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Abstract

This study has deduced a correlation between points of inflection of water activity and loss factor

with respect to moisture content. A point of inflection in loss factor with respect to moisture

content was found to coincide with the sorption isotherm point of inflection that defines the

transition from multilayer to solution in every instance analysed, with an average difference of

just 0.01kg.kg-1. Food can support microbial growth and chemical reactions in water activity

levels above this critical transition. This correlation was discovered using published dielectric

and sorption data for specific foods at similar temperatures. It was found that low sugar foods

containing high levels of hydrocolloids generally exhibited different behaviour from fruits. This

shows that microwave heating behaviour will be different in fruits compared to low sugar foods

with high hydrocolloid content when drying to achieve a certain water activity and therefore

shelf life.
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Introduction

Almost every food product is dried at least once at one point of its preparation (Sokhansanj &

Jayas, 2006). Drying of food typically occurs as part of the cooking process. Dehydration can

also be required specifically for food preservation. The reduced weight and bulk of dehydrated

products and their improved stability reduces product storage and distribution costs (Toledo,

2007). Microwave heating can be used in some food drying applications as it provides some

unique benefits compared to conventional forms of heating. Unlike conventional heating,

microwave heating does not rely on temperature gradients for heat transfer. Microwave heating

is volumetric, instantaneous, and high power densities can be applied (Clark & Sutton, 1996). It

has been successfully employed in a number of food drying applications, such as biscuit finish

drying where reduced cracking in biscuits was obtained through superior uniformity of final

moisture content, and production rates were improved significantly (Bernussi, et al., 1998;

Koral, 2004). Pasta drying is another microwave application were the time taken to dry pasta was

reduced (Altan & Maskan, 2005; Berteli & Marsaioli Jr., 2005).

The drying of materials is largely governed by the isosteric heat of sorption, and by its water

activity relative to that of surrounding air (Richardson, et al., 2002; Wang & Brennan, 1991).

Sorption isotherms plot the moisture dependence of water activity, and multiple sorption

isotherms taken at different temperatures can be used to define the isosteric heat (Wang &

Brennan, 1991). The points of inflection observed in sorption isotherms are used to define the

transition from monolayer to multilayer, and the transition from multilayer to solution (Yanniotis

& Blahovec, 2009). These two critical transitions defined by the sorption isotherm is shown in

Fig. 1, where both water activity and loss factor of freeze dried potato are plotted against

moisture content, as measured by Mudgett et al. (1980) (Yanniotis & Blahovec, 2009). The first

point of inflection defines the monolayer moisture content, which is a transition from monolayer



moisture to multilayer moisture and can be calculated using the BET equation (Yanniotis &

Blahovec, 2009; Al-Muhtaseb, et al., 2002). The monolayer moisture content theoretically

assumes that each hydrophilic group has a water molecule associated with it, which can occur

due to dipole-dipole forces, dipole-ion interactions, van der Waals forces, or hydrogen bonding

(Labuza & Altunakar, 2007). Below the monolayer moisture content the moisture is tightly

bound, with an enthalpy of vaporisation considerably higher than that of pure water (Yanniotis &

Blahovec, 2009; Wang & Brennan, 1991). Foods that are dehydrated below the monolayer

moisture content have a maximum shelf-life (Labuza & Altunakar, 2007). Examples of foods

dried below the monolayer moisture content are potato crisps, crackers and biscuits (Schmidt,

2007). The next point of inflection is the transition from multilayer to solution. Once the

moisture is in solution there is enough water mobility to support microbial growth and chemical

reactions (Labuza & Altunakar, 2007). Due to its importance for drying, and for determining

food stability, sorption isotherms of foods have been extensively studied, with a large number of

empirical and kinematic models used to mathematically describe sorption isotherms (Al-

Muhtaseb, et al., 2002).



Fig. 1 - Adsorption isotherm and corresponding loss factor at 25oC of freeze dried potato at
3GHz taken from Mudgett et al. (1980)

The dielectric response of foods dictates their heating, and the uniformity of the heating, when

subject to Radio Frequency (RF) or microwave radiation. The moisture dependence of dielectric

properties is critical for drying applications. It can lead to thermal runaway problems if the

material heats more readily at lower moisture contents, or it can lead to moisture levelling effects

if the material heats less readily at lower moisture contents (Schiffmann, 2006; Gard, et al.,

2014; Metaxas, 1996). Compared to the study of sorption isotherms, there are relatively few

studies describing the moisture dependence of dielectric properties of foods, and there is no

recognised standard equation used to describe the moisture dependence of dielectric properties of

foods.



The dominant mechanisms responsible for dielectric loss in foods are dipolar rotation and ionic

conduction (Jiao, et al., 2015). Studies show that the loss factor does not increase much with

respect to moisture content until a “critical dielectric moisture content” is reached, after which a

rapid increase in loss factor with respect to moisture content can be observed as shown in Fig. 1

(Schiffmann, 2006; Metaxas & Meredith, 1993; Mudgett, et al., 1980; Tulasidas, et al., 1995;

Guo, et al., 2008). The point of inflection at which the loss factor increases rapidly with respect

to moisture content can be thought of as the point at which there is a significant change in water

mobility to better support dielectric loss mechanisms (Metaxas & Meredith, 1993). The critical

dielectric moisture content has been observed in foods at both RF and microwave frequencies,

suggesting that mobility is important for both ionic conduction, and dipolar rotation (Sacilik &

Colak, 2010). A second point of inflection has been observed at high moisture contents in

numerous foods (Mudgett, et al., 1980; Kim, et al., 1998; Feng, et al., 2002; Tulasidas, et al.,

1995). This second point of inflection shows a decrease in the rate of change of loss factor with

respect to moisture content as shown in Fig. 1, and it is caused by reduced ionic conduction. This

reduction in ionic conduction occurs due to dilution of the salts (Mudgett, et al., 1980).

The relatively flat dielectric response below the critical dielectric moisture content shows that the

dielectric response is being restricted by interaction between the water and the food. Both dipolar

rotation and ionic conduction require water mobility, and both nuclear magnetic resonance

spectroscopy (NMR) and water activity studies show that water mobility is limited at lower

moisture contents (Schmidt, 2007). It can be concluded that water mobility is extremely

important for dielectric response, and consequently for microwave drying. The reduction in

water activity and loss factor with respect to moisture content between intermediate and low

moisture contents suggests that both water activity and dielectric response are dependent on

water mobility, and their behaviour may therefore be linked. Study of their relationship is



therefore of interest as there could be inter-dependency. This inter-dependency could be

consequently used to build dielectric relationships, and to better understand dielectric behaviour.

There are very few examples in literature where the points of inflection on sorption isotherms are

compared to the critical dielectric moisture content. Dielectric property studies are typically

completely separate from sorption isotherm studies, as they belong to different physics

disciplines and there are no studies that investigate an overall relationship between water activity

and dielectric properties. Mudgett et al. (1980) plotted the dielectric properties of potato against

water activity, Holtz et al. (2010) plotted penetration depth against water activity, while Martin-

Esparza et al. (2006) plotted dielectric properties of apples against water activity. However, each

of these works only studied one food, so no conclusions were drawn about the general

relationship between dielectric and water activity behaviour in foods. The present study aims to

determine if a relationship exists between the inflection points of moisture dependent dielectrics

and sorption isotherms using published data.

A literature review was carried out to identify foods for which the dielectric response with

respect to moisture is published, as well as the corresponding sorption isotherms. Moisture

dependant dielectric response and sorption isotherm data was obtained for eight foods as shown

in Table 1.

It was important to use a common type of sorption when comparing moisture dependent

dielectric properties with sorption isotherms, as sorption isotherms of food commonly display

hysteresis between desorption and adsorption (Al-Muhtaseb, et al., 2002). This meant that some

published dielectric data could not be used in the present study, such as the dielectric properties

of hard red winter wheat measured by Nelson & Stetson (1976). This dielectric data contained



both adsorbed and desorbed data points and could therefore not be compared to a desorption or

adsorption isotherm.

The sorption isotherm measurements used in the present study were taken at exactly the same

temperature as the dielectric measurement, except for wheat flour, yellow dent corn, and grapes.

For yellow dent corn the dielectric measurement was taken at 24oC and the sorption isotherm

was measured at 25oC, while dielectric measurement was taken at 25oC and the sorption

isotherm was measured at 30oC for grapes. The dielectric measurement for wheat flour was taken

at 22oC while the sorption isotherm measurement was taken at 20oC.

The monolayer moisture content was calculated by fitting the BET sorption isotherm model to

the experimental data using non-linear regression, where BET stands for Brunauer, Emmet, and

Teller, who are the authors that derived the sorption equation (Brunauer, et al., 1938). The

equation is shown below were Mdb is the moisture content dry basis, aw is water activity, Mo is

the monolayer moisture content which acts as a fitting parameter, and C is also a fitting

parameter.

ௗ௕ܯ =
ܥ଴ܯ ௪ܽ

(1 − ௪ܽ )[1 + −ܥ) 1) ௪ܽ ]
(1)

The non-linear regression fitting of the BET model was carried out over a water activity range of

0-0.45, as the BET model is only effective at representing sorption isotherms at lower water

activity ranges (McMinn, et al., 2007). Non-linear regression fitting of the BET equation was

carried out using Minitab 16 software (Minitab Inc., Pennsylvania State University, USA), which



is a statistical analysis software package. The best fit of the non-linear regression was

ascertained using residual sum of squares, which is described as follows:

ܴܵܵ = ෍ ൫ݑ௘− ௣൯ݑ
ଶ

(2)

Where ue is the experimental value, and up is the value predicted by the model. Non-linear

regression is commonly used to curve fit the BET equation to experimental data (Wang &

Brennan, 1991; McLaughlin & Magee, 1998; Kaymak-Ertekin & Gedik, 2004). Regression

analysis is also used in other fields to curve fit experimental data to models, and to determine the

suitability of models for particular applications (Valipour, et al., 2013; Valipour, et al., 2017).

Unlike the monolayer, there is no recognised mathematical method for determining the transition

from multilayer to solution. This transition was determined by inspecting the sorption isotherm

curve for an increase in the rate of change of water activity with respect to moisture content.

For each graphical comparison of the points of inflection, moisture content wet basis was plotted

agianst water acitvity, and loss factor was added to a second X-axis. Water content was plotted

as wet basis, as this is convention for the reporting of dielectric properties. The points of

inflection were recorded in a comparison table for all the instances analysed.

Results and discussion

The desorption isotherm and corresponding loss factor at 3GHz for freeze dried potato is shown

in Fig. 1. The data presented in Fig. 1 was taken from Mudgett et al. (1980), where both

measurement sets were taken on a adsorption basis. Although duplicate measurements were

made, standard deviations were not presented by Mudgett et al. (1980). The BET monolayer



moisture content was calculated to be 0.076kg.kg-1 wet basis. It can be seen that the loss factor

does not change either before the monolayer, or for a period afterwards. There is a jump in loss

factor from 0.1 to 0.9 at 0.12kg.kg-1 wet basis, after which the loss factor is relatively constant

until a moisture content of 0.16kg.kg-1 wet basis. The first point of inflection in loss factor occurs

at a moisture content of approximately 0.16kg.kg-1 wet basis, which is just before the water starts

behaving like a solution at 0.2kg.kg-1 wet basis. When the moisture starts acting like a solution it

has enough mobility to support chemical reactions and the growth of micro-organisms (Labuza

& Altunakar, 2007). For the case of potatoes, Fig. 1 provides evidence that the mobility required

to support micro-organism growth is similar to the mobility required for moisture dependant

dielectric loss mechanisms. The low loss factor at moisture contents below the multilayer-

solution transition provides complications with respect to microwave heating. Low loss materials

are more difficult to heat using microwave radiation (Bradshaw, et al., 1998).

After the critical dielectric moisture content, the next significant point of inflection for the loss

factor occurs at approximately 0.31kg.kg-1 wet basis. This point of inflection constitutes a

decrease in d’’/dMwb, where ε’’ is loss factor and Mwb is moisture content wet basis. This

decrease in d’’/dMwb is caused by a dilution of the salts which reduces the ionic conduction

component of the loss factor (Mudgett, et al., 1980). The dilution continues to negatively affect

d’’/dMwb until the loss factor decreases. The zero point of d’’/dMwb occurs at approximately

0.60kg.kg-1 wet basis, after which the loss factor decreases until saturation is reached.

Holtz et al. (2010) carried out a similar measurement to Mudgett et al. (1980) of potato at

2.8GHz as shown in Fig. 2. Single points of measurement are presented for the dielectric

measurements, while the sorption isotherm points represent the average measurement of four

separate samples. The standard deviation of the sorption isotherm measurements were not



presented by Holtz et al. (2010) in tabular format, please see the study by Holtz et al. (2010) for

sorption isotherm error bars. The BET monolayer was calculated to be 0.050kg.kg-1 wet basis

using the data presented by Holtz et al. (2010).

Fig. 2 - Desorption isotherm and corresponding loss factor at 22oC of potato at 2.8GHz
taken from Holtz et al. (2010)

It can be seen that, similar to the Mudgett et al. (1980) data, there is no change in dielectric

response at the monolayer. There is not enough data points to detect the jump in loss factor from

0.1 to 0.9 which occurred at 0.12kg.kg-1 in the Mudgett et al. (1980) study. Also similar to the

Mudgett et al. (1980) data, the point of inflection due to the transition to solution at 0.21kg.kg-1

wet basis closely coincides with a large increase in d’’/dMwb. The point of inflection due to

dilution of the salts is difficult to decipher in the Holtz et al. (2010) data due to the spread of data

points. However, with the trendline used, it would appear that dilution of the salts begins to



lower d’’/dMwb at a moisture content of approximately 0.55kg.kg-1 wet basis, which is higher

than the Mudgett et al. (1980) value of 0.31kg.kg-1. However, the zero point of d’’/dMwb is

approximately 0.6kg.kg-1 wet basis, which is less subjective and agrees with the Mudgett et al.

(1980) data. Both the data from Mudgett et al. (1980) and Holtz et al. (2010) shows that potato,

being a starchy hydrocollid, has a large dielectric response relating to the transition from

multilayer to solution, where water mobility is able to support microwave loss mechanisms. Any

increase in d’’/dMwb at the transition from monolayer to multilayer results is difficult to detect.

The moisture dependant loss factor and water activity of wheat flour is shown in Fig. 3 using

best fit equations presented by Kim et al. (1998) and Moreira et al. (2010). The loss factor of

wheat flour was measured by Kim et al. (1998) at 27MHz, and looks very similar to the

measurements of potato carried out by Mudgett et al. (1980) and Holtz et al. (2010) at 3GHz and

2.8GHz respectively. There is an initial change in d’’/dMwb, which occurs just after the

monolayer of 0.068kg.kg-1 wet basis, then there is a very significant rise in d’’/dMwb at

0.27kg.kg-1 wet basis, followed by a decrease at 0.52 kg.kg caused by dilution of the salts, with

the rate of change turning negative at approximately 0.65kg.kg-1 wet basis. The large increase in

d’’/dMwb at 0.27kg.kg-1 wet basis is higher than the 0.19kg.kg-1 wet basis point of inflection of

water activity where the water starts to behave as a solution. This lag of loss factor response did

not occur in the potato measurements presented by Mudgett et al. (1980) and Holtz et al. (2010).

The lag in dielectric response could be due to the comparively low frequency of the

measurement, however chickpea flour was measured by Guo et al. (2008) at both RF and

microwave frequencies, and in each instance the critical dielcetric moisture content occurred at

the ponit at which the water started to behave as a solution. Therefore, the lag in dielectric

response for wheat flour may be due to other factors such as experimental error, or differences in

food sample behaviour. The dielectric study was carried out by Kim et al. (1998) and the



sorption study was carried out by Moreira et al. (2010), and they may have used a different type

of wheat flour. This could result in a poorer coellation in results compared to data presented by

Mudgett et al. (1980) and Holtz et al. (2010), each of which carried out both sorption and

dielectric studies themselves, ensuring the food type was common between dielectric and

sorption studies.

Fig. 3 - GAB fit Desorption isotherm at 20oC taken from Moreira et al. (2010) and loss
factor at 22oC, 27MHz taken from wheat Kim et al. (1998) for wheat flour-water mixtures

The loss factor and water activity of chickpea flour is presented in Fig. 4, and Fig. 5 at

temperatures of 20oC and 40oC respectively. Error bars are presented for both the dielectric

properties and the sorption isotherms, representing the standard deviation of three replicates in

each instance. Each figure contains plots of the loss factor at 27MHz and 1.8GHz compared to

the sorption isotherm. A similar plot is shown for the desorption isotherm and loss factor of



yellow dent corn in Fig. 6, where the loss factor was measured at 24oC, 20MHz, and the

desorption isotherm was measured at 25oC. Error bars shown on the loss factor plot in Fig. 6

represent the standard deviation of 21 measurements, a best fit equation was used to present the

sorption isotherm. Although none of these plots contain loss factor measurements at low

moisture contents that encompasss the monolayer region, it is clear from the loss factor profile

that there is only one large point of inflection at low moisture contents. In each instance this

large point of inflection in the dielectric response corresponds very closely with the second point

of inflection of the sorption isotherm, which is defined as the transition from multilayer to

solution. Up to this point, the loss factor does not change significantly and is very low.

RF/moisture levelling requires a positive gradient of loss factor with respect to moisture content,

and Fig. 4 to Fig. 6 shows that similar to potato and wheat flour, the loss factor does not vary

much with respect to moisture content below the monolayer moisture content. More data points

with suitable resolution are required to determine whether or not the loss factor has a positive

gradient with respect to moisture content below the monolayer moisture content. Although the

trends are similar for 27MHz compared to 1.8GHz for chickpea flour, the loss factor is higher at

27MHz. The higher loss factor observed at 27MHz is indicative of the presence of ionic

conduction, as the contribution of ionic conduction to the loss factor is higher at lower

frequencies (Tang, et al., 2002). Conversly the contribution of dipolar rotation to the dielectric

loss is less at 27MHz compared compared to 1.8GHz, as 27MHz is further away from the

17GHz relaxation frequency of water (Nelson & Datta, 2001). Despite ionic conduction being

the dominant loss mechanism at 27MHz, and dipolar rotation being the dominant loss

mechanism at 1.8GHz, the point of inflection is the same. This potentially suggests that a very

similar amount of water mobility is required for dipolar rotation and ionic conduction to occur in

chickpea flour, and that both loss mechanisms occur when the moisture starts to behave as a

solution. It is interesting to note that the loss factor point of inflection at 0.115kg.kg-1 wet basis



stays relatively constant when comparing the plots at 20oC, 30oC, and 40oC for chickpea flour.

However, both the transition from monolayer to multilayer and the transition from multilayer to

solution decreases in terms of moisture content for a given water activity as temperature rises

(Lagoudaki, et al., 1993). The monolayer moisture content for chickpea flour is 0.062kg.kg-1 wet

basis at 20oC, 0.053kg.kg-1 wet basis at 30oC, and 0.050kg.kg-1 wet basis at 40oC as calculated

using the BET model.

Fig. 4 - Chickpea flour adsorption isotherm at 20oC taken from Durakova & Menkov
(2005) and loss factor at 20oC, at frequencies of 27MHz and 1.8GHz, taken from Guo et al.
(2008) of Chickpea flour

The loss factors plotted from Fig. 4 to Fig. 6 show no decrease in the rate of change of loss factor

at higher moisture contents. However, this is not to say that dilution of ions does not occur, the

point of inlfection associated with dilution of ions may occur at moisture contents that are higher

than the moisture content range measured.



Fig. 5 - Chickpea flour adsorption isotherm at 40oC taken from Durakova & Menkov
(2005) and loss factor at 40oC, at frequencies of 27MHz and 1.8GHz, taken from Guo et al.
(2008) of Chickpea flour

Fig. 6 - Chung and Pfost fit desorption isotherm at 25oC taken from Samapundo et al.
(2007) and loss factor at 24oC, 20MHz taken from Nelson (1979) for yellow dent corn



The sorption isotherm and corresponding loss factor for carboxymethyl cellulose (CMC) is

shown in Fig. 7. The sorption isotherm is presented using a best fit equation, while the dielctric

data is presented using points which are an average of triplicate measurements. Nelson et al.

(1991) did not present the standard deviation or error bars associated with the triplicate

measurements taken. Fig. 7 includes loss factor measurements below the monolayer moisture

content. Similar to the previous plots, there is a point of inflection in the loss factor that directly

corresponds to the point at which the moisture starts behaving as a solution. Hence, after the

multilayer there is a large increase in loss factor. No reduction of d’’/dMwb due to ionic dilution

is observed, although this may occur at higher moisture contents which is beyond the range

measured by Nelson et al. (1991).

Fig. 7 - GAB fit adsorption isotherm at 20oC taken from Torres et al. (2012) and loss factor
at 20oC, 2.45GHz taken from Nelson et al. (1991) for carboxymethyl cellulose



It can be seen from Fig. 8 that the relationship between water activity and loss factor is different

for apples than for potato, wheat flour, chickpea flour, yellow dent field corn, and carboxymethyl

cellulose. It has been noted by Sipahioglu & Barringer (2003) that vegetables have different

dielectric behaviour than fruits. The sorption experiment was carried out with three replications

to generate the average points presented in Fig. 8. Kaymak-Ertekin & Gedik (2004) did not

provide a standard deviation for each point, but instead stated that all standard deviation of

replicates was within the range of 0.002-0.064kg.kg-1 dry basis. Three replicates were measured

for the dielectric measurements, and the error bars represent the standard deviation in Fig. 8.

Fig. 8 - Desorption isotherm at 60oC taken from Kaymak-Ertekin & Gedik (2004) and loss
factor at 60oC taken from Martin-Esparza et al. (2006) of apples at 2.45GHz

For apples, both the trend lines and the points of inflection are very closely aligned for loss

factor and water activity. The rate of change of loss factor with respect to moisture content



increases during the transition from monolayer to multilayer, and decreases during the transition

from multilayer to solution. The decrease in d’’/dMwb during the transition from multilayer to

solution could be attributed to dilution of the salts, but it is more pronounced at 2.45GHz than at

915MHz despite the fact that ionic conduction would be more dominant at 915MHz. If the

decrease in d’’/dMwb is due to dilution of salts, it would imply that salt dilution becomes

significant in apples as soon as the water acts as a solution. The large increase in loss factor,

which defines the critical dielectric moisture content, coincides with the monolayer moisture

content. This is in contrast to potatoes and other vegetables assessed in the present study where a

large increase in loss factor coincided with the transition from multilayer to solution. This

contrast in dielectric behaviour would suggest that the multilayer of moisture is far more mobile

and free to support dielectric loss mechanisms in apples which contain sugar, than the multilayer

in potatoes and other low sugar foods with high hydrocolloid content. Hydrocolloids are long

chain polysaccharide and protein polymers (Saha & Bhattacharya, 2010). Starch is a

polysaccharide commonly found in foods (Saha & Bhattacharya, 2010; Ndife, et al., 1998).

Presence of a large number of hydroxyl (-OH) groups markedly increases their affinity for

binding water molecules rendering them hydrophilic compounds (Saha & Bhattacharya, 2010).

The desorption isotherm and loss factor for grapes at 30oC is shown in Fig. 9 at 25oC, 2.45GHz.

As with the sorption isotherm shown for apples in Fig. 8, three replicates were measured and the

standard deviation of the measurements were within the range of 0.002-0.064kg.kg-1 dry basis.

The loss factor points presented are the average of four experiments, although standard deviation

was not detailed by Tulasidas et al. (1995). The loss factor follows the trend of the sorption

isotherm in the same way as was observed for apples in Fig. 8. This would suggest that fruits do

behave differently from most low sugar foods that have high hydrocolloids content, where a

large increase in loss factor occurs during the multilayer, and a decrease in the change of loss



factor with respect to moisture content occurs when the moisture is in solution. In fruits such as

grapes and apples the water predominantly interacts with sugar and pectin, whereas in vegetables

such as potato, water predominantly interacts with starch carbohydrates and cellulose (Kaymak-

Ertekin & Gedik, 2004; Maroulis, et al., 1988; McLaughlin & Magee, 1998). The representative

sugar (glucose + fructose + sucrose) contents of grapes and apples are 0.44-0.45kg.kg-1 wet basis

and 0.43kg.kg-1 wet basis respectively. Apples also have a pectin content of 0.065kg.kg-1 wet

basis. Potatoes are characterised by high starch content and contain 0.02kg.kg-1 wet basis of

sugars, and 0.44-0.46kg.kg-1 wet basis starch (Kaymak-Ertekin & Gedik, 2004). The dielectric

behaviour of grapes and apples would suggest that there is enough mobility to support dielectric

loss mechanisms in the multilayer region, whereas low sugar foods with high hydrocolloids

content can only support dielectric loss mechanisms strongly when the water acts as a solution.

The loss factor is generally higher in fruit in the multilayer region compared to low sugar food

with high hydrocolloid content, making it easier to couple microwave energy into the food for

dehydrating down to the monolayer moisture content. There is a risk that the loss factor response

is flat for part of the multilayer region in low sugar, hydrocolloid rich foods, with moisture not

being selectively heated as a result. However, better resolution is required for dielectric

measurements of low sugar foods with high hydrocolloid content in the low moisture content

multilayer region to determine if the loss factor response is truly flat. Microwave heating below

the monolayer content appears challenging for both fruits and vegetables as the loss factor is

extremely low. Microwave finish drying of potato crisps at 915MHz is an example of a low loss

material that proved difficult to process due to arcing/throughput. Schiffmann, (2001) reported

that fires were not uncommon when finish drying potato crisps at at 896/915MHz due to the low

dielectric loss of nearly dry potato crisps. This finish drying process dried potato crisps from

0.06-0.08kg.kg-1 wet basis down to less than 0.02kg.kg-1 wet basis, and the drying equipment

required fire detection and control systems.



Fig. 9 - Desorption isotherm at 30oC taken from Kaymak-Ertekin & Gedik (2004) and loss
factor at 25oC taken from Tulasidas et al. (1995) of grapes at a frequency of 2.45GHz

Table 2 shows the transition in states of the water as defined by the sorption isotherm compared

to the points of inflection of loss factor. The sources used to obtain the data analysed in the

present study is shown in Table 3. The critical dielectric moisture content and the corresponding

transition in sorption is highlighted red in Table 2. It can be seen that the critical dielectric

moisture content corresponds to the transition from multilayer to solution for all low sugar foods

analysed that had high hydrocolloid content. It can be seen that for sugary fruits, the critical

dielectric moisture content corresponds to the monolayer moisture content.

In every instance analysed, the transition from multilayer to solution corresponds to a point of

inflection of loss factor with respect to moisture content, with an average difference of just



0.01kg.kg-1 and a corresponding standard deviation of 0.03kg.kg-1. The calculation of average

difference in moisture content and corresponding standard deviation is shown in the right hand

column in Table 2. The monolayer moisture content did not exhibit any significant response in

dielectrics for most of the low sugar foods with high hydrocolloid content. The other significant

observation is highlighted in green in Table 2, and this is that the transition from multilayer to

solution corresponds with a decrease in the rate of change of loss factor with respect to

increasing moisture content for sugary fruits. This decrease in the rate of change of loss factor is

normally attributed to dilution of salts (Mudgett, et al., 1980). No such correlation can be made

for non-sugary foods with high hydrocolloid content. Table 2 shows that in general, there was a

distinct difference in behaviour observed in sugary fruits compared to low sugar foods with high

hydrocolloid content. This can also be observed in the figures presented in this study. The large

increase in d’’/dMwb at the monolayer moisture content, and the large decrease in d’’/dMwb at

the transition from multilayer to solution observed in both apples and grapes (Figures 8 and 9) is

not observed in the low sugar foods with high hydrocolloid content.

It can be seen in Table 2 that for all low sugar foods with high hydrocolloid content the dilution

of salts only affects the loss factor at moisture contents that are at least 50% higher than the

transition from multilayer to solution, if any reduction in loss factor due to dilution of salts is

observed at all. For grapes and fruits a decrease in d’’/dMwb is observed at the exact transition

from multilayer to solution. This shows that sugary fruits tend to have a different dielectric

behaviour from low sugar foods with high hydrocolloid content at high moisture contents.



Conclusions

A correlation exists between the points of inflection observed for water activity with respect to

moisture content, and for the points of inflection observed for loss factor with respect to moisture

content. The monolayer-multilayer transition is not always apparent in loss factor response,

however the transition from multilayer to solution provides a significant point of inflection for

both water activity and loss factor that is highly correlated. The dielectric behaviour with respect

to sorption isotherm points of inflection was found to be distinctly different for low sugar foods

containing high levels of hydrocolloids compared to fruits.

The rate of change in loss factor with respect to moisture content remained relatively constant at

the transition from monolayer to multilayer moisture for low sugar foods with high hydrocolloid

content. A large increase in loss factor corresponding to the critical dielectric moisture content

was found to occur at the transition from multilayer to solution at RF and microwave frequencies

of 20MHz, 27MHz, 1.8GHz, 2.45GHz, 2.8GHz, and 3GHz. A decrease in d’’/dMwb was

observed at moisture contents at least 50% higher than the transition from multilayer to solution

which is attributed to the dilution of salts. The decrease in loss factor due to salt dilution in food

was found to occur at high frequencies of 3GHz as well as low RF frequencies of 27MHz.

For sugary fruits, a large increase in loss factor corresponding to the critical dielectric moisture

content was observed at the transition from monolayer to multilayer moisture. The large increase

in loss factor observed during the monolayer-multilayer transition in fruits suggests that water in

the multilayer is more able to support dielectric loss mechanisms in sugary fruits compared to

low sugar foods with high hydrocolloid content. A decrease in d’’/dMwb was found to occur in

grapes and apples at the transition from multilayer to solution.



This study shows that there would be a difference in microwave heating of fruits compared to

low sugar foods with high hydrocolloid content when drying down to a specific water activity to

achieve a desired shelf life. The implications of this difference in microwave heating behaviour

with respect to water activity could be analysed in future studies. This study could also be

expanded with further data and more foods/materials to better define the moisture dependant

relationship between water activity and dielectric response.
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Food
Dielectric

measurement
Type of sorption

Method of dielectric
measurement



Potato
3GHz at 25oC Adsorption

Roberts & Von Hippel (1946)
short circuited line technique

2.8GHz at 22oC Desorption
Cavity perturbation (Holtz, et

al., 2010)

Wheat flour 27MHz at 22oC Desorption
Parallel plate capacitor (Kim, et

al., 1998)

Chickpea flour

27MHz at 20oC,
30oC and 40oC,
1.8GHz at 20oC,
30oC and 40oC

Adsorption
Open-ended coaxial-line probe

(Guo, et al., 2008)

Yellow dent field
corn

20MHz at 24oC Desorption
A Boonton Q-meter, Type 160-
A, and the reactance variation

method (Nelson, 1979)
Carboxymethyl

cellulose
2.45GHz at 20oC Adsorption

Roberts & Von Hippel (1946)
short circuited line technique

Apples
915MHz and

2.45GHz at 60oC
Desorption

Open-ended coaxial-line probe
(Martin-Esparza, et al., 2006)

Grapes 2.45GHz at 25oC Desorption
Open-ended coaxial-line probe
(Martin-Esparza, et al., 2006)

Table 1 - Foods with literature values for dielectrics and water activity that can be
compared, with dielectric measurement technique and sorption type listed



Table 2 - Critical dielectric moisture content and moisture content of point of inflection of loss factor corresponding to dilution of salts,
compared to the transitional moisture contents of the state of the water as defined by the sorption isotherm



Food Dielectric reference Water activity reference

Freeze dried potato Mudgett, et al., 1980 Mudgett, et al., 1980

Potato Holtz, et al., 2010 Holtz, et al., 2010

Wheat flour Kim, et al., 1998 Moreira, et al., 2010

Chickpea flour Guo, et al., 2008 Durakova & Menkov, 2005

Yellow dent field corn Nelson, 1979 Samapundo, et al., 2007

Hydrocolloids Nelson, et al., 1991 Torres, et al., 2012

Apples Feng, et al., 2002 Kaymak-Ertekin & Gedik, 2004

Grapes Tulasidas, et al., 1995 Kaymak-Ertekin & Gedik, 2004

Table 3 - References used to source sorption and dielectric data for the present study


