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ABSTRACT 

 

A large amount of data is generated by Structural Health Monitoring (SHM) systems and, as 

a consequence, processing and interpreting this data can be difficult and time consuming. 

Particularly, if work activities such as maintenance or modernization are carried out on a 

bridge or tunnel infrastructure, a robust data analysis is needed, in order to accurately and 

quickly process the data and provide reliable information to decision makers. In this way the 

service disruption can be minimized and the safety of the asset and the workforce guaranteed.  

In this paper a data mining method for detecting critical behaviour of a railway tunnel is 

presented. The method starts with a pre-processing step that aims to remove the noise in the 

recorded data. A feature definition and selection step is then performed to identify the most 

critical area of the tunnel. An ensemble of change-point detection algorithms is proposed, in 

order to analyse the critical area of the tunnel and point out the time when unexpected 

behaviour occurs, as well as its duration and location. The work activities, which are carried 

out at the time of occurrence of the critical behaviour and have caused this behaviour, are 

finally identified from a database of the work schedule and used for the validation of the results. 

Using the proposed method, fast and reliable information about infrastructure condition is 

provided to decision makers. 

 

Keywords: Structural Health Monitoring (SHM); Data mining; Change-point detection; 

Ensemble of change-point detection methods  

mailto:Matteo.vagnoli@nottingham.ac.uk


1. Introduction 

 

The size of the European railway network is expected to continuously increase in order to 

transport most of the long-distance passengers and freight by 2030 [IRA, 2015]. Railways are, 

indeed, among the most emission-efficient transportation systems, and electric trains can offer 

a carbon-free journey (if they are powered using nuclear or renewable power sources). 

However, the European railway network is ageing, and its materials are degrading due to 

environmental threats (such as traffic, wind and temperature changes [Lee et al., 2005; 

Chattopadhyay and Reddy, 2007; Boller et al., 2015]. The railway infrastructure is thus calling 

for: i) a real-time condition monitoring of its health state over time; ii) maintenance activities 

to restore the health state to a new safe condition; and iii) renewal activities to enhance the 

performance of the railway network, in terms of comfort to passengers, speed, safety and 

availability of the service [Baxter, 2015]. Structural Health Monitoring (SHM) strategies are 

needed to guarantee the safety, reliability and availability of the infrastructure both during 

normal operation of the railways and during maintenance and modernization activities [Lee et 

al., 2010; Chen and Wang, 2017]. Particularly, the former requires an SHM method in order to 

accurately monitor the infrastructure behaviour over time, by identifying ongoing degradation 

mechanisms of the materials. The latter requires an SHM strategy in order to monitor the 

infrastructure behaviour in the short-period, by ensuring the safety of the workforce and 

understanding whether the infrastructure behaviour during the work activities is within the 

predicted safety limits [Brownjohn, 2007; Rajabi et al., 2017].  

SHM strategies are especially necessary for underground infrastructure during their 

maintenance and modernization activities. In fact, the uniqueness of each underground 

infrastructure can lead to unexpected behaviour of the in-field structure during the work 

activities [Bhalla et al., 2005]. For example, the UK railway network is subject to an 

electrification process, which aims to provide cleaner, quicker and more comfortable trains. 

The old infrastructure of the UK railway network does not usually have the clearance necessary 

to install the Overhead Line Equipment (OLE) system, which consists of 25 kV AC live 

conducting wires, insulators and supporting equipment [Kilsby et al., 2017]. Hence, 

maintenance and modernization activities of railway infrastructures are planned, in order to 

provide the necessary clearance for the OLE system. In the case of tunnels, the way chosen to 

provide the necessary clearance for the OLE is: i) to remove the track, sleepers and ballast; ii) 

to excavate into the sub-formation in order to obtain a new lowered ground; iii) to re-establish 

the ballast, sleepers and track to the new lower level that provides the necessary clearance for 

the OLE system. During these works, a real-time SHM system is required with the aim of 

monitoring the tunnel behaviour. The safety of the workforce is then guaranteed by verifying 

whether the predicted safety limits are respected by the actual behaviour of the tunnel 

[Brownjohn, 2007].  

Several long-term SHM systems for tunnel infrastructure are presented in literature [Bhalla et 

al., 2005; Li et al., 2015; Rajabi et al., 2017; Wang et al., 2017], with the aim of developing 

and studying an optimal measurement system to monitor and predict the behaviour of the 

tunnel. For example, [Bhalla et al., 2005] present a comprehensive review of measurement 

strategies for a tunnel, by analysing and discussing the positive effect of the SHM on the tunnel 



life cycle. [Li et al., 2015] introduce a new wired sensor strategy to monitor the convergence 

of a tunnel under work activities; [Rajabi et al., 2017] discuss an Artificial Neural Network 

(ANN)-based method in order to predict horizontal displacements of a tunnel, by relying on 

the data provided by a 2D Finite Element Model (FEM) of the infrastructure; [Wang et al., 

2017] present a long‐term SHM system in order to assess the safety of a number of tunnels in 

China. A large amount of data is however generated by these SHM methods continuously. Data 

mining techniques are therefore required to analyse this data automatically, accurately and 

rapidly [Duan and Zhang, 2006]. Indeed, data mining techniques are able to transform the 

recorded data into valuable information for decision makers, by pointing out vulnerabilities of 

the tunnel. As a consequence, the safety of the asset and the workforce can be improved by 

taking rapid informed decision [Alves et al., 2015; Zhou et al., 2015; Li et al., 2016].  

In this paper, an ensemble-based data mining method is proposed in order to detect the 

unexpected behaviour of a railway tunnel. The tunnel is subjected to enhancement works, 

which are necessary for the installation the OLE system during the electrification process of 

the UK railway network. An SHM system is installed on the tunnel for monitoring the 

displacements of the tunnel during the works. An FEM of the tunnel has been developed by 

the contractor of the works in order to predict the displacement of the tunnel during the works. 

The FEM showed that the expected displacement of the tunnel should remain around the value 

of zero during each phase of the works, and, if the tunnel would converge, the displacement 

would increase at a rate of 0.001 mm/h. A data mining analysis is proposed in order to analyse 

measurements over one month, and identify unexpected behaviour of the tunnel, i.e. the 

behaviour that does not agree with the FE predictions. The works that are carried out on the 

tunnel at the time of the unexpected behaviour are also investigated. The recorded data are 

firstly analysed by using a pre-processing step, which removes the noise of the data. Then, a 

feature definition and selection process is adopted in order to identify the critical locations of 

the tunnel, by the means of a K-means algorithm [Jain, 2010]. The unexpected behaviours, 

which are measured at the critical location on the tunnel, are evaluated by using a novel 

ensemble-based change-point detection method. The proposed method is used to identify the 

time when the tunnel starts to converge rapidly and point out the duration of the unexpected 

behaviour. The performance of four individual change-point detection algorithms is merged to 

detect and diagnose the most critical behaviour of the tunnel [Lavielle, 2005; Carslaw et al., 

2006; Killick et al., 2012; Liu et al., 2013]. The works at the tunnel site that are carried out at 

that time are investigated, with the aim of pointing out the causes of the unexpected behaviour. 

The ensemble-based change-point detection method is needed in order to identify the most 

critical change-point of the monitored tunnel behaviour. Indeed, single change-point methods, 

such as Cumulative Sum (CUSUM)-based [Carslaw et al., 2006] or probability distributions-

based [Liu et al., 2013] methods, are able to detect only abrupt changes in the data, without 

pointing out the most severe changes. Furthermore, the longer the duration of the monitored 

behaviour of the system, the higher the number of the abrupt changes, which are identified by 

an individual change-point method. Thus, the most severe change in the data can be lost among 

all the change-points [Killick et al., 2012]. Individual change-point methods are also usually 

unable to identify the duration of the most critical system behaviour, as their objective is to 

point out the moment when the data deviates from the average behaviour [Maleki et al., 2016]. 

For these reasons, individual change point methods can lead to identifying the incorrect works 



that might have caused the unexpected behaviour of the tunnel. Conversely, the proposed 

ensemble-based of change-point methods is able to identify the most critical change in the data, 

by highlighting its start and end time. In this way, only the information regarding the most 

critical behaviour of the tunnel is provided to the decision maker. At the same time, the 

corresponding works at the worksite at the time of occurrence of the most critical behaviour 

are provided to the decision maker. The performance of the proposed ensemble-based method 

is compared with the results of each individual change-point algorithm. In this way, the 

superior ability of the ensemble-based change point method in identifying the most critical 

change-point is demonstrated.  

The remaining of the paper is organized as follow: section 2 introduces the change-points 

algorithms and the proposed ensemble-based method; section 3 describes the tunnel case study 

and the SHM system and the results; conclusion and remarks are provided in section 4.  

 

2. The proposed ensemble-based change-point detection method 

 

Change-point detection methods are developed in order to detect changes of the monitored 

behaviour of a system efficiently and reliably [Tartakovsky et al., 2014]. Change-point methods 

aim to identify the exact moment when the monitored variable of the system starts to deviate 

abruptly from an equilibrium level. Change-point detection algorithms are adopted in several 

frameworks, such as SHM and prognosis of gas turbines [Lipowsky et al., 2010; Maleki et al., 

2016], variation of air pollution concentration [Carslaw et al., 2006], variation of climate 

parameters in order to monitor climate change characteristics [Reeves et al., 2007], failure of 

pipes in chemical industries [Tickle et al., 2010]. However, change-point methods are usually 

unable to point out the most critical change-point clearly, i.e. the change-point where the 

monitored variable experiences the highest variation. In fact, the most critical change point is 

identified among all the change-points of the system. The duration of the unexpected changes 

is also not assessed. Furthermore, the choice of an individual change-point algorithm can 

jeopardize the reliability and robustness of the data analysis, due to different results of the 

individual change-point detection methods. For these reasons, in this paper we propose a novel 

ensemble-based change-point method to analyse a large database of displacements of a railway 

tunnel, by coupling the performance of four individual change-points methods. In this way, the 

proposed ensemble-based method is able to point out the most critical change-point of the 

system, providing its duration and possible causes. As a consequence, the reliability and 

robustness of the data mining analysis are expected to improve accordingly. Decision makers 

can then schedule future work activities by using the results of the ensemble-based change-

point method directly. Indeed, the most critical behaviour of the tunnel is pointed out clearly, 

in terms of both duration and corresponding works at the worksite.  

In what follows, the theoretical background of the four individual change-point algorithms is 

presented briefly, and then the proposed ensemble-based method is introduced. 

 

 



 Change-point methods: theoretical background 

 

The change-point analysis can be divided in two groups - real-time and retrospective detection: 

the former aims to identify a change-point of system behaviour as soon as it occurs; the latter 

aims to identify a change-point of system behaviour by analysing the history of the monitored 

parameter. The focus in this paper is on the retrospective change-point analysis, which provides 

more robust and accurate detection than the real-time analysis [Liu et al., 2013]. Particularly, 

the aim is to identify the most critical change-point of the system behaviour, by assessing its 

duration and diagnosing its possible causes. In order to achieve this aim, an ensemble-based 

change-point method is developed by coupling the performance of four of the most commonly 

adopted change-point algorithms: i) a change-point detection method that relies on a relative 

probability density ratio, which is computed by using the Relative unconstrained Least-Squares 

Importance Fitting (RuLSIF) [Liu et al., 2013]. The RuLSIF method has demonstrated to 

provide very good results in identifying change-points through the assessment of a relative 

probability density-ratio [Fuez et al., 2015]; ii) a Cumulative Sum (CUSUM) change-point 

detection algorithm [Carslaw et al., 2006]. The CUSUM is one of the most popular change-

point method that has been adopted in many different research framework, such as air pollution 

concentration [Carslaw et al., 2006], failures of computer networks [Montes De Oca et al., 

2010], functionality of animal brain activity [Koepcke et al., 2016], failures of water 

distribution networks [Misiunas et al., 2006]; iii) a change-point detection method that relies 

on the identification of changes of the mean value of the monitored system behaviour, by 

defining a penalty cost function [Lavielle, 2005]; iv) a change-point detection method that 

relies on the identification of changes of the slope of the monitored system behaviour, by using 

a Pruned Exact Linear Time (PELT) method [Killick et al., 2012]. The change-point methods 

iii) and iv), which rely on the same theoretical basis, have been chosen due to their efficiency 

and low computational burdensome. Indeed, as the length of the monitored parameters 

increases, the number of possible change-points also increases, and thus an efficient and fast 

detection of change-point is needed [Harchaoui and Levy-Leduc, 2010; Killick and Eckley, 

2014]. 

 

2.1.1 Theoretical basis of the adopted change-point algorithms 

 

The comprehensive description of the theory of these methods is out of the scope of this paper, 

and an interested reader can find the details of the theoretical basis of these methods in the 

provided references. However, in what follows a simplified theoretical description of these 

methods is provided:  

 

i) The RuLSIF change-point method. This method aims to detect a change-point by 

assessing the probability density ratio, 
( )

( )

p t

p t n
, of samples of the monitored system 

behaviour, Y(t), between time t and t+n, where n is the size of a time window. The 

samples Y(t) and Y(t+n) are defined as the k behaviour of the system within the time 

window n, such as the displacements of the tunnel that are recorded during k times 



consecutively. For example, Fig. 1 shows the monitored behaviour of the system 

such as the displacement of a tunnel, y(t), which is collected at each time t: its 

samples, Y(t) and Y(t+n), are the k=3 displacements of the tunnel recorded during a 

time window of size n=5, i.e. Y(t) is defined by the measurements recorded at time 

a, b and c, whereas Y(t+n) is equal to the displacements at time f, g and h. The ratio 

of the probability densities, 
( )

( )

p t

p t n
, between Y(t) and Y(t+n) can be then assessed 

by using the RuLSIF strategy.  

 

 
Fig. 1. Graphical relationship between the monitored behaviour of the system, y(t), and its 

samples, Y(t) [Liu et al., 2013].  

 

Particularly, the change-point is estimated by monitoring the evolution over time of 

an -relative Pearson (PE) divergence index, which depends on the Gaussian kernel 

estimation of the density-ratio: 
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where the Gaussian kernel function, K, is computed as:  
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(2) 

  in Eq. (2) is the width of the kernel. 

The parameters, i
 , are to be found from the data [Liu et al., 2013]. Eq. (1) and Eq. 

(2) show that the PE index increases as the distance between the samples Y and Yi 

increases, i.e. the probability that a change-point occurred increases as the 

difference between the two samples of the monitored system behaviour increases.  

 

ii) The CUSUM change-point detection algorithm. Given a time series of monitored 

behaviour of the system, such as the displacement of a tunnel at consecutive times 

1, 2, …, m, y(t)= [y1, y2,…, ym], where m is the size of the measured behaviour of 

the system, the CUSUM chart is developed by assessing the cumulated difference 

between each value yi of y(t) and the mean value of the displacement pattern, 𝑦̅: 

 



Si = Si-1 + (yi - 𝑦̅)  for i = 1, 2, …, m (3) 

 

Eq. (3) shows that when the system behaviour is measured, the cumulative 

difference, Si, is computed as the difference between the mean value of the 

measured behaviour of the system, 𝑦̅, (e.g. the mean value of the recorded 

displacement of a tunnel) and the value of the system behaviour at each time, yi, 

(e.g. the displacement of the tunnel at each time step).  

The difference between the maximum value of Eq. (3), Smax, and the minimum 

cumulated difference, Smin, is the maximum variation of the CUSUM, ΔSmax. ΔSmax 

is used in order to evaluate if a change of the monitored behaviour of the system 

has occurred. Indeed, once ΔSmax for the original recorded data is computed, the 

values of the monitored behaviour of the system, y(t), are randomly resampled for 

1000 times, and the CUSUM process is repeated for each resampled trial. As 

proposed by [Carslaw et al., 2006], we consider that a change has occurred on the 

recorded data y(t) when the ΔSmax of y(t) is higher than the ΔSmax of the 95% of the 

randomly resampled trials. Therefore, a change point is estimated to have occurred 

at the time of occurrence of the maximum CUSUM value, ΔSmax, if a 95% 

confidence level is achieved. Finally, multiple change-points can be detected by 

dividing the monitored behaviour data y(t) in two parts, one for each side of the 

identified change-point, and repeating the CUSUM analysis for each part. The 

CUSUM analysis is terminated when no change-point is detected in each analysed 

part of y(t). 

 

iii) The penalty cost function-based change-point detection method. The existence 

of change-points of the monitored behaviour of the system is investigated by 

minimising an objective cost function, C. Particularly, assume that the monitored 

behaviour, y(t), shows l change-points, which occur at time 
1: 1 2

( , , , )
l l

    . The 

monitored behaviour, y(t), is divided in l+1 segments, 
1( 1):j j

y   
. The cost function 

for each segment, which needs to be minimized, can be defined as follows: 
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where ( )f l  is a penalty function that is usually linear with the number of the 

change-points, ( )f l l    [Killick et al., 2012]. The cost function C is defined by 

using features of the monitored system behaviour. For example, the mean value, 

the root mean square, the standard deviation, etc. of the system behaviour can be 

used as features that define the objective of the cost function C. A change-point is 

identified at time when the cost function is minimized, i.e. at time when the chosen 

feature of the system behaviour changes suddenly. In Section 3.4 a cost function 

that aims to detect change-points by looking for changes of the mean value of the 

system behaviour is presented. The penalty parameter   is optimized by using an 



iterative procedure with the aim of minimizing the cost function, C [Lavielle, 

2005]. However, the optimal choice of the penalty function, ( )f l , and the penalty 

parameter,  , depend on several parameters that are unknown a-priori, such as the 

length of the data and number of change-points [Killick and Eckley, 2014].  

 

iv) The PELT-based change-point detection method. This method identifies the 

change-points of the monitored behaviour of the system, y(t), by relying on the same 

theoretical approach described for method iii), i.e. by minimizing the cost function, 

C. However, a pruning strategy is applied in order to improve the computational 

speed and efficiency of the change-point search. Hence, the values of the monitored 

behaviour of the system, y(t), that cannot minimize the cost function, C, are 

removed from the analysis. In Section 3.4 a cost function that aims to detect change-

points by identifying changes on the slope of the system behaviour by considering 

an autoregressive linear model for the individual change-point method is presented.  

 

 The proposed ensemble-based change-point detection method 

 

The individual change-point methods described in section 2.1.1, are able to identify efficiently 

abrupt change-points of the monitored variable of the system. However, the most critical 

change-point, which occurs when the monitored variable experiences the highest variation, is 

identified among all the change-points, experienced by the system. The performance of each 

individual change-point method is different, and consequently the reliability and robustness of 

the change-point detection analysis is influenced by the choice of a change-point method. The 

duration of the change of the system is also not assessed by these individual methods. The four 

individual change-point detection algorithms are then merged together in an ensemble strategy, 

in order to point out the most critical change-point of the monitored behaviour of the system, 

by identifying its duration. The following criteria for identifying the start and end of the change-

point are proposed Eq. (5-6) and (7-8), respectively: 
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where P
  is defined as follows:  
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where *P
 is defined as follows: 
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where M is the number of the individual change-point algorithms adopted, i.e. four in this 

example; N in Eq. 8 is the length of the interval, where PE  ; ,

1

k q  and ,k q

l
  represent the first 

and l-th change-point identified by each individual change-point algorithm, respectively. 

Finally,  ,   and   are constant that need to be defined by the user.   is a threshold for the 

PE coefficient that needs to be chosen in order to emphasise the detection ability of the most 

critical change-point in the behaviour of the system, by neglecting other small changes [Liu et 

al., 2013]. The constants   and   need to be defined by the user when considering the nature 

of the case study. For example, if the ensemble-based method is applied for monitoring the 

existence of change in behaviour in a computer network,   and   need to be as low as 

possible, i.e. one second or less. Indeed, a computer network system manages large amount of 

information continuously, at each second or a fraction of a second. On the contrary, if the 

ensemble-based method is to be applied to monitor possible changes of the behaviour of a civil 

infrastructure, such as a bridge or tunnel,   and   will be set to larger values. In fact, the SHM 

measurement system can provide a measurement of the infrastructure behaviour every hour. 

As a result,   and   require to be optimized by considering the nature of the case study, and 

using expert knowledge elicitation. 

Eq. (5) shows that the ensemble-based strategy is able to identify the initial change-point of the 

most critical unexpected behaviour of the system, by looking for the maximum variation of the 

monitored system behaviour at time 
P

  (Eq. (6)). 
P

  is the first change-point that is identified 

by at least two different individual change-point methods within   time of each-other, plus a 

constant .  

Eq. (7) shows that the final point of the most critical unexpected behaviour of the system, i.e. 

the point where the critical unexpected behaviour ends, is identified by looking for time *P
 . 

The point, *P
 , in Eq. (8), is identified by looking for the minimum value between: i) the mean 

value of the time interval, where the PE coefficient is higher than the threshold  ; ii) the time 

where a change-point is identified by at least two different individual change-point methods 

within   time of each other, plus a constant  . Again,   and   depend on the nature of the 

system analysed, and they are optimized considering the nature of the system under analysis. 

The ensemble-based method merges the performance of each individual change-point method 

in order to improve the reliability of the data analysis process. At the same time, the ensemble-

based method is able to detect and diagnose the most critical change-point, by providing a 

robust and reliable analysis. Each individual change-point method identifies different change-

points of the monitored behaviour of the system, and so a reliable and robust analysis of the 

system behaviour can be influenced by the choice of the change-point algorithm. On the 

contrary, the proposed ensemble-based change-point method is able to provide the most critical 

change of the system behaviour, by coupling the results of the individual change-points 

methods. Therefore, the reliability and robustness of the identified change-point is improved. 

In what follows, the performance of the individual methods is compared with the performance 



of the ensemble-based strategy, in order to demonstrate the more robust and reliable results of 

the proposed strategy.  

 

3. A case study: data mining technique applied to a railway tunnel  

 

The proposed ensemble-based change-point method is applied to a database of real-time 

recorded displacements of a railway tunnel, which is subjected to electrification works. 

Particularly, during the electrification works, the track and the ballast of the rail are removed 

in order to excavate the sub-formation towards a new lowered level of the track, which provides 

the necessary clearance for the OLE system. However, when the track and the ballast are 

removed, the tunnel can start to converge due to changes of its support. A real-time SHM 

system is thus needed with the aim of monitoring the behaviour of the tunnel. A large amount 

of data is available from the SHM measurement system. Hence, a robust and rapid analysis of 

the recorded displacements of the tunnel is needed, in order to eventually identify unexpected 

behaviour of the tunnel. With this aim, a data mining procedure is proposed aiming to detect 

unexpected displacements of the tunnel during the works, by pointing out the time duration and 

the work activity at the tunnel at the moment of the unexpected behaviour. After a data pre-

processing process that aims to delete the noise of the measurements, a feature definition and 

selection process is carried out, in order to identify, by the means of a K-means clustering 

algorithm, the locations where unexpected tunnel behaviour is measured. The critical behaviour 

is analysed by the means of the proposed ensemble-based change-point detection method, with 

the aim of identifying the duration of the unexpected variation of the tunnel displacements. The 

work activities that are carried out at the tunnel site at that moment are also provided.  

Finally, it is worth noting that the proposed ensemble-based method is a post-processing data 

mining approach, which is able to identify and diagnose unexpected critical behaviour of an 

infrastructure, by analysing vast database of recorded data. At the same time, the identification 

of the works, which are carried out at the time of the unexpected critical behaviour, can suggest 

possible measures to mitigate the unexpected behaviour of the tunnel. Therefore, the proposed 

method can be used to address the general objectives of a risk analysis for a tunnel structure 

[Eskesen et al., 2004]. However, a comprehensive risk analysis for a tunnel structure is out of 

the scope of this paper. Methods such as fault tree analysis [Hyun et al., 2015], event tree 

analysis [Hong et al., 2009], Bayesian Network approach [Sousa and Einstein, 2012], Monte 

Carlo-based method [Rezaie et al., 2007] and fuzzy logic approach [Yazdani-Chamzini, 2014], 

which are proposed in literature, would need to be adopted in order to develop a comprehensive 

risk analysis for a tunnel structure.  

 

 Introduction to the tunnel electrification works and the SHM system 

 

The electrification process of the UK railway network aims to develop a cheaper and cleaner 

railway system. For example, a reduction of maintenance activities is expected due to less wear 

of the railway track caused by electric trains, which are lighter than diesel trains, and also 

carbon-free journeys are provided by electric trains [Baxter, 2015]. One of the biggest 



challenges of the electrification process is the installation of the OLE system on aging railway 

lines. Figure 2(a) shows a tunnel where the OLE system cannot be installed. The following 

three main activities are scheduled in order to install the OLE: i) to remove the track, sleepers 

and ballast; ii) to excavate into the sub-formation in order to obtain a new lowered ground; iii) 

to re-establish the ballast, sleepers and track to the new lower level that provides the necessary 

clearance for the OLE system. The works are carried out at intervals between 20 to 100 meters 

on the approach of the tunnel and inside the tunnel, in order to avoid a sudden sharp step in the 

track level. During these works, a real-time monitoring system is needed in order to 

continuously monitor the behaviour of the tunnel, by comparing the real convergence 

movements of the tunnel with those predicted by an FE model [Ordoñez et al., 2016]. The 

convergence of the tunnel can be measured by the means of optical and mechanical 

measurement systems: the former can rely on total stations and laser scan systems [Miura et 

al., 2005; Lato and Diederichs, 2014], whereas the latter can use distometer [Simeoni and 

Zanei, 2009] or fiber optical sensors [Mohamad et al., 2012]. However, the electrification 

works are carried out by working on two sets of track at different times. For example, whilst 

the track on the right hand-side of the tunnel is lowered, the track on the left hand-side needs 

to be accessible by trains in order to remove the ballast and move work materials. A 

measurement system that requires line-of sight within the tunnel or across the tunnel, such as 

laser distance measurement or total station, cannot be adopted. For these reasons, Shape Accel 

Array (SAA) sensors [Abdoun et al., 2009] are chosen by the contractor of the monitoring, 

which was appointed to study and install a monitoring system of the tunnel. Ten SAA sensors 

are installed within the first 100 meters of the tunnel, spaced at regular intervals along the 

tunnel length, in order to monitor a critical area of the tunnel where a void behind a section of 

the tunnel wall is discovered. Each SAA sensor is made of 23 orthogonally aligned 

accelerometers. Particularly, the sensors provide the relative displacement of the tunnel with 

respect to a reference point that measures zero always and has been numbered as sensor zero, 

as shown in Fig. 2(b). The frequency of the sensors is changed based on the type of the works 

that are carried out on the site, i.e. when the electrification works are carried out within the 

tunnel, the frequency is higher than when the works are carried out on the approaching of the 

tunnel. However, in this case-study a measurement of the displacement of the tunnel is 

provided for each hour, and, as a result, the frequency of the SAA is constant. An example of 

SAA sensor, which is composed of 23 accelerometers installed on the control points of the 

tunnel perimeter, is sketched in Figure 2(b), where the dotted line represents the SAA sensor. 

Finally, it should be noted that the available database, which is analysed by the proposed 

method, consists of the hourly measurements of the 230 sensors over a real-time monitoring 

period of 40 days.    

 



 
(a)                                                                  (b) 

Figure 2. Example of clearance problem (a), and SAA monitoring system (b). 

 

 

 

 Step 1 - Pre-processing of the displacements of the tunnel 

 

A pre-processing of the measured displacements is needed in order to correct an off-set value 

problem of the sensors, which can occur during the monitoring period. The off-set problem can 

be caused by accidental knocks of the sensor during the works, and as a result, it needs to be 

corrected. The pre-processing is carried out by assessing the difference between two 

consecutive measurements of the tunnel displacements, which are recorded by the same sensor. 

Indeed, the analysis of the expected tunnel behaviour, which has been carried out by the experts 

of the works contractor by using an FE model, showed that the expected displacement of the 

tunnel should remain around the value of zero during each phase of the works. However, if the 

tunnel would converge, the displacement would increase at a rate of 0.001 mm/h. The experts 

suggested that if the tunnel displacement increases in one hour more than 0.3 mm, i.e. the 

difference between two consecutive measurements of the tunnel displacement provided by the 

same sensor is higher than 0.3 mm, an off-set problem of the sensor has occurred. The 

measurements need to be corrected by restoring the off-set of the previous hours accordingly. 

For example, Fig. 3(a) shows the raw data provided by a sensor with a wrong off-set value at 

time 578 h, where the displacement of the tunnel jumps from -0.56mm to 16.14 mm in one 

hour. This behaviour is extremely unlikely to be caused by a real movement of the tunnel, and, 

more likely, it is caused by a knock of the sensor during the works. The off-set problem of the 

displacements leads to an incorrect assessment of the health condition of the tunnel. A pre-

processing procedure is needed in order to re-establish the correct value of the displacement of 

the tunnel. Fig. 3(b) depicts the processed displacement, where the wrong off-set at time 578h 

is removed by adding an off-set of -15.58 mm (d577 - d578 = -15.58mm) at time 578h. A pre-

processing analysis is carried out on the displacements of the whole database, in order to correct 

the off-set problem, and consequently analyse the correct behaviour of the tunnel. Similarly, 

Fig. 3(c) shows an off-set error where the relative displacement drop at time 588h from -

0.04mm to -2.6mm. After the pre-processing of the data the correct displacement of the tunnel 

can be analysed, as shown in Fig. 3(d).  

 



 
(a)                                                                  (b) 

 

 
(c)                            (d) 

Figure 3. Displacements before (a-c) and after the off-set correction (b-d). 

 

 Step 2 - Identification of critical location of the tunnel 

 

In order to point out the critical locations of the tunnel, which need to be analysed by the means 

of the proposed ensemble-based change-point detection method, a feature definition and 

selection process is developed, as shown in Fig. 4. In this way, the critical locations can be 

identified by selecting the features that optimize the performance of a K-means clustering 

algorithm. The displacements of each SAA in the tunnel are used as an input to a feature 

definition problem, where 11 statistical features (such as mean value, standard deviation, peak 

value, minimum, kurtosis, skewness, root mean square, median, interquartile range, 5% and 

95% percentile) of the displacements of the tunnel are evaluated. The 11 statistical features of 

the displacement of each SAA sensor are then used as an input to an iterative process, which 

aims to optimize the performance of a K-means clustering in terms of the compactness and 

separation of the clusters. The iterative process aims to maximize the silhouette index 

[Rousseeuw, 1987] of the tunnel behaviour belonging to each cluster, by grouping similar 

behaviour of the tunnel in the same cluster (compactness), and dissimilar behaviour in different 



clusters (separation). A group of candidate optimal features is selected by a Genetic Algorithm 

(GA) engine [Baraldi et al., 2016; Di Maio et al., 2016], and then it is used as an input to the 

K-means algorithm, where the features are grouped by evaluating the different number of 

clusters (the number of cluster is assumed to be between 2 and 5). The performance of the 

clustering algorithm is evaluated by assessing the silhouette index of the clusters, i.e. for each 

behaviour of a cluster, the silhouette index is computed by assessing its similarity with the 

other behaviours of the same cluster (compactness) compared to those of other clusters 

(separation). The iterative process is repeated until the silhouette index is maximized, and thus, 

the optimal features and the clusters are identified.  

 

 
Figure 4. Feature definition and selection process. 

 

7 of the 10 SAAs, which are installed along the tunnel, show displacements that are around the 

value of zero for most of the time of the observation, or slow increase over time of the works 

by respecting the prediction of the FE model. For that reason, these SAAs are excluded from 

further analysis. On the contrary, 3 SAAs show unexpected behaviour of the tunnel, and they 

need to be thoroughly analysed by the means of the proposed change-point method. In this 

way, we can investigate when and why the tunnel started to depart from the predicted 

displacement. The three critical SAAs are installed at 30, 40, and 80 meters inside the tunnel, 

respectively. Fig. 5 and 6 show the optimal features and clusters for the SAAs 30 and 80, by 

highlighting that the optimal number of clusters for each critical SAA is 5. The optimal set of 

features is different for each critical SAAs, i.e. the different behaviour of the tunnel, which is 

recorded by different SAA sensors, is clustered optimally by different statistical features.  

 

3.3.1 SAA installed 30m inside the tunnel (SAA30) 

 

Fig. 5(a) shows that the standard deviation, the peak value and the median are the best features 

in order to cluster the measurements of the tunnel recorded by the SAA installed 30m inside 

the tunnel. The most critical clusters are those with the highest values of these features, i.e. 



cluster 1, 3 and 4, which are represented by circles, points and pointing-up triangles 

respectively in Fig. 5(a). Accordingly, the measurements of the tunnel, which have the highest 

variability, the maximum value of displacement and median, are those belonging to the most 

critical clusters, as shown in Fig. 5(b), where the displacements of clusters 1, 3 and 4 show an 

unexpected fast increase at the beginning of the works. The displacements of the tunnel, Fig. 

5(b), are monitored and reported in this paper in order to verify the results of the K-means 

clustering in identifying the most critical sensors of the tunnel, which are further analysed in 

Step 3. Clusters 1, 3 and 4 (and the related sensors, as shown in Fig. 5(b)) require to be analysed 

with the proposed ensemble-based change-point detection method, in order to detect the exact 

point when the tunnel started to converge rapidly. The duration of this unexpected behaviour 

and the works that are carried out at that time also need to be identified. 

 

 
(a) 

 
(b) 

Figure 5. Optimal features (a) and grouped behaviours of the tunnel (b) measured by the SAA installed 30m 

inside the tunnel. 

 

3.3.2 SAA installed 80m inside the tunnel (SAA80) 

 

Unexpected behaviours of the tunnel are also measured by the SAA installed at 80 meters inside 

the tunnel. For this SAA, the optimal features that allow to obtain compact and well separated 



clusters are the mean value, the root mean square and the median of the displacements. 

Therefore, the most critical clusters are those with the extreme values of these features, as 

shown by circles, points, pointing-up and pointing-backwards triangles in Fig. 6(a) for clusters 

1, 3, 4 and 5, respectively. The tunnel behaviours that belong to these four clusters show an 

increase of the convergence of the tunnel at the beginning of the works, and consequently the 

analysis with the ensemble-based change-point detection method of these behaviours is needed.  

 

 
(a) 

 
(b) 

Figure 6. Optimal features (a) and clustered behaviours of the tunnel (b) measured by the SAA installed 80m 

inside the tunnel. 

 

3.3.3 Discussion about the identification of critical SAAs of the tunnel  

 

The critical locations of the tunnel, i.e. those SAA sensors that have measured unexpected 

displacement of the tunnel, are identified by developing the feature definition and selection 

problem. The identified critical behaviour is further analysed in order to identify the duration 

of the unexpected critical behaviour, and the kind of works that are carried out at the worksite 

at that time.  



The characteristics of the identified locations of the tunnel are summarized in Table 1, where 

the optimal features, the number of critical clusters and sensors, and the location of the critical 

sensor in the SAA are described.  

 

SAA location [meter] Optimal features 
Number of critical 

clusters 

Number of critical 

sensors 

Numbering label 

of the critical 

sensors 

30 

Standard deviation  

Peak value 

Median 

3 14 From 9 to 22 

40 

Mean value 

Root mean square  

Median 

3 13 
From 7 to 13 and 

from 16 to 20 

80 

Mean value 

Root mean square  

Median 

4 16 
From 1 to 8 and 

from 14 to 22 

Table 1. Analysis of the critical SAAs.  

 

The analysis of the critical clusters of the three SAAs shows that the sensors that have high 

numbering label (from 9 to 22), i.e. those on the right hand-side of the tunnel, as shown in Fig. 

2(b), are those with the higher value of displacement, as shown in Table 1. However, the SAA 

installed at 80m inside the tunnel, Fig. 6(b), shows high values of displacement on both sides 

of the tunnel, and as a result the infrastructure of the tunnel might have unknown critical issues 

at this point. This common behaviour can mean that the works are carried out on the right-hand 

side of the tunnel, and as a result the displacement of the tunnel on the right hand-side is higher 

than on the left-hand side, due to the temporary lack of the track and the excavation process. 

However, such detail information is not available on the database of the work activities, as only 

the information about the main work activity (e.g. excavation of the zone between 80 and 100 

meters) is available.  

In what follows, the behaviour of the critical clusters, which are identified by using the feature 

definition and selection process, are analysed further, in order to point out the time of 

occurrence, the duration and the possible causes of the unexpected fast convergence of the 

tunnel.  

 

 Step 3 – Change-point identification using the proposed ensemble-based 

methodology  

 

The measurements that have been identified to describe the critical behaviour of the tunnel are 

further analysed with the aim of identifying the time when the unexpected behaviour of the 

tunnel has started, its duration and pointing out its possible causes. The duration of the 

unexpected tunnel behaviour is identified by the means of the proposed ensemble-based 

change-point detection method, whose performance is compared with the results of each 

individual change-point method. Once the most critical change-point is identified, the works 

that are carried out at the tunnel site are investigated by automatically analysing the database 

of the work activities. However, hard copies of the spreadsheets of the works are usually used 

by the contractor of the works, and an electronic version is prepared only at a later date. Hence, 



some information about the works might be omitted. Other possible causes that can lead to 

unexpected behaviour of the tunnel, such as geophysics of the ground around the tunnel or 

geometry of the tunnel, are neglected due to the lack of such technical information about the 

tunnel. The works that are carried out at the tunnel are investigated by using the results of each 

change-point algorithm. Indeed, the identification of the works is achieved by looking for the 

activities that are carried out at the moment of the identified change-point(s). However, each 

individual change-point method is not able to point out clearly the most critical change-point 

of the tunnel behaviour, and the works that are carried out at the time of the most critical 

change-point cannot be identified accordingly.   

In this case study, the values of the time constants  ,  ,  , and  , which have been 

introduced in Section 2.2, are optimized by expert knowledge elicitation, and they are equal to 

-7h, 15h, 10h and 0.75, respectively.  

In this paper, two particular penalty functions are considered in order to detect change-points 

of the monitored variable by using the individual change-point methods iii) and iv) of Section 

2.1.1: 

 

1.  a cost function, C, in order to detect change-points by identifying changes on the mean 

value of the monitored variable by applying the change-point method iii): 
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where
_

j
y is the empirical mean value of the monitored behaviour of the tunnel in the 

segment j, 
q

y  is the monitored variable of the tunnel at time q, m is the time duration of 

the monitored behaviour of the tunnel and j
  is a change-point of the tunnel behaviour. 

 

2. a cost function, C, which aims to identify change-points of the tunnel behaviour by 

pointing out changes on the slope of the system behaviour by considering an autoregressive 

linear model for the individual change-point method iv). The cost function is then defined 

as follows: 
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where *  is the estimation of the variance of the monitored data in the segment 1
[ , ]

j j
 

 , 

i.e. 
1( 1):j j

y   
, j
  is a change-point of the tunnel behaviour. 

In what follows, without loss of generality, among the critical sensors of the clusters that have 

been identified in Section 3.3, we present two examples, in order to discuss the performance 

of the proposed ensemble-based change-point method with respect to the individual change-

point methods. 

 



3.4.1 Change-point analysis of SAA30 

 

Fig. 7(a-1) shows the displacement measured by sensor SAA30_13 (i.e. the sensor number 13 

of the SAA installed at 30m inside the tunnel). An increase of the displacements around time 

100h is recorded, as shown in Fig. 7(a-1). Fig. 7(a) depicts the performance of each individual 

change-point method by comparing it with the result of the proposed ensemble-based method. 

Each individual change-point methods is able to point out this change-point generally, as 

shown in Fig. 7(a-2), (a-3), (a-4) and (a-5) by the means of vertical lines and the probability of 

change being higher than  = 0.75 for the RuLSIF method. The change-point is identified 

around time 130h by the RuLSIF method, which results to be at a later time than the actual 

initial change-point (Fig. 7(a-2)). The CUSUM, the penalty cost-function-based and the PELT-

based methods are able to identify the change-point effectively around time 80h, as shown in 

Fig. 7(a-3), (a-4) and (a-5), respectively. However, each individual change-point method is not 

able to identify the duration of the unexpected behaviour of the tunnel, i.e. the time when the 

unexpected behaviour ends is not found. A second and small change-point around time 400h 

is identified by the CUSUM, the penalty cost-function-based and the PELT-based methods, 

Fig. 7(a-3), (a-4) and (a-5), and a third one at time 600h by the CUSUM method (Fig. 7(a-3)). 

The change-point at time 80h can be caused by the works that are carried out in the first 50m 

inside the tunnel. In a similar way, the change-point at time 130h, which is identified by the 

RuLSIF method, is due to the works in the first 50m inside the tunnel. The change-point at time 

400h can be caused by work activities that are carried out at between 340 to 420m inside of the 

tunnel, as reported in the database of the work activities for that time. However, the change-

point at time 400h is not the most critical change-point of the tunnel behaviour, which is the 

one where the tunnel shows the highest change of its convergence. The most critical change-

point is not identified by each individual change-point algorithm, i.e. the start and ending time 

and the duration of the most critical change are not identified. Oppositely, the proposed 

ensemble-based change-point method is able to identify the time when the tunnel started to 

converge rapidly at time 74h. At the same time, the final time of the unexpected behaviour, i.e. 

when the fast convergence of the tunnel ends, is pointed out at time 161h, as shown in Fig. 7(a-

6). The most critical unexpected behaviour of sensor SAA30_13, and its duration, is identified 

by the proposed method correctly. The proposed method provides the information of the most 

critical behaviour of the tunnel directly, i.e. the initial time and the duration of the most critical 

behaviour of the tunnel are provided by the ensemble-based method in a simple and clear way. 

In contrast, each individual change-point method provides the information of all the change-

points of the tunnel, without assessing the duration and the criticalness of each change-point. 

The information of the time of occurrence of the most critical tunnel displacements is used to 

analyse the database of the works. Fig. 7(b) shows the works that are carried out at the tunnel 

site at the start and end of the fast convergence of the tunnel. It can be observed that when the 

track and the ballast of the rail are removed in the first 50m inside the tunnel, the tunnel starts 

to converge rapidly. At the same time, the ground is being drained from the extra water. On the 

other hand, the fast convergence of the tunnel ends around 87h later, when the base stone 

process is started in order to fill-back the ground with new ballast. The works at the beginning 

of the most critical change of the tunnel behaviour can be identified correctly by using the 

information provided by the individual change-point algorithms. However, three out of four 



individual change-point methods do not provide information about the works that are carried 

out at the end of the critical behaviour of the tunnel, and the RuLSIF method provides this 

useful information. As a consequence, the individual change-point methods results depend on 

the choice of the method, and as a result, the reliability of the analysis can be jeopardized.  

 

 
(a) 

 
(b) 

Figure 7. Change-point detection of the SAA30_13 by using the proposed ensemble-based method and each 

individual change-point method (a), and the corresponding work activities (b). 

 

3.4.2 Change-point analysis of SAA80 

 

An increase of the displacements of the tunnel is also measured by SAA80. The feature 

definition and selection process of Section 3.3 showed that the SAA80 is particularly critical, 

due to the fact that high values of displacement are measured all along the section of the tunnel. 

Indeed, almost all the sensors of the SAA80 measure an increase of the convergence of the 

tunnel at the beginning of the works. For example, Fig. 8(a-1) shows the displacement recorded 

by sensor 19 of the SAA80. Therefore, the analysis of this behaviour with the ensemble-based 

change-point method is needed in order to point out the time duration of this unexpected fast 



convergence of the tunnel, and the works that are carried out at the tunnel at that time. Figs. 

8(a-2), (a-3), (a-4) and (a-5) show the analysis of the displacements of the tunnel by the means 

of each individual change-point method. Again, the RuLSIF method detects the change-point 

at a later time than the actual initial point of the unexpected behaviour, as shown in Fig. 8(a-

2). The CUSUM and the penalty cost-function-based agree in pointing out the first change-

point around 50h (Figs. 8(a-3) and (a-4)), whereas the PELT-based method identifies the first 

change-point around 80h, Fig. 8(a-5). Furthermore, the CUSUM, the penalty cost-function-

based and the PELT-based methods identifies a second change-point of the displacement of 

the tunnel around 100h, i.e. before that the tunnel stops to converge, as shown in Figs. 8(a-3), 

(a-4) and (a-5), respectively. The analysis of the database of the work activities shows that no 

information is available at time 50h, when the first change-point is identified by each individual 

change-point method. At time 100h, the works are carried out in the first 50m inside the tunnel, 

and, especially, the base stone process of this section has been started. Conversely, the 

proposed ensemble-based change-point method identifies a change-point interval that starts at 

time 50h and ends at time 169h (Fig. 8(a-6)). In this way, the initial point where the tunnel 

displacement starts to increase and the end point of the critical convergence are identified. The 

analysis of the database of the work activities shows that no information are available at the 

beginning of the critical behaviour of the tunnel. On the contrary, the tunnel stops to converge 

when the works are carried out at 50 to 100 meters inside the tunnel, as shown in Fig. 8(b). The 

base stone process of this section of the tunnel is initiated when the fast convergence of the 

tunnel ends, and subsequently we can conclude that when the ground is back filled with new 

ballast, the tunnel stops to show the unexpected fast increase of the displacement. The works 

identified by using the results provided by the ensemble-based method are different from those 

retrieved by using the results of the individual change-point algorithms. Particularly, at time 

100h, i.e. the change-point identified by the individual change-point methods, the behaviour of 

the tunnel is still changing rapidly, as shown in Figure 8, and the works are carried out in the 

first 50m inside the tunnel. In contrast, the ensemble-based method points out that the fast 

convergence of the tunnel ends at time 160h, when the works are carried out at 50 to 100 meters 

inside the tunnel.  

Note that similar results in terms of the performance of the proposed method, described in this 

section, have also been achieved during the analysis of other critical sensors, as identified in 

Table 1 of Section 3.3. 

 



 
(a) 

 
(b) 

Figure 8. Change-point detection of the SAA80_19 by using the proposed ensemble-based method and each 

individual change-point method (a), and the corresponding work activities (b). 

 

3.4.3 Discussion of the results 

 

Table 2 shows the results of each individual change-point detection algorithm and the proposed 

ensemble-based method for the SAA 30, 40 and 80, i.e. the SAAs that show unexpected critical 

behaviour. It can be observed that the RuLSIF change-point method detects a change-point 

always a later time than the other change-point. This behaviour can be due to the optimization 

of the parameters, i
 , which are learned from the data, and the definition of the size of the time 

window, n. the results of the CUSUM, penalty function and PELT change-point methods agree 

generally in all the three SAAs analysed. The individual change-point methods provide all the 

change-points of the tunnel behaviour, and so the most severe change of the tunnel behaviour 

can be lost among all the change-points. Furthermore, individual change-point methods are 

unable to identify the duration of the most critical system behaviour. The works that might 

have caused the unexpected behaviour of the tunnel, which are identified by investigating the 

database of the work activities when a change-point is identified, demonstrate the usefulness 



of the proposed method. For example, the SAA30 shows the unexpected behaviour when the 

works are carried out in the first 50m inside the tunnel. Table 2 shows that the ensemble-based 

method is able to point out directly the works at the initial and end time of the most critical 

behaviour of the tunnel, whereas the individual change-point methods are not able to correctly 

identify the works at the initial and end time of the critical behaviour simultaneously. Indeed, 

the CUSUM, the penalty function and PELT are able to correctly detect only the works at the 

beginning of the critical unexpected behaviour, whilst the RuLSIF method is able to correctly 

detect only the works at the end of the unexpected critical behaviour. For this reason, the choice 

of an individual change-point algorithm can threaten the reliability and robustness of the data 

analysis, due to different results of each individual change-point detection method. The works 

that are identified for the SAA40 lead to similar a conclusion. In opposition, SAA80 shows 

that individual change-point methods are not able to point out the works correctly. In fact, each 

individual change-point detects the works in the first 50m inside the tunnel as a possible cause 

of the unexpected tunnel behaviour. However, the ensemble-based method detects that the 

works, which are carried out when the critical behaviour of the tunnel ends, are carried out 

between 50m and 100m inside the tunnel. This result, which is not acknowledged by the 

individual change-point methods, leads to conclude that a new equilibrium of the tunnel is 

reached due to the fact that the base stone process is initiated in the area where the SAA80 is 

installed.  

Finally, the analysis of the three critical SAAs shows that all the critical SAAs show a common 

behaviour, i.e. a critical unexpected behaviour at the beginning of the works. This critical 

behaviour can be caused by the works that are carried out in the first 100m inside the tunnel, 

and, as discussed in Section 3.3, on the right-hand side of the tunnel. 

 

 Change-

point 

algorithm 

Identified 

change-

points [h] 

Change 

duration [h] 

Work activities 

 Excavation Drainage Base-stone 

SAA30_13 

RuLSIF 
From 125 to 

167 
Not provided 0-50m 0-50m 0-50m 

CUSUM 

88 Not provided 0-50m 0-50m 0-50m 

377 Not provided 360-420m 360-380m 340-360m 

588 Not provided 620-680 580-620m 580-620m 

Penalty 

function 

43 Not provided No info No info No info 

81 Not provided 0-50m 0-50m 0-50m 

377 Not provided 360-420m 360-380m 340-360m 

PELT 
81 Not provided 0-50m 0-50m 0-50m 

377 Not provided 360-420m 360-380m 340-360m 

Ensemble 
74 

87 
0-50m 0-50m 0-50m 

161 0-50m 0-50m 0-50m 

SAA40_08 

RuLSIF 
From 111 to 

123 

Not provided 
0-50m 0-50m 0-50m 

CUSUM 

42 Not provided No info No info No info 

63 Not provided No info No info No info 

625 Not provided No info No info No info 

Penalty 

function 

47.5 Not provided No info No info No info 

58.5 Not provided No info No info No info 



624.5 Not provided No info No info No info 

PELT 
33.5 Not provided No info No info No info 

64.5 Not provided 0-50m No info No info 

Ensemble 
26 

105 
No info No info No info 

131 0-50m 0-50m 0-50m 

SAA80_19 

RuLSIF 
From 152 to 

156 

Not provided 
0-50m 0-50m 0-50m 

CUSUM 

57 Not provided No info No info No info 

96 Not provided 0-50m 0-50m 0-50m 

384 Not provided 380-420m 380-400m No info 

Penalty 

function 

63.5 Not provided 0-50m No info No info 

93.5 Not provided 0-50m 0-50m 0-50m 

PELT 

80.5 Not provided 0-50m 0-50m No info 

107.5 Not provided 0-50m 0-50m 0-50m 

397.5 Not provided 380-400m 420-440m No info 

Ensemble 
50 

119 
No info No info No info 

169 50-100m 50-100m 50-100m 

Table 2. Result for each change-point detection strategy.  

 

The proposed ensemble-based change-point method outperforms each individual change-point 

method, in identifying the most critical behaviour of the tunnel, by pointing out the time when 

the tunnel starts to converge rapidly, its duration and possible causes. Particularly, the proposed 

method outperforms each individual method when severe unexpected behaviour is 

experienced, i.e. when the displacements of the tunnel increase suddenly and rapidly. However, 

the proposed method is able to point out the most critical change-point of the tunnel, without 

providing further information regarding other smaller change-points. Decision makers can be 

interested in identifying and analysing the most critical behaviour of the system firstly, and 

once immediate actions are taken, minor changes in the system behaviour can also be analysed. 

In that case, a comprehensive analysis of the data can be carried out and all the vulnerabilities 

of the tunnel during the work activities identified. If all the change-points were to be analysed, 

the proposed ensemble-based change-point method can be used for this purpose by modifying 

its rules appropriately. For example, a decision maker can look for each change-point that has 

been identified by at least two individual change-point methods, rather than for the change-

point where the tunnel behaviour experiences its highest variation. Indeed, each individual 

change-point detection algorithm identifies different change-points, and as a consequence, a 

reliable and robust analysis of the most critical behaviours of the tunnel is influenced by the 

choice of the change-point algorithm. On the contrary, the ensemble-based method is able to 

identify the most critical change-point of the system behaviour, by merging the results of the 

different change-points methods, and thus the reliability and robustness of the identified 

change-point is improved. Finally, decision makers can then use the results of the ensemble-

based change-point method directly, as the most critical behaviour of the tunnel is pointed out 

clearly, by providing the information regarding its duration and causes. In this way, the future 

work activities can be scheduled by guaranteeing the safety of the asset and the workforce. 

 



4. Conclusion  

 

A large amount of data is generated by SHM systems, which monitor the health state of railway 

infrastructures during normal operation and maintenance or renewal activities. When 

maintenance or renewal activities of the infrastructures are carried out, a short-term monitoring 

system is usually adopted to monitor the behaviour of the infrastructure during the works. 

Therefore, the development of data mining techniques, which are able to analyse the large 

amount of measured behaviour of the infrastructure automatically, accurately and rapidly, is 

required in order to improve the safety of the asset and the workers. In this paper, an ensemble-

based change-point detection method has been presented with the aim of identifying and 

diagnosing the most critical behaviours of a railway infrastructure. The proposed ensemble-

based change-point detection method has been developed to overcome the limitation of the 

individual change-point methods. In fact, individual change-point methods can only detect 

abrupt changes of the behaviour of the infrastructure, without providing information regarding 

the severity and the duration of the identified change-points of the infrastructure behaviour. 

The proposed method has been verified through the analysis of a database of real-time 

measured displacements of a railway tunnel, which was subject to renewal works. The most 

critical locations of the tunnel, which required to be analysed by the means of the proposed 

algorithm, have been identified by using a features definition and selection process. The critical 

behaviour of the tunnel has been analysed by comparing the results of the proposed method 

with those of the individual change-point methods, with the aim of identifying when and why 

the unexpected behaviour of the tunnel has occurred. The results have shown that the 

performance of the individual change-point methods is influenced by the choice of the method, 

and consequently, a different assessment of the health state of the tunnel can be achieved by 

choosing different change-point detection methods. Conversely, it has been demonstrated that 

the proposed method outperformed each individual change-point detection method, by 

providing robust and reliable information regarding the most critical change-point of the tunnel 

behaviour. 

Data mining techniques, such as proposed ensemble-based change-point detection method, are 

necessary in order to transform the large amount of data into valuable information for decision 

makers. The proposed method aims to provide fast and reliable information to decision makers 

by identifying the most critical behaviour of a tunnel. In order to provide a comprehensive 

analysis to the decision makers, small change-points might also need to be identified and 

analysed. Finally, the proposed data-mining approach can be used as an input to a prediction 

algorithm, such as neural networks, support vector regression, etc., in order to predict the future 

behaviour of the system by assessing when the unexpected behaviour will end.  
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