bs are present in approximately 25% and comprise up to 40% of the TIL 

population [12-14], appearing early during breast tumuorigenesis [15]. However, 

assessment of TILs in cancer tissues remains challenging [16]. Despite the reports 

implicating TIL-Bs in improving patient survival, the mechanisms, functional profiles and 

their allied antigens remain to be defined.  

Of the common B-cell antigens, CD20 is expressed on all mature B cells except plasma 

cells [17]. T cell response is inhibited by resting B cells and facilitated by activated B 

cells [18]. CD19, another B-cell marker, is a member of the Ig superfamily that has a 

critical signal transduction function regulating the development, activation and 

differentiation of B lymphocytes [19]. The expression of CD19 is restricted only to B 

cells. Similar to CD20, it appears early during B cell maturation in the late pro-B cell 
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stage and remains throughout maturation but is lost when B cells differentiate into 

plasma cells [20, 21]. CD138, another B-lineage antigen, is a transmembrane heparin 

sulphate proteoglycan family member having several cellular functions including 

proliferation, programmed cell death as well as role as an extracellular matrix receptor 

[22]. Its expression is typically on the surface of mature epithelial cells and some 

stromal cells in developing tissues [23]. High levels of CD138 expression is detected in 

precursor B cells and plasma cell differentiation  [24], with monoclonal antibodies of the 

CD138 cluster beings plasma cell specific among hematopoietic elements [24]. This 

study aimed to determine the density and pattern of distribution of CD20/CD19 positive 

lymphocytes and CD138 positive plasma cells in patients with DCIS including their 

prognostic significance. 

PATIENTS AND METHODS 

Study patients 

This retrospective study included cases of DCIS with or without an invasive component 

diagnosed from 1989 to 2000 at Nottingham City Hospital, Nottingham UK who 

underwent conservative breast surgery with standard adjuvant treatment that was based 

on risk stratification. High risk patients with pure DCIS received post-operative adjuvant 

radiotherapy. However low risk DCIS patients did not receive postoperative radiotherapy. 

Patients with IDC associated with DCIS were treated either with adjuvant hormonal, 

chemotherapy or radiotherapy or combination based on hormone receptor status and 

Nottingham Prognostic Index (NPI) of their invasive disease. Histological data for DCIS 

type including grade, presence or absence of necrosis was recorded together with patient 

outcome. Recurrence free survival (RFS) was calculated in months from the date of first 

operation until the first recurrence [25].  For invasive cases associated with DCIS, 

histological data lymph node status [26] and stage was recorded together with outcome 

data. Breast cancer specific survival (BCSS) was defined as the time (in months) from 

the date of the primary surgical treatment to the time of death from breast cancer [27]. 
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Immunohistochemistry (IHC) 

Haematoxylin and eosin stained full-face sections representative of each case were 

examined to confirm the diagnosis and assess the suitability of the tissue block for IHC. 

IHC staining was performed using the Novocastra Novolink Polymer Detection Kit (Leica 

Microsystems, Newcastle, UK) following the manufacturer’s guidelines. Tissue sections 

were stained by optimised monoclonal anti-human CD20 antibody (clone L26, DAKO, 

Glostrup, Denmark, dilution 1:300), monoclonal anti-human CD19 antibody (clone LE-

CD19, DAKO, Glostrup, Denmark, dilution 1:75) and monoclonal anti-human CD138 

antibody (clone MI15, DAKO, Glostrup, Denmark, dilution 1:40). CD19, CD20 and CD138 

were applied on sequential tissue sections from the same paraffin block and not on the 

same slide. All markers were included in the analysis. Paraffin sections of normal human 

tonsil were used as a positive control which showed positive cells distributed mainly in 

the germinal centres and mantle zone (B cell area) with some scattered inter-follicular 

positive cells. Negative controls were included with staining runs by omitting the primary 

antibody.  

CD20+/CD19+/CD138+ lymphocytes and plasma cells quantification 

The number of B-lymphocytes, marked by CD20 and/or CD19 positive cells, and plasma 

cell count, evidenced by CD138 positivity, was counted in each tissue section using a 

Nikon Eclipse 80i microscope (Nikon, Tokyo, Japan). For the purpose of the analysis, cells 

showing membranous labelling with CD20 and/or CD19 were considered as TIL-Bs.    For 

CD138, only cells with morphology consistent with plasma cells were considered during 

cell counting. If CD138 additionally showed membrane and cytoplasmic staining of DCIS 

and invasive tumour cells, this epithelial staining pattern was not considered in the 

analysis. Slide scanning was also done using ‘Panoramic digital slide’ scanner, followed 

by viewing the slide using ‘Panoramic Viewer software’. Marking the zones of interest to 

be scored was done digitally (0.5mm, 1mm and 2mm). 

Pure DCIS cases and the in situ component of the mixed cases were assessed, clearly 

defined and marked to delineate the tumour edge. TIL-Bs were identified within DCIS 
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(tumour infiltrating lymphoid cells) and at the periphery of DCIS (stromal TIL-Bs). All foci 

of DCIS were evaluated with average of 1-6 foci. The highest density focus (hot spot) 

was then selected as the final result for analysis. Presence and distribution of positively 

stained cells with morphologic features of lymphocytes and /or plasma cells were 

reported. Stromal TIL-Bs was divided into: a) cuffing (in direct contact with DCIS), b) 

peritumoural (less than 0.5mm distance from the DCIS profile margin), c) paratumoural 

TIL-Bs that was quantified by counting positive cells within the marked tumour area and 

not in direct/close contact with tumour cells (more than 0.5mm and up to 1mm distance 

away from the DCIS profile margin) and d) TIL-Bs present in up to 2mm away from the 

DCIS profile margin. Mean number of TIL-Bs was then calculated for each compartment. 

Within the marked area, each case was assigned a qualitative stromal TIL-Bs density 

score: A score of 1 referred to low density of TIL-Bs (less than or equal to 25% 

surrounding the duct circumference). A score of 2 (>25% and <50% TIL-Bs surrounding 

the duct circumference) and score of 3 referred to a diffuse/marked infiltration of more 

than, 50% (TIL-Bs surrounding most of the duct circumference). 

In the cases with mixed DCIS and invasive tumours, TIL-Bs were assessed separately in 

both components to indicate the difference in the density and pattern of distribution 

between components and between DCIS associated with invasion and pure DCIS. For 

TIL-Bs surrounding/infiltrating the DCIS components in these cases, the same approach 

as used as in pure DCIS cases. On the other hand,  TIL-Bs were assessed in the invasive 

component according to the previously published guidelines [28, 29]; in three locations; 

(1) Intra-tumoural compartment (defined as TIL-Bs in tumour nests that had cell-to-cell 

contact with no intervening stroma and directly interacting with carcinoma cells), (2) 

Within stroma away from tumour (defined as TIL-Bs located dispersed in the stroma, 

more than one tumour cell diameter, and among the carcinoma cells but not directly 

interfacing carcinoma cells), and (3) Peri-tumoural stroma (defined as TIL-Bs within one 

tumour cell diameter of the tumour). In this study, the total number of TIL-Bs was 

determined by adding the counts for the three tumour compartments. TIL-Bs in areas 
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with crush artefacts, necrosis, inflammation around biopsy sites or extensive central 

regressive hyalinisation and adjacent normal lobules were not included [28, 29].  

In addition to the presence, density, and location of TIL-Bs, the presence and distribution 

of lymphoid follicles or aggregates were assessed and their relation to DCIS and invasive 

disease, when present, were recorded. Lymphoid follicles (tertiary lymphoid structures, 

(TLSs) were considered as aggregates of lymphocytes with a germinal centre while 

lymphoid aggregates were considered as a collection of lymphocytes without germinal 

centre formation.  

This study was approved by Nottingham Research Ethics Committee 2 (REC C202313) 

under the title of “Development of a molecular genetic classification of breast cancer”. 

Statistical Analyses 

IBM-SPSS statistical software 22.0 (SPSS, Chicago, IL, USA) was used to analyse the 

correlation between the number of CD20+, CD19+ lymphocytes and CD138+ plasma cells 

and the various clinico-pathological parameters. The optimal cut-off point for CD20+, 

CD19+ lymphocytes and CD138+ plasma cells against patient survival was defined using 

X-tile bioinformatics software (Yale University, version 3.6.1). Kaplan–Meier curves and 

log-rank test were used for survival analyses. A p-value less than 0.05 (two-tailed) was 

considered as statistically significant. 

RESULTS 

Patient characteristics 

Patient characteristics for the 80 patients on the study are shown in Table 1. Patients 

were aged 70 years or less (median = 55 years) with long-term follow-up (median 

follow-up = 266 months). No patients received neoadjuvant therapy. Thirteen patients 

received chemotherapy and 17 cases were hormonally treated for the invasive disease. 

Of the two categories, 36 cases were of DCIS alone (none of the pure DCIS cases 

contained microinvasion), while in 44 cases, DCIS was associated with an invasive 
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component (all cases included invasive carcinoma measuring more than 1mm). Most 

pure cases (28/36: 77.8%) were from postmenopausal women. Histological assessment 

for DCIS is summarised in Figure 1A. During the follow-up period, Ipsilateral local 

recurrence in pure DCIS occurred in 7/36 (19.4%) patients, of which 2 (5.5%) cases 

recurred as invasive disease.  

Forty-four female patients with DCIS had associated invasive disease, 27/44 of which 

were postmenopausal. Figure 1B & C summarise the histological data for the invasive 

disease including tumour size, type grade, presence or absence of comedo necrosis, 

lympho-vascular invasion [30], lymph node status [26]. Median follow-up was 143 

months (19-307 months), during which period, recurrence of invasive disease occurred 

in 12 (27.3%) patients, 7 (15.9%) patients developed ipsilateral local recurrence and 8 

(18.2%) cases progressed into distant metastasis. 

To summarise the pathology parameters in this series, solid DCIS with necrosis (comedo 

type) was the predominant type. Most cases showed high nuclear grade (55%). The 

mean DCIS size was 24 mm. Positive hormone receptor status (ER/PR) and negative 

HER2 was the predominant pattern in both groups.  

Assessment of ER, PR and HER2 assays were based on the American Society of Clinical 

Oncology/College of American Pathologists Clinical Practice Guideline Update (ASCO). 

[31, 32]. For ER and PR, considered positivity if there are at least 1% positive tumour 

nuclei. For HER2 status, intense complete/circumferential IHC membrane staining within 

more than 10% of tumour cells was considered positive (3+). 

DCIS TIL-Bs; frequency, and localisation 

Intra-tumoural TIL-Bs were very rare within DCIS compared with the peri-ductal stromal 

TIL-Bs. Both diffuse and aggregate patterns of TIL-Bs were observed in the stroma. The 

density of CD19 was lower than that of CD20 and the number of follicles stained with 

CD19 was fewer than those identified by the CD20. Plasma cells did not show any 

specific pattern or distribution. Pure DCIS cases showed a significantly higher number of 

TLSs (maximum 20 lymphoid aggregates) than those cases associated with invasion 
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(maximum 12 lymphoid aggregates) (p=0.04). Tertiary Lymphoid Structures (TLSs) 

were mainly localised around the DCIS component of the mixed group.  

Intra-tumoural, peri-tumoural, para-tumoural and stromal lymphocytes’ results in pure 

and mixed groups are summarised in Table 2. Mean count of peri-tumoural lymphocytes 

was 80.4 in pure DCIS cases, compared to 37.7 in cases associated with invasive 

component (p= 0.002). In para-tumoural TIL-Bs, the mean number was 108.1 in pure 

DCIs cases, compared to 56.7 in DCIS cases mixed with an invasive component (p= 

0.006). High level of B-cells as defined by CD20 and or CD19 positivity was observed 

around the DCIS component of the tumour in 65.9% of cases, and was observed around 

the invasive component in 27.3% (p=0.01) (Figure 1D-F). It was observed that the 

number of B-lymphocytes around the DCIS foci was higher in the pure group when 

compared to the DCIS foci in the mixed cases (p<0.001). Pure DCIS cases showed a 

higher number of plasma cell count (mean=91) than mixed cases (mean=44), though 

this does not achieve statistical significance (p=0.4). Stromal distribution was the 

detected pattern of plasma cell distribution. No intratumoural plasma cells were found.  

Association with clinicopathological variables 

Overall associations of TIL distribution with clinic-pathological variables are summarised 

in Table 3. In pure DCIS cases, increased number of TLSs and dense peri-tumoural and 

para-tumoural TIL-Bs were significantly associated with larger tumour size (p=0.016), 

hormone receptor (Oestrogen/Progesterone receptor; ER/PR) negative tumours 

(p=0.008) and HER2 positive status (p=0.01). No association between plasma cells and 

the clinicopathological parameters was identified in the pure cases.   

In the mixed cohort, higher number of B-lymphocytes, irrespective of their location and 

topographic distribution, were significantly associated with larger (invasive and in situ) 

tumour size (p=0.019), higher invasive tumour grade (p=0.005), presence of DCIS 

necrosis (p=0.042), lympho-vascular invasion (p=0.022), lymph node metastases 

(p=0.033), negative ER/PR status (p=0.04) and positive HER2 status (p=0.008). A 

higher number of plasma cells were significantly associated with ER/PR negative tumours 

(p=0.01) and HER2 positivity (p=0.019).  
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Outcome analysis (Figure 2) revealed that pure DCIS cases, associated with low number 

of peri-tumoural and para-tumoural B-lymphocytes had a longer recurrence free survival 

(RFS) (p=0.008 and p=0.04 respectively). Less dense peri-tumoural and low count of 

stromal B-lymphocytes was associated with longer recurrence free survival (RFS) 

(p=0.04 and p=0.01 respectively). There was a non-significant association between low 

plasma cell count around the invasive component and a longer survival (p=0.07). 

Intratumoural TIL-Bs did not show significant association with patient outcome. 

DISCUSSION 

The role of immune cells in breast carcinogenesis remains questionable [33]. It was 

initially thought that tumour infiltrating immune cells play a protective role in 

tumorigenesis [34]. However, there is increasing evidence supporting the fact that the 

infiltrating immune cells play a role in carcinogenesis [35] and there is a plethora of data 

to propose powerful links between infiltrating immune cells and carcinogenesis [33]. 

Tumour infiltrating lymphocytes (TILs) are an important immune component of the 

response to cancer [36].  It is now well accepted that the immune system has a dual 

role in cancer development and progression. It can eradicate emerging malignant cells 

by an orchestrated action of innate and adaptive branches thus preventing tumour 

growth. On the other hand, it can paradoxically promote growth of malignant cells, their 

invasive capacity and their ability to metastasise. The presence of immune cells with 

tumour-suppressive and tumour-promoting activity in the cancer microenvironment and 

in peripheral blood is usually associated with good clinical outcome and poor clinical 

outcome, respectively [36]. Furthermore, the intensity of tumour immune response 

influences the effectiveness of cancer therapy, and positively affects the clinical outcome 

in several solid tumours [4] 

TILs have previously been identified as prognostic and predictive biomarkers in several 

cancers, including breast cancer. However, the exact role of the different components of 
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TILs remains unclear [16]. Although most the TILs in breast cancer have focused on T-

lymphocytes [5-7], the role tumour-infiltrating B lymphocytes remains poorly defined 

[37] with few studies having assessed the role of tumour infiltrating B lymphocytes (TIL-

Bs) in the breast [38-40].  In this study, we aimed to determine the potential role of TIL-

Bs in DCIS and its role in DCIS behaviour and progression to invasive disease. 

In current study, the density of CD19 was much lower than that of CD20 and the number 

of follicles identified by the CD19 antibody was a subset of those identified by the CD20 

antibody. This finding goes in line with findings in other tumours such as chronic 

lymphocytic leukaemia where Ginaldi et al in 1998 showed that CD19 had low density 

and lower number than CD20 positive cells [41]. This can be explained as a reflection of 

an early stage of maturation of tumour infiltrating B lymphocytes in comparison to their 

counterparts in normal blood [41]. This may suggest that tumour immunity develops as 

a response to early stage of tumour development such as DCIS. 

Some authors have reported that TILs are more commonly observed in DCIS than in 

invasive carcinoma [42-44] and this was confirmed in the current study. One study 

reported that the proportion of luminal-like subtypes decreased, while HER2+ and basal-

like subtypes increased, with the development of invasion [45]. On the other hand, other 

studies have reported that microinvasive carcinoma might be a distinct entity.  

Martinet et al [43] showed that tumour associated lymphocytes and mature dendritic cell 

densities were significantly higher in DCIS than in invasive carcinoma. However, the 

relationship between the presence or abundance of TLSs and specific DCIS subtypes has 

been  unclear [46] though the presence of TLSs around HR-/HER2 positive tumours are 

also corroborated in the current study. It might be explained that once the carcinogenic 

events have settled (i.e. invasive cancers), a generalised increase in lymphocyte 

infiltration is observed, that does not differ among various tumour sub-types [33]. 

Moreover, DCIS tumour microenvironment over-expresses variety of inflammatory 

mediators (probably released from infiltrating leukocytes), including interleukin signalling 

[47]. Taken together, these findings suggest a role of leukocytes in early stages of breast 
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cancer development. In support of this, there is evidence that lymphocytes play a key 

role in creating a tumour promoting microenvironment [34]. However, this needs to be 

further investigated in breast carcinogenesis. 

Our study showed that higher numbers of B-lymphocytes and TLSs were associated with 

higher tumour grade, presence of necrosis, vascular invasion, negative hormone status 

and HER2 positivity. These findings are supported by Schalper et al [48] who suggested 

that the tumour biology itself may play a possible role in lymphocytes induction. Higher 

CD20 positive TILs have also been similarly observed in high grade DCIS by Campbell et 

al. and as indicated, an orchestrated increase of FoxP3+, CD68+, HLA-DR+ and 

CD4+cells are observed in higher grades of DCIS [49]. The relationship with vascular 

invasion is interesting as in studies as early as 1997 by Lee et al, it was apparent from 

morphology correlates that clusters of B and T cells may be recruited in DCIS by high 

endothelial venules and the authors speculate that cytokines released by the DCIS 

along-with its immune cells may stimulate new vessel formation and create a pro-

metastatic milieu [49]. DCIS cells should adapt to the hypoxic and nutrient-deprived 

ductal microenvironment. We assume that the presence of necrosis in DCIS might be 

associated with increased release of damage associated molecular substances such as 

ATP that could result in the subsequent recruitment of immune cells into the tumour 

microenvironment [50]. Ma et al [51] reported a strong immune response signature 

resulting in activation of other leukocytes and interferon signalling present particularly 

around high grade DCIS. They speculate that the presence of an immune response 

signature around high-grade DCIS may represent a phase where the cancer cells resist 

immune attack and instead are able to utilise the abundant cytokines produced by 

immune cells to facilitate invasion [51].  

Unlike invasive cancer, where presence of abundant tumour infiltrating lymphocytes has 

been linked to better prognosis, this does not appear to be the case for DCIS [29]. In 

the current study, we found decreased RFS in cases associated with more TIL-Bs. This 
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goes with Knopfelmacher et al [52] who found that the presence of dense chronic 

inflammation surrounding DCIS was significantly associated with a high Oncotype DX 

DCIS Score and hence high recurrence risk. Although there are no genes directly related 

to the immune system in the DCIS Score, research has elucidated that there are genetic 

changes in the microenvironment, including stromal fibroblasts, myoepithelium, and 

inflammatory cells, which are associated with progression from in situ to invasive disease 

[53, 54]. In cases where DCIS is associated with early invasion, a dense chronic 

inflammatory infiltrate often surrounds these microinvasive foci. We could speculate that 

dense periductal chronic inflammation around DCIS suggests a role for the immune 

response in DCIS progression and deserves further investigation. Despite the prognostic 

role of TIL-Bs, it was not independent prognostic factor in Cox regression model and this 

might be explained by the small number of cases included in the study. In this study, it is 

noteworthy that, assessment of TILs in DCIS was different from that of invasive cancer. 

Evaluation of stromal associated lymphocytes, within the confinement of invasive 

tumour, was challenging because of presence of scattered ducts in DCIS. However the 

scoring was done as objectively as possible. For better reproducibility, standardisation of 

TILs scoring method in DCIS is needed.   

The use of CD138 as a clinical marker remains controversial. In our study, CD138 was 

expressed in the entire epithelium as well as plasma cells, but it did not stain 

lymphocytes and this finding is consistent with the finding of Barbareschi, et al [55]. We 

also found that more plasma cells were observed in pure DCIS cases when compared to 

DCIS cases associated with invasion. High plasma cell count represented by CD138 

positivity is correlated with ER/PR negativity. In fact, it could be hypothesised that in ER-

negative tumours that have lost the ability to respond to the oestrogen-dependent 

proliferative pathway, high CD138 expression may confer a particularly important growth 

advantage by enhancing the response to other growth factors [55]. This correlates with 

poor prognosis; findings consistent with those reported by Barbareschi et al [55].  
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CD138 is in fact implicated in several essential physiologic cell functions, such as control 

of cell proliferation, differentiation, adhesion, and migration [56]. One of the best known 

biologic functions of CD138 is related to its interaction with fibroblast growth factors 

(FGFs), which are known angiogenic and mitogenic growth factors for breast carcinoma 

cells [57], binding to FGFs and to their receptors in a ternary signalling complex [58]. 

CD138 also can function as a potent FGF-2 activator through physiologic shedding and 

degradation of its extracellular domain by enzymes, such as heparanase [59].  

The limitations of the study are that a limited subset of cases were studied, as well as 

the limited availability of data for hormone receptor status and HER2 expression 

especially for the DCIS component. This might have affected the statistical associations 

with some parameters. Expansion of this study to include a larger patient cohort is 

therefore warranted.  

In conclusion, this study suggests that B cells, perhaps as part of the adaptive humoral 

immune response, may have a role in breast cancer. Expansion of this work on a larger 

series of patients as well as the development of a standardised scoring approach is 

warranted. Studies of a holistic nature exploring the cross-talk of both B and T cell 

pathways may reveal the immune switch enabling tumour progression from the in-situ 

stage to invasive disease. As B-cell activation may be both T cell dependent and 

independent, studying them side by side alongside released mediators, will help better 

understanding of the correlations between biology and morphology. As the role of B cells 

in the pre-invasive to invasive stages becomes clearer, novel options for immune 

modulation to prevent breast cancer progression may become evident. 
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Figure Legends: 

Figure 1: A) High grade comedo DCIS with central necrosis and adjacent cuffing 

lymphocytic aggregates (H&E x10). B) DCIS with micro-invasion and surrounding cuffing 

lymphocytes and some intra-tumoural lymphocytes (H&E x10). C) Solid DCIS mixed with 

invasive component and scattered stromal lymphocytes (H&E x10). D) A case of DCIS 

with peri-tumoural and intra-tumoural CD20 positive lymphocytes forming aggregates 

(IHC x10). E) Peri-tumoural and stromal CD19 positive lymphocytes (IHC x10). F) CD19 

positive lymphocytic aggregate in a case mixed with invasive component (IHC x 4). 

Figure 2: A and B: For combined pure DCIS cases and DCIS cases mixed with invasion, 
decreased density of peri-tumoural and para-tumoural B lymphocytes tend to be 
associated with better RFS (p=0.008 and p=0.04). 
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Table 1: Clinico-pathological variables of the study cohort (80 cases) 

DCIS: Ductal carcinoma in situ             X2: Chi square 

C l i n i c o -
p a t h o l o g i c a l 
Variables

Total 
Number of 
cases

DCIS (pure 
cases) 
N u m b e r 
(%)

DCIS (mixed 
cases) 
Number (%)

X2/(P value)

Age 
<50 
≥50 

25 
55

6 (16.7) 
30 (83.3)

19 (43.2) 
25 (56.8)

6.48 (0.01)

M e n o p a u s a l 
Status 
Pre-menopausal 
Post-menopausal

25 
55

8 (22.2) 
28(77.8)

17 (38.6) 
27 (61.4)

2.48 (0.11)

Tumour size 
<2.0cm 
≥2.0cm

44 
36

16 (44.4) 
20 (55.6)

28 (63.6) 
16 (36.4)

2.95 (0.08)

Histologic type 
Comedo DCIS 
Cribriform DCIS 
M i c r o p a p i l l a r y 
DCIS 
Solid DCIS

54 
9 
4 
13

22 (61.1) 
6 (16.7) 
4 (11.1) 
4 (11.1)

32 (72.7) 
3 (6.8) 
0 (0) 
9 (20.5)

80 (<0.0001)

Comedo Necrosis 
No 
Yes

37 
43

10 (27.8) 
26 (72.2)

27 (61.4) 
17 (38.6)

8.98 (0.008)

Grade 
1 
2 
3

18 
18 
44

5 (13.9) 
6 (16.7) 
25 (69.4)

13 (29.5) 
12 (27.3) 
19 (43.2)

5.63 (0.06)

L y m p h n o d e 
status 
Negative 
Positive

56 
11

23 (100) 
0 (0)

33 (75) 
11 (25)

7.67 (0.006)

O e s t r o g e n 
receptor 
Negative 
Positive

22 
32

3 (30) 
7 (70)

19 (43.2) 
25 (56.8)

0.58 (0.44)

P r o g e s t e r o n e 
receptor 
Negative 
Positive

22 
22

3 (30) 
7 (70)

19 (43.2) 
15 (56.8)

0.58 (0.44)

HER2 Status 
Negative 
Positive

33 
18

4 (57.1) 
3 (42.9)

29 (65.9) 
15 (34.1)

0.2 (0.56)
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Table 2: Distribution of TIL-Bs in different compartments of DCIS in both pure and 
mixed groups)  

TIL-Bs: Tumour infiltrating lymphocytes, B cells. 

DCIS: Ductal carcinoma in situ 

X2: Chi square test 

Compartment

DCIS (pure 
group) 

Mean Number of 
TIL-Bs

DCIS (mixed 
group) 

Mean Number of 
TIL-Bs

X2 (P value)  

Intra-tumoural 15.6 4.8 6.5 (0.04)

Cuffing (direct 
contact) 45.3 30.6 4.8 (0.1)

Peri-tumoural 
(<0.5mm)

80.4 37.7 10.2 (0.002)

Para-tumoural 
(0.5-1mm)

108.1 56.7 14.9 (0.006)

Stromal (1-2mm) 134.2 80.8 3.1 (0.3)

!  21



Table 3: Distribution of TIL Bs and association with clinico-pathological parameters. 

TIL Bs: Tumour infiltrating lymphocytes, B cells 

Test value using Mann-Whitney U test (*) or Kruskal-Wallis test (**) and the figured 
data used as continuous variables for TLI-Bs.   

Clinico-

pathological 

parameters

Intra-

tumoural 

TIL-Bs 

P value 

(test 

value)

Cuffing 

TIL Bs 

P (test)

Peri-

tumoural 

TIL-Bs 

P (test)

Para-

tumoural 

TIL-Bs 

P (test)

Stromal 2mm 

TIL-Bs 

P (test)

Age* 0.075 

(1.58)

0.12 

(1.6)

0.375 

(1.1)

0.001 

(2.76)

0.7 (1.8)

Menopausal 

status*

0.66 

(1.35)

0.089 

(2.96)

0.011 

(6.76)

0.005 

(8.387)

0.078 (1.9)

Tumour size* 0.275 

(1.21)

0.06 

(1.55)

0.005 

(2.31)

0.000 

(7.81)

0.07 (2.01)

Histologic tumour 

type**

0.24 

(1.69)

0.07 

(2.12)

0.078 

(2.5)

0.65 

(1.21)

0.58 (1.66)

Necrosis* 0.45 

(1.67)

0.216 

(1.55)

0.051 

(3.93)

0.026 

(5.13)

0.68 (2.11)

Grade** 0.13 

(2.06)

0.21 

(1.9)

0.028 

(3.71)

0.02 

(4.13)

0.08 (2.21)

ER/PR status* 0.06 

(1.67)

0.032 

(2.62)

0.008       

(2.91)

0.001 

(3.29)

0.001 (4.5)

Her2neu status* 0.1 (1.83) 0.02 

(1.42)

0.01 

(2.53)

0.002 

(3.34)

0.07 (1.42)
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Figures and tables:  

!  

Figure 1: A) High grade comedo DCIS with central necrosis and adjacent cuffing 
lymphocytic aggregates (H&E x10). B) DCIS with micro-invasion and surrounding cuffing 
lymphocytes and some intra-tumoural lymphocytes (H&E x10). C) Solid DCIS mixed with 
invasive component and scattered stromal lymphocytes (H&E x10). D) A case of DCIS 
with peri-tumoural and intra-tumoural CD20 positive lymphocytes forming aggregates 
(IHC x10). E) Peri-tumoural and stromal CD19 positive lymphocytes (IHC x10). G) CD19 
positive lymphocytic aggregate in a case mixed with invasive component (IHC x 4). 

A B

D E

C

E

!  23



  

Figure 2: A and B: For combined pure DCIS cases and DCIS cases mixed with invasion, 
decreased density of peri-tumoural and para-tumoural B lymphocytes tend to be 
associated with better RFS (p=0.008 and p=0.04). 
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