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Abstract 

Global eradication of hepatitis C virus (HCV) infection will require an efficacious vaccine 

capable of eliciting protective immunity against genetically diverse HCV strains. Natural 
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spontaneous resolution of HCV infection is associated with production of broadly-

neutralizing antibodies targeting the HCV glycoproteins E1 and E2. As such, production of 

cross-neutralizing antibodies is an important endpoint for experimental vaccine trials. 

Varying success generating cross-neutralizing antibodies has been achieved with 

immunogens derived from naturally-occurring HCV strains. In this study the challenge of 

minimising the genetic diversity between the vaccine strain and circulating HCV isolates was 

addressed.  Two novel synthetic E2 glycoprotein immunogens (NotC1 and NotC2) were 

derived from consensus nucleotide sequences deduced from samples of circulating genotype 

1 HCV strains. These two synthetic sequences differed in their relative positions in the 

overall genotype 1a/1b phylogeny. Expression of these constructs in Drosophila 

melanogaster S2 cells resulted in high yields of correctly-folded, monomeric E2 protein, 

which were recognised by broadly neutralizing monoclonal antibodies. Immunization of 

guinea pigs with either of these consensus immunogens, or a comparable protein representing 

a circulating genotype 1a strain resulted in high titres of cross-reactive anti-E2 antibodies. All 

immunogens generated antibodies capable of neutralizing the H77 strain, but NotC1 elicited 

antibodies that more potently neutralized virus entry. These vaccine-induced antibodies 

neutralized some viruses representing genotype 1, but not strains representing genotype 2 or 

genotype 3. Thus, while this approach to vaccine design resulted in correctly folded, 

immunogenic protein, cross-neutralizing epitopes were not preferentially targeted by the host 

immune response generated by this immunogen. Greater immunofocussing by vaccines to 

common epitopes is necessary to successfully elicit broadly neutralizing antibodies. 
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1. Introduction 

 

The hepatitis C virus (HCV) infects approximately 3 million individuals each year (Gower et 

al., 2014). Many will go on to develop chronic liver disease, cirrhosis or liver cancer (Gerlach 

et al., 2003; Saito et al., 1990). HCV therapies have rapidly advanced and the newest 

combinations of directly acting antivirals (DAAs) achieve sustained clearance in more than 

90% of recipients. However, it is unlikely that HCV will be eradicated through the use of 

anti-viral therapy alone. Some DAA regimens are associated with severe side-effects some 

patient groups cannot tolerate these therapies. The development of an effective vaccine to 

prevent HCV infection remains a priority.  

 

The potential for spontaneous clearance of HCV infection in humans and experimentally 

infected chimpanzees highlights that vaccine-induced protective immunity is a realistic goal. 

(Bassett et al., 2001; Mehta et al., 2002; Nattermann et al., 2005; Weiner et al., 2001). 

Glycoprotein-specific antibodies are identified in individuals who spontaneously resolve 

infection, and infection in animal models is inhibited by acute-phase plasma, indicating a 

protective role for neutralizing antibodies (NAbs) (Dowd et al., 2009; Lavillette et al., 2005a; 

Lawitz et al., 2013; Osburn et al., 2014; Pestka et al., 2007; Saito et al., 1990; Walker and 

Grakoui, 2015).   

 

Producing vaccines that elicit HCV-neutralizing antibodies is challenging. Immunisation of 

rodents and humans with full length E1E2 or soluble forms of E2 elicits NAbs, but these have 

limited cross-reactivity (Nattermann et al., 2005; Osburn et al., 2014; Thimme et al., 2001). 
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HCV exhibits a high degree of genetic plasticity within the E1 and E2 genes (Lavillette et al., 

2005b), facilitating evasion of antibody responses. Major neutralizing epitopes are located in 

regions that can rapidly adapt to host immunity, leading to escape (reviewed in (Sautto et al., 

2013)) or in regions that exhibit structural variability (Kong et al., 2016; Li et al., 2015; 

Meola et al., 2015). Individual isolates vary in their neutralization sensitivity (Bailey et al., 

2015; Tarr et al., 2011) and it will be necessary for a vaccine to elicit antibodies able to 

neutralise the vast majority of circulating strains. Crucially, the early antibody response in 

individuals who resolve acute infection develop antibodies that target more conserved and 

therefore broadly neutralizing epitopes (Dowd et al., 2009)Pestka et al., 2007).  

 

Previous studies have demonstrated that immunization with subunits of glycoprotein E2 

induce neutralizing antibodies. Immunization with the soluble E2 ectodomain in guinea pigs 

elicited a potent autologous neutralizing response, although the resulting sera only poorly 

neutralized heterologous genotypes (Stamataki et al., 2007). Immunization with the E2 

ectodomain (strain Con1; aa384-661) expressed in Drosophila melanogaster S2 cells is 

immunogenic and elicits broadly-neutralizing antibodies (Li et al., 2016). A significant 

challenge is to develop immunogens that steer this response to conserved broadly neutralizing 

epitopes. One approach to achieve this is to use protein subunits that have been manipulated 

to silence or remove variable regions whilst maintaining conserved conformation-dependent 

epitopes (Tarr et al., 2013; Vietheer et al., 2016). A soluble E2 construct lacking three 

hypervariable regions has been previously generated (McCaffrey et al., 2007). The 

monomeric form of this protein does not elicit a potent neutralizing antibody response, but 

high-molecular weight aggregates were recently found to be highly immunogenic and elicit 

neutralizing antibodies in guinea pigs (Vietheer et al., 2016). Removal of the HVR1 region 
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exposes broadly-conserved neutralization epitopes overlapping the CD81 binding site 

(Bankwitz et al., 2010). The present study aimed to improve cross-reactivity of the antibody 

response generated by immunization with monomeric E2, using immunogens representing 

consensus sequences of circulating genotype 1 HCV strains. This approach generated 

synthetic E1/E2 envelope glycoprotein constructs that have equal genetic distance from 

circulating genotype 1a viruses, mimicking possible ancestral HCV sequences. 

 

2 Materials and methods 

2.1 Consensus E1E2 sequences for generating immunogens 

Synthetic consensus constructs of the HCV E1/E2 genes (nt 849-2580 referenced to Genbank 

AF009606) were created from 720 HCV genotype 1 strains (Los Alamos HCV database). See 

Supplementary Information for detailed methods. 

 

2.2 Soluble E2 ectodomain immunogen constructs 

A truncated E2 glycoprotein construct was generated with deletions of the HVR1 (aa384-

409) and the C-terminus (aa645-746) of UKNP1.4.1 (UKNP1.4.1410-644) (Genbank 

KU285161). This construct was amplified from an existing E1E2 clone (Urbanowicz et al., 

2015). Similarly, the truncated constructs NotC1410-644 and NotC2410-644 were generated using 

the synthetic constructs NotC1 or NotC2 as template. The N-terminus of these constructs 

were truncated to Asn410 to remove the HVR1 region, exposing epitopes overlapping the 

CD81 binding site. The constructs were truncated at amino acid Cys644 to remove an unpaired 

cysteine at amino acid 652 that forms intermolecular disulphide bonds (Whidby et al., 2009) . 

The 3’ enterokinase/GlySer linker/one-STrEP-tag (IBA) was introduced by polymerase 
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cycling assembly (PCA). The final construct was generated by fusion PCR using the core 

structure and enterokinase/glyser linker/one-STrEP-tag as template in equimolar 

concentrations.The truncated sE2 constructs were cloned into the pMT vector [derived from 

plasmid pMT/BiP/V5-His]. 

 

2.3 Stable transfection of S2 cells and sE2 expression. D. melanogaster S2 cells were 

stably co-transfected with pMT plasmids containing the sE2 genes and pCoBlast (Invitrogen), 

using FuGene HD transfection reagent (Johansson et al., 2007a).  Strep-tagged soluble E2 

constructs expressed in S2 cells were purified from cell culture supernatants using a 5ml 

Strep-Tactin Superflow column (IBA). The flow-through, wash and eluate were collected in 1 

mL fractions and analysed by western blot analysis and ELISA. Size exclusion 

chromatography was performed for the peak fractions using a HiLoad 16/600 Superdex 200 

PG column (GE Healthcare Life Sciences) and phosphate buffered saline pH 7.2. One 

millilitre fractions containing monomeric protein were collected and analysed.  

 

2.4 Detection of E2 protein.  

Reactivity of different monoclonal antibodies to the purified E2 constructs was determined by 

GNA-capture ELISA as previously described using anti-E2 mAbs AP33 (Owsianka et al., 

2005), 1:7 (Johansson et al., 2007b) or AR1A (Law et al., 2008)).  GNA was coated on Nunc 

Maxisorp assay plates at 5µg.mL-1.  E2 proteins were used at a concentration of 5µg.mL-1, and 

detecting antibodies were used at 1µg.mL-1. 

 

2.5 Guinea pig (GP) immunization. Three protein constructs were used to immunize guinea 

pigs (five per immunogen; Covalab, France) (Figure 3). Proteins NotC1410-644, NotC2410-644 
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and UKNP1.4.1410-644 were prepared in PBS (pH 7.2). Animals received 500µg protein four 

times at 21 day intervals (Figure 3B). See Supplementary Information for further details. 

 

2.6 Neutralization of HCV pseudoparticles (HCVpp) by GP sera.  

The full-length NotC1 sequence, including the E1 signal peptide (NotC1170-746) was cloned 

into pcDNA3.1 V5-His D-TOPO (Invitrogen) and used for production of HCV 

pseudoparticles (HCVpp).  HCVpp were prepared by co-transfection of plasmids expressing 

packaging constructs, a luciferase reporter and the full-length E1E2 (either NotC1, JFH-1 

(AB047639), UKNP1.4.1, UKNP2.1.1 (KU285209) , UKNP2.4.1 (KU285213), UKNP3.2.1 

(KU285218) or H77c (AF009606)), as previously described (Tarr et al., 2007). 

Pseudoparticles were used to infect Huh7 cells. Neutralization of HCVpp entry by GP sera 

was assessed at a dilution of 1:100, comparing inhibition achieved with post-immunisation 

sera (D74) to a matched pre-immune sera for each animal (D0). Normal human serum 

(Sigma-Aldrich) was used as an additional negative control. Serial dilutions of monoclonal 

antibodies (AP33, 1:7, L1, AR1A, or AR2A) were also used to neutralize HCVpp entry as 

previously described (Urbanowicz et al., 2015).  

  

3 Results 

3.1 Generation of synthetic consensus E2 constructs Nucleotide sequences representing 

two alternative HCV E1E2 synthetic consensuses were generated by comparison of 720 

genotype 1 circulating HCV strains. Both NotC1 and NotC2 were generated using the LANL 

Consensus Maker tool (hcv.lanl.gov; (Kuiken et al., 2008)). The computationally-derived 

nucleotide sequences were then added to selected members of original sequence set and a 
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new maximum likelihood tree was reconstructed, including the E1E2 genes of a previously-

described genotype 1a synthetic sequence Bole1a (Munshaw et al., 2012). The clustering 

patterns demonstrated that these new samples are accurate representations of possible 

ancestral sequences of genotype 1a, and present a more basal sequence than Bole1a (Figure 

1A). NotC1 was generated by making consensus sequences from groups of consensuses 

(supplementary methods). This approach resulted in a sequence that was more representative 

of genotype 1a than genotype 1b. NotC2 aligned as a more common ancestor of both 

genotype 1a and genotype 1b. Comparison of the amino acid sequences of these constructs 

revealed differences spread across the E2 ectodomain (Figure 1B). Importantly, all cysteine 

residues were conserved in these samples, as were the conserved N-linked glycosylation sites.  

 

3.2 Expression of monomeric E2 protein representing a genotype 1 consensus sequence 

E2410-644 constructs were expressed using a Drosophila expression system (DES) and purified 

by Strep-tag purification and size exclusion chromatography. Soluble E2 NotC1410-644, 

NotC2410-644 and UKNP1.4.1410-644 were resolved by western blotting (Figure 2A) and 

Coomassie Brilliant Blue staining (Figure 2B). The consensus constructs NotC1 and NotC2 

were found to produce a mainly monomeric protein.  although multiple bands for each sE2 

were observed, possibly representing differently-glycosylated forms of these proteins, as 

previously described (Cocquerel et al., 2001). The conformation of the purified sE2 proteins 

was interrogated by binding of two monoclonal antibodies (Figure 2C). mAb 1:7 is a broadly 

reactive antibody that targets a conformational epitope on E2 overlapping the CD81 binding 

site (Johansson et al., 2007b), while mAb AR1A recognises a discrete conformation-sensitive 

epitope (Law et al., 2008).  All constructs bound both 1:7 and AR1A, indicating that these 

sE2 constructs were correctly folded. Their ability to bind to cell surfaces and inhibit entry of 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

 

HCV pseudoviruses was also assessed (Figure 2D). NotC1 inhibited entry of all three HCVpp 

strains tested in a dose-dependent manner. The IC50 for NotC1was 0.16µg/mL (HCVpp 

UKNP1.4.1), 1.7µg/mL (HCVpp UKNP2.1.1) and 1.1µg/mL (HCVpp JFH1). However, 

minimal neutralization was observed when proteins representing either NotC2 or UKNP1.4.1 

proteins were used, with approximately 50% inhibition of entry at the highest concentration 

tested. Unexpectedly, the presence of the UKNP1.4.1 at low concentrations appeared to have 

a marginal enhancing effect on entry of the three HCVpp preparations. Overall, this 

demonstrated that, despite having similar overall conformations, interaction of the NotC1 

protein with host cells blocked virus binding the most. 

 

 

3.3 Immunization with purified E2 ectodomain proteins elicits cross-reactive anti-E2 

antibodies 

Following immunization of guinea pigs with NotC1, NotC2 or UKNP1.4.1 E2410-644 proteins 

(Figure 3A and B), autologous antibody reactivity in serum samples were measured by 

ELISA (Figure 3C). Pre-vaccination samples showed minimal reactivity to the immunogen. 

Sera taken at Day 53 or Day 74, following three/four immunizations, displayed high titres of 

antibodies with reactivity detectable at a 1:156,250 dilution. No increase in antibody titres 

occurred beyond day 53.  The antibody titres achieved in each of the five animals in each 

group were broadly consistent. Maximal reactivity in animals immunized with NotC1 was 

less than that achieved with E2 representing NotC2 or UKNP1.4.1.   To determine the 

proportion of the antibody reactivity directed to linear or conformational epitopes, binding 

was performed with either native or denatured target E2 proteins. Sera from each of the three 

guinea pig groups were pooled and diluted 1:30,000. Reactivity to each of the three 
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immunogens was assessed using time point D0 and D74. Sera were tested for reactivity 

against autologous and heterologous immunogens to assess cross reactivity (Figure 3D). 

Denaturation resulted in only minimal decrease in binding from native to denatured, 

indicating that the majority of the antibody response was directed at linear epitopes, and that 

these epitopes were conserved between the different proteins. Greatest reactivity was 

observed for the autologous immunogen for all vaccinations, although these differences were 

small. Pooled sera taken at D0 and D74 from guinea pigs immunised with NotC1 were also 

used to probe cell-expressed E1E2 by immunofluorescent microscopy. Antibodies cross-

reacted to patient-derived E1E2 clones UKNP1.4.1, UKNP2.1.1, UKNP2.4.1 and UKNP3.2.1 

(Figure 3E). However, this signal was not as strong as that observed with control monoclonal 

antibody AP33. 

  

3.4 Consensus E1E2 NotC1 is functional in the HCV pseudovirus entry model  

To assess autologous neutralization potency of antibodies generated following immunization, 

a full-length E1E2 (aa192-746) synthetic construct was created using the same approach as 

for the consensus sequence NotC1. This clone possessed an identical E2 ectodomain to the 

immunogen. HCVpp corresponding to NotC1 were infectious (Figure 4A). A similar 

construct corresponding to NotC2 was not infectious in this model (data not shown). Further 

characterisation of the NotC1 HCVpp in a neutralization assay was performed using broadly 

neutralizing monoclonal antibodies (AP33, 1:7 and AR3A) and mAbs with restricted 

neutralization profiles (AR2A and L1) (Law et al., 2008; Urbanowicz et al., 2015). The 

NotC1 construct was susceptible to neutralization by AP33 (Figure 4B), 1:7 (Figure 4C) 

AR2A (Figure 4D) and AR3A (Figure 4E), in a dose-dependent manner. The AR2A 

neutralization curve for the NotC1 sequence was similar to H77 suggesting it possesses an 
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intermediate epitope capable of eliciting an increased breadth of neutralization. 

Neutralization of the constructs in the presence of L1 was less potent (Figure 4F) and no 

neutralization was observed with immunoglobulins obtained from healthy HCV-negative 

donors (not shown).  

3.5 Breadth of neutralization of vaccine-induced sera. The neutralizing potency of 

antibodies generated by immunization was determined by testing heat-inactivated guinea pig 

sera in an HCVpp entry assay. The reference strain H77c, the infectious NotC1 sequence and 

a panel of six HCVpp possessing patient-derived E1/E2 were tested. These clones 

represented three of the major HCV genotypes (Figure 5A), and displayed a range of 

neutralization resistance phenotypes (Urbanowicz et al., 2015). Sera sampled at day 0 (D0; 

before immunization) and day 74 (D74) from animals immunized with NotC1, NotC2 or 

UKNP1.4.1 were used at a dilution of 1:100 in neutralization assays (Figure 5B). 

Interestingly, some D0 sera demonstrated potent neutralization of HCVpp entry. The level of 

inhibition was dependent on the strain of HCV glycoprotein incorporated into particles, with 

clones UKNP2.1.1 and UKNP2.4.1 inhibited ≥50% compared to uninhibited controls. To 

determine if background neutralization could be eliminated by titrating sera, neutralization 

was performed with HCVpp possessing the glycoproteins of UKNP2.1.1 and UKN2.4.1 at 

serum dilutions of 1:50, 1:100, 1:200 and 1:400.  In each case, specific vaccine-induced 

neutralization could not be resolved. This neutralization effect with pre-immune sera was also 

observed when using HCVcc representing UKN2.4.1 and reference strain J6 (Figure 5D). 

Despite this non-specific neutralizing effect, comparison of  the neutralizing effect of D74 

sera with matched D0 sample revealed that serum from guinea pigs that received the 

immunogen NotC1 significantly inhibited entry of the H77 and NotC1 pseudoviruses 

(p<0.001). However, this was not observed with the other guinea pig groups. The animals 
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that received UKNP1.4.1 vaccine generated autologous neutralizing antibodies, but only 

cross-neutralized the H77c strain. Consistent with this, animals that received the NotC2 

immunogen produced antibodies that only neutralized H77c. Thus, despite cross-reactive 

antibodies being elicited by these vaccine constructs, broadly cross-neutralizing antibodies 

were not generated by immunization with the consensus immunogens.   

4 Discussion 

HCV genetic diversity poses a major challenge to the development of an effective vaccine. 

Selection of HCV immunogens has focused on existing, well-characterized strains, such as 

the genotype 1a strain H77 (Reyes-del Valle et al., 2012) or HCV1 (Stamataki et al., 2007). 

However, the genetic diversity between strains within a genotype can be 20–25% of their 

amino acid sequence (Simmonds et al., 2005). By comparison, as little as 2% amino acid 

difference can cause a failure in cross-reactivity of the polyclonal response to influenza 

vaccine (Gaschen et al., 2002). An effective way to minimize the degree of sequence 

dissimilarity between a vaccine strain and contemporary circulating viruses is to create 

artificial sequences that share key neutralization epitopes, using a consensus sequence based 

on the most common amino acid in each position in an alignment (Gao et al., 2005; Gupte 

and Arankalle, 2012; Leng et al., 2009; Liao et al., 2006).  This study generated synthetic 

functional E2 constructs that have increased sequence similarity to improve the generation of 

broadly neutralizing antibodies than an E2 from a single HCV strain. Analysis of 

computationally derived nucleotide sequences (NotC1 and NotC2) revealed approximately 5-

13% difference on an amino acid level between these consensus sequences and circulating 

strains of genotype 1a, and approximately 17-20% difference from genotype 1b. While this 

represents a reduction in distance between circulating genotype 1a and 1b strains, the amino 
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acid difference between other genotypes is still greater than 30% in the E1E2 genes, and as 

such still presents a significant challenge to generating cross-neutralizing antibodies. While 

further averaging of amino acid diversity using different genotype E2-coding regions might 

further broaden the antibodies generated by immunization, the length polymorphisms 

between genotypes presents a barrier to effective prediction of a consensus of these 

genotypes. 

 

The immunization strategy employed in this study is developed from previous studies 

(Stamataki et al., 2007), using truncated, minimally diverse E2 constructs (NotC1410-644 and 

NotC2410-644), in order elicit a broadly neutralizing antibody response. Immunization was 

performed using purified monomeric forms of the E2 ectodomain, as these were believed to 

be the correctly folded version of the protein. Aggregated forms of the E2 protein do not 

interact with CD81 (Roccasecca et al., 2003; Tarr et al., 2011) and may elicit antibodies with 

limited neutralizing potency and breadth. However, when the immunogenicity of aggregate 

forms was directly compared to that of monomeric E2 expressed in mammalian cells, the 

aggregate form resulted in much broader neutralizing serum antibody responses in 

immunized animals (Vietheer et al., 2016). It is plausible that conserved neutralization 

epitopes are created on the surface of these aggregate forms of the E2 ectodomain, similar to 

that identified for stabilised trimers of the HIV-1 envelope glycoproteins (de Taeye et al., 

2015; Julien et al., 2015). 

 

The E2 glycoprotein requires significant post-translational modification to ensure a 

conformationally-correct structure including glycosylation and the formation of disulphide 

bridges (Dubuisson et al., 2002; Goffard and Dubuisson, 2003; Lavie et al., 2007; Patel et al., 
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2001). The correctly-folded, truncated, reduced diversity constructs (NotC1410-644 and 

NotC2410-644) were expressed as monomeric protein in D. melanogaster S2 cells. Both of the 

consensus constructs interacted with conformation-sensitive antibodies. However, the 

antibodies produced following guinea pig immunization were almost exclusively directed to 

linear epitopes. The E2 protein is known to possess regions of structural instability, 

particularly in the regions aa412-423 (reviewed in (Tarr et al., 2015)) and aa532-540 

(Vasiliauskaite et al., 2017), and as such the flexible nature of the recombinant protein 

(outside the context of a virion) might result in generation of antibodies directed to linear 

epitopes rather than those in correct conformation. It is also possible that the adjuvant used to 

enhance immune response to E2 promotes the generation of such antibodies (Kenney et al., 

1989). Previous studies of HCV glycoprotein immunogens have used ISOMATRIX (Vietheer 

et al., 2016), FCA (Reyes-del Valle et al., 2012) and MF59-0 citrate (Stamataki et al., 2007) 

in animal studies, and MF59-1 in humans (Frey et al., 2010). Direct comparison between 

Addavax and FCA adjuvants in immunized goats found that FCA enhanced the production of 

antibodies targeted to epitopes overlapping the CD81 binding site (Wong et al., 2014), 

increasing the neutralizing potency of the immune sera. As a successful vaccine for HCV is 

likely to need to elicit conformation-sensitive antibodies, a systematic comparison of 

different clinically approved adjuvants is required to determine their effect on the ability to 

induce these antibodies. The antibodies generated were mainly directed to linear epitopes 

conserved between different HCV strains, as demonstrated by reactivity to diverse E1E2 

glycoproteins.  Despite this, the antibodies did not neutralize genetically diverse viruses. 

Cross neutralization by antibodies generated by NotC1 was limited to the autologous HCVpp, 

UKNP1.4.1 and the H77 strain and did not extend to the genotype 1a strain UKNP1.4.1. This 

is consistent with our previous observation that HCV cannot be categorised into clear 
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neutralization serotypes based on genetic similarity (Tarr et al., 2011). Subtle differences in 

protein sequence and fold might account for the differential ability to induce neutralizing 

antibodies to key epitopes.  In contrast, the consensus sequence NotC2 inhibited entry of 

pseudoviruses to a much lower level than NotC1 and was non-infectious in the HCVpp 

model. This difference might be due to amino acid substitutions occurring in the region 

aa436-a447, which has previously been shown to affect receptor interactions. The W437L 

substitution in NotC2 has previously been demonstrated to reduce E2 interaction with CD81 

by 80-90% and reduce infectivity of HCVpp, and mutation F442L observed in UKNP1.4.1 

reduced CD81 interaction and infectivity by around 50% (Drummer et al., 2006). 

Interestingly, the addition of lower concentrations of the sE2 representing UKNP1.4.1 

resulted in marginal enhancement of infectivity. While this enhancement may be within the 

experimental error of the assays used, it is plausible that binding of sub-neutralizing 

concentrations of soluble E2 protein could enhance colocalization of receptor complexes, 

which has previously been demonstrated enhance infectivity of HCV (Harris et al., 2010; 

Harris et al., 2008). 

 

The observed neutralization of virus entry in both HCVpp and HCVcc models by pre-

immune sera in the absence of specific antibodies was unexpected. Previous immunization 

studies using HCV glycoproteins (Stamataki et al., 2007; Vietheer et al., 2016) did not 

investigate the neutralizing potential of pre-immune serum in experimental animals. The 

evidence presented in Figure 5 indicates that other factors present in serum may contribute to 

inhibition of virus entry. Complement components can neutralize virus entry (reviewed in 

(Tarr et al., 2012)), but it is likely that in this case other host factors contributed to 
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neutralization. It will be important to determine which components of serum are acting to 

inhibit entry of HCV in these animals. 

 

The HCVpp isolates used in this study were selected based on their similarity to the 

immunogen (NotC1 and UKNP1.4.1), one known to be highly sensitive to antibody-mediated 

neutralization (H77), and three genetically heterologous viruses known to display different 

neutralization resistance profiles (UKNP2.1.1, UKNP2.4.1 and UKNP3.2.1) (Urbanowicz et 

al., 2015). The consensus vaccine NotC1 elicited antibodies that neutralized the autologous 

virus and the H77 strain, but failed to neutralise genetically distinct viruses. The immunogens 

used by Stamataki and colleagues elicited sera that potently neutralized some genotype 1 

isolates, but not representatives of genotype 2 (Stamataki et al., 2007). Likewise, 

immunization of mice with H77-recombinant measles virus resulted in antibodies that 

neutralized H77, but was less potent against Con1 (gt1) and J6 (gt2a). More recently Li and 

colleagues immunised rhesus macaques with a sE2 construct in a variety of adjuvants. The 

immunised animals produced cross-neutralising antibodies, although the potency of these 

against many isolates tested was modest (Li et al., 2017). Standardization of the strains used 

for future immunization studies is essential, as we have shown conclusively that differences 

in neutralization sensitivity will impact on the apparent effectiveness of vaccine-induced sera 

(Tarr et al., 2011; Urbanowicz et al., 2015). 

 

We have demonstrated that an in silico-derived consensus E2 ectodomain sequence can be 

expressed to high yield and purity from drosophila S2 cells. This protein was immunogenic 

and elicited antibodies that neutralize entry of some genotype 1a isolates. However, the 

broader objective of eliciting antibodies that neutralize patient strains representing multiple 



M
ANUSCRIP

T

 

ACCEPTE
D

ACCEPTED MANUSCRIPT

 

 

 

 

genotypes will require further refinement of immunization protocols. A vaccine construct 

comprising the consensus of a minimal CD81 binding domain might be able to focus the 

antibody response to conserved epitopes on E2. Additionally, boosting immunized animals 

with glycoproteins representing different strains might be required to focus the antibody 

response on to conserved conformational epitopes.   
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Figure 1: Generation of ancestral consensus E2 sequences NotC1 and NotC2. A) 

Nucleotide sequences representing the consensus sequences NotC1 and NotC2 were 

generated using the consensus maker (hiv.lanl.gov) from 720 non-redundant nucleotide 

sequences from circulating HCV strains. Maximum likelihood reconstruction of the 

phylogeny using the General Time Reversible model was performed using 100 

representatives of this population with these consensus sequences, reference strain H77c 

(AF096006) the UKNP1.4.1 strain (all highlighted with �) (Urbanowicz et al., 2015) and the 

Bole1a/Con1 synthetic HCV consensus sequences (both highlighted with �) (Munshaw et 

al., 2012). This revealed that NotC1 and NotC2 are accurate representations of ancestral HCV 

sequences. The tree with the highest log likelihood (-21508.23) is shown. B) An alignment of 

the amino acid sequences of the three immunogens and Bole1a highlighted amino acid 

substitutions between the sequences across the entire aa410-644 region. Three regions are 
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highlighted: ‘I’ ‘II’ and ‘III’. These linear regions are components of the discontinuous CD81 

binding site and possess conserved neutralization epitopes.  

 

Figure 2: Expression of recombinant E2. E2 constructs were expressed in S2 cells and 

purified by Strep-tag affinity purification and size-exclusion chromatography. These proteins 

were analysed by western blot (A) and Coomassie staining (B), revealing a relatively 

homogeneous preparation of protein at a size of approximately 45 kDa. In the lane 

corresponding to NotC1, a larger band of ~70 kDa was also evident. C) The conformation of 

these expressed E2 proteins was assessed by binding of conformation-sensitive mAbs 1:7 

(White bars) and AR1A (Black bars), and the partially conformation sensitive mAb AP33 

(Grey bars). Data are presented as OD405 after subtraction of background signal from a 

negative control from a mock expression experiment . All three samples reacted similarly to 

all three mAbs. D) Binding of recombinant E2 proteins NotC1 (�), NotC2 (�) or 

UKNP1.4.1 (�) to HuH7 cells was used to inhibit entry of HCVpp bearing the glycoproteins 

of strains UKNP1.4.1, UKNP2.1.1 and JFH-1. A protein-free preparation following protein 

purification was used as a negative control (�). 

Figure 3: Immunization of guinea pigs with recombinant E2410-644. A) Three sets of five 

guinea pigs were immunized with one of three proteins. Animals 1-5 received NotC1, 

animals 6-10 received NotC2 and animals 11-15 received UKNP1.4.1. B) The immunization 

schedule administered four doses of each protein, at day 1, 21, 42 and 63. A pre-bleed sample 

was taken at day 0, followed by sampling at day 53 and day 74. C) Each of the animals’ 

antibody responses to the matched protein immunogen was assessed by ELISA. Serum taken 

at D0 (�), D53 (�) and D74 (�) were assessed for binding. D) Pooled serum recovered at 

D74 from five animals that received the same immunogen were assessed for binding to native 
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(light grey bars) and denatured protein (dark grey bars) from each of the three vaccine 

constructs. E) Pooled immune sera from all NotC1-immunized animals were tested for 

binding to E1E2 proteins from different HCV genotypes using cell-expressed full-length 

E1E2.  

Figure 4: A NotC1 HCV pseudovirus is infectious in vitro. A) An infectivity assay was 

performed using HCVpp possessing the glycoproteins of strain H77, or the consensus 

sequence of a full-length E1/E2 representing the NotC1 protein. Entry of NotC1 (�) and H77 

(�) HCVpp were neutralized with five different neutralizing antibodies: AP33 (B); 1:7 (C); 

AR2A (D); AR3A (E); or L1 (F).  

 

Figure 5: Neutralization of diverse HCVpp by sera recovered from immunized guinea 

pigs. A) Pseudoviruses possessing the E1/E2 proteins of six patient-derived strains were used 

to represent genotype 1, 2 and 3, in addition to the reference strain H77 and the NotC1 

functional clone. These were used for neutralization with the sera obtained at D74 after four 

immunizations with different proteins. Sequences used to generate pseudoviruses are 

highlighted by circles. B) Neutralization of HCVpp strains by immune sera. Sera isolated at 

D0 and D74 was used at a dilution of 1:100 to neutralize entry of the panel of eight HCV 

pseudoviruses and a VSV-G pseudovirus as control. Each panel represents a single type of 

pseudovirus. Serum from guinea pigs that were immunized with E2 representing NotC1, 

NotC2 or UKNP1.4.1 immunogens was tested against each pseudovirus. Neutralization 

potency of vaccine-induced antibodies was compared by One-Way ANOVA, followed by 

Sidak’s multiple comparisons test. Significance values are indicated (*p<0.05, ***p<0.001, 

****p<0.0001). C) Dose-dependent neutralization of HCVpp by both pre-immune sera and 

immune sera. Entry of HCVpp bearing the glycoproteins of clones UKNP2.1.1 and 
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UKN2.4.1 were neutralized with dilutions of sera between 1:50 and 1:400. D) Neutralization 

of HCVcc by guinea pig serum diluted 1:100. Entry of replicating HCV virions possessing 

the E1/E2 glycoproteins of clones J6 and UKN2.4.1 were neutralized by serum.  
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• We describe a method for designing genetically conserved consensus vaccines  

• We applied this approach to create synthetic hepatitis C virus E2 protein immunogens 

• These cloned genes produced correctly-folded protein that bound to conformation-sensitive 

anti-E2 antibodies 

• These synthetic consensus vaccines induced high titers of anti-E2 antibodies in immunized 

animals 

• These immunogens were able elicit antibodies that could block infection of HCV 


