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We develop a general framework to assess capabilities and limitations of the Gaussian toolbox in continuous
variable quantum information theory. Our framework allows us to characterize the structure and properties of
quantum resource theories specialized to Gaussian states and Gaussian operations, establishing rigorous methods
for their description and yielding a unified approach to their quantification. We show in particular that, under
a few intuitive and physically motivated assumptions on the set of free states, no Gaussian quantum resource
can be distilled with free Gaussian operations, even when an unlimited supply of the resource state is available.
This places fundamental constraints on state manipulations in all such Gaussian resource theories. We discuss in
particular the applications to quantum entanglement, where we extend previously known results by showing that
Gaussian entanglement cannot be distilled even with Gaussian operations preserving the positivity of the partial
transpose, as well as to other Gaussian resources such as steering and optical nonclassicality. A comprehensive
semidefinite programming representation of all these resources is explicitly provided.

I. INTRODUCTION

Continuous-variable (CV) systems of quantum harmonic
oscillators play a prominent role in quantum science, due to
their ubiquitous presence, outstanding theoretical importance,
and practical relevance in many quantum technologies [1–3].
Among them, so-called Gaussian states are privileged as being
remarkably affordable to produce and control in laboratory,
while retaining, together with Gaussian operations, a signifi-
cant part of the power of quantum information processing [3–6].
However, such a restricted set of resources is insufficient to
realize fundamental tasks like fault-tolerant quantum computa-
tion [7], entanglement distillation [8–10], error correction [11],
or optimal metrology [12], and needs to be supplemented
by nonlinear elements, e.g., photon detectors [7, 13, 14], to
achieve universality. A thorough investigation of properties
and limitations of the Gaussian paradigm is thus crucial to
deepen our theoretical understanding of quantum optics and
information and to set suitable experimental benchmarks in
practical tasks.

The formalism of quantum resource theories [15–23] lends
itself well to the investigation of such features and restrictions.
Different quantum phenomena have been recently recognized
and characterized as resources, including entanglement [24],
asymmetry [25, 26], athermality [27], purity [28], nonlo-
cality [29, 30], coherence [25, 31–33], nonclassicality [34–
37], Einstein-Podolsky-Rosen (EPR) steering [38], contextual-
ity [39], magic [40, 41], non-Markovianity [42], and noiseless
classical or quantum communication in quantum Shannon the-
ory [43]. However, since each such resource may require a
completely different approach to describe it, the alluring task of

∗ ludovico.lami@gmail.com
† bartosz.regula@gmail.com

FIG. 1. A general framework is developed to assess capabilities and
limitations of the Gaussian toolbox in continuous variable quantum
information theory. It is shown that under a few assumptions on
the set of free states, no Gaussian quantum resource can be distilled
with free Gaussian operations, even when an unlimited supply of the
resource state is available. We refer to this general no-go result as the
Gaussbusters Theorem.

establishing a unified framework is very challenging. Although
some general statements about quantum resource theories can
be derived from suitable assumptions [15, 17, 20–22, 44], most
research to date focused on finite-dimensional scenarios, and
despite an increasing interest in developing a resource-theoretic
approach to quantum optics [45–50], there are no results that
apply to a large class of resources in infinite dimensions.

In this paper we extend the general formalism of resource
theories to CV systems, by introducing a framework for the
study of resources whose free states (Sec. II) and operations
(Sec. III) are Gaussian. This allows us to exploit the general
resource-theoretic formalism to ultimately assess how powerful
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Gaussian states and operations are in CV quantum information
theory. We show that all Gaussian resource theories which sat-
isfy a set of physically-motivated conditions share a common
structure, allowing us to simplify the description and quantifi-
cation of many fundamental resources such as entanglement,
EPR steering, and nonclassicality (squeezing). We establish
universal constraints on state transformations under free Gaus-
sian operations in any such resource theory, showing in Sec. IV
that the operational task of resource distillation is impossible
if one is restricted to Gaussian states and free Gaussian op-
erations (see Fig. 1). In particular, we generalize the no-go
theorem of Ref. [10] by showing that Gaussian entanglement
cannot be distilled by Gaussian operations preserving the pos-
itivity of partial transpose — a larger class than previously
considered — and we prove equivalent no-go results for other
relevant Gaussian resources. Detailed examples and appli-
cations are illustrated in Sec. V.We discuss our main results
below, deferring technical derivations to the Appendix.

II. FREE STATES

Let us briefly recall the basics of Gaussian states [3, 6, 51].
Mathematically, a n-mode CV system is identified by a col-
lection of canonical operators x1, p1, . . . , xn, pn, which we
can arrange in a vector r B (x1, . . . , xn, p1, . . . , pn)T . The
canonical commutation relations [x j, pk] = iδ jk can then be
cast as [r, rT ] = iΩ, where Ω B

(
0 1

−1 0

)
is the symplectic

form. Denoting by Gn the set of n-mode Gaussian states, any
ρ B ρG[V, s] ∈ Gn is fully specified by its (real) displacement
vector s B Tr[r ρ] and its (real, symmetric) covariance matrix
V B Tr[{r − s, rT − sT } ρ] with {·, ·} being the anticommutator.
LettingM2n(R) denote the set of all real 2n × 2n matrices, we
will call

QCMn B
{
V ∈ M2n(R)

∣∣∣ V = VT , V ≥ iΩ
}

(1)

the set of quantum covariance matrices, i.e., those V that satisfy
the Robertson-Schrödinger uncertainty principle [52]. Note
that any such V ∈ QCMn is strictly positive definite [51].

Resource theories are built upon two main notions [17]: (i)
the subset F of free states, i.e., those which do not possess
the given resource; and (ii) the subset O of free operations,
i.e., those quantum channels unable to generate the resource,
specified by the physical constraints of the theory. As free
states can be prepared by free operations at no cost, during a
protocol one may add ancillary systems to one’s original sys-
tem; following [17], we will refer to such systems as spatially
separated.

In any resource theory, there may be different ways to define
the set of free states (think e.g. of entanglement theory, in
which one needs to specify a partition to identify separable
states). To address this, we assume that each of the spatially
separated subsystems j = 1, . . . , l is fully specified by a set
λ j of variables, which can then be grouped in a single vector
λ B (λ1, . . . , λl). For instance, one such variable will be the
total number of modes n j of each subsystem j. For a CV
system made of l spatially separated subsystems identified by

a vector of variables λ, we then denote by F (λ) the subset of
free states, and by F B

⋃
λ F (λ) the set of all free states over

arbitrary collections of spatially separated subsystems.
Since we care about the Gaussian restriction of any resource

theory, we will focus on the set FG B
⋃

λ FG(λ) of free
Gaussian states, where FG(λ) B F (λ) ∩ GN , with N =

∑
j n j,

for a fixed λ, and the corresponding set of free covariance
matrices is

VF (λ) B
{
V ∈ M2N(R)

∣∣∣ ∃ s ∈ R2N : ρG[V, s] ∈ F (λ)
}
.
(2)

There are some standard assumptions about the set of free
states, formalized as Postulates I-V in [17], that have a sound
theoretical basis and apply to a wide range of theories. We will
therefore regard them as a safe starting point to establish a set
of fundamental requirements for Gaussian resource theories.
Before proceeding further, let us make a first working assump-
tion that will simplify the following analysis considerably:

Postulate 0. The set of free states is invariant under displace-
ment operations.

To justify this assumption, note that displacement opera-
tions can be applied to any system by adding an ancillary
system in a highly excited coherent state, and combining
the two systems at a low-transmissivity beam splitter [53].
From an experimental standpoint, coherent states and beam
splitters are relatively cheap tools. Crucially, Postulate 0
implies that the set of free Gaussian states is now fully de-
scribed by the corresponding covariance matrices, so we
can write VF (λ) =

{
V ∈ M2N(R)

∣∣∣ ρG[V, 0] ∈ F (λ)
}

and

FG(λ) =
{
ρG[V, s]

∣∣∣ V ∈ VF (λ), s ∈ R2N
}
. The following

assumptions define the structure of the theory for composite
systems.

Postulate I. The set of free states is closed under tensor prod-
ucts of spatially separated subsystems.

Postulate II. The set of free states is closed under partial
traces over spatially separated subsystems.

Postulate III. The set of free states is closed under permuta-
tions of spatially separated subsystems.

These three properties carry over to the restricted set of free
Gaussian states FG, since it is well known that Gaussian states
are also closed under the above operations. Postulate I can be
rewritten symbolically as F (λ) ⊗ F (λ′) ⊆ F (λ ⊕ λ′), where
for λ = (λ1, . . . , λl) and λ′ = (λ1, . . . , λl′) one sets λ ⊕ λ′ B
(λ1, . . . , λl, λ

′
1, . . . , λ

′
l′). At the level of covariance matrices,

this translates toVF (λ) ⊕VF (λ′) ⊆ VF (λ ⊕ λ′). Similarly,
we can formulate Postulate II as ΠVF (λ ⊕ λ′) ΠT ⊆ VF (λ),
where Π is the projector onto the subsystems corresponding to
λ.

Apart from the above Postulates, one of the the most basic
assumptions that we can make about the unrestricted set (i.e.,
before the intersection with GN) of free states is undoubtedly
convexity. This is justifiable as in most physically relevant
cases we do not expect an increase in quantum resources under
classical mixing [54]. At the level of all states, we have then:
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Postulate IV. For all λ, the set of free states F (λ) is convex.

Our final Postulate will pertain to the closedness of the set of
free states in the Banach space T (HN) of trace-class operators
acting on the Hilbert spaceHN , endowed with the trace norm
‖ · ‖1.

Postulate V. For all λ, the set of free states F (λ) ⊆ T (HN)
is norm-closed.

Since infinite-dimensional spaces admit many legitimate lin-
ear topologies with respect to which we can define closedness,
the above choice of the norm topology may seem rather arbi-
trary. However, it turns out that in the present context any other
reasonable choice still yields the same result. In fact, Mackey’s
theorem [55, Thm. 8.9] ensures that all linear topologies on
T (HN) that agree on the set of continuous linear function-
als possess the same closed convex sets. To see why this is
physically relevant, remember that the norm-continuous linear
functionals on T (HN) can be written as ρ 7→ Tr[ρA], where
A ∈ B(HN) is a generic bounded operator, i.e., an observable.
Summarizing the above discussion: Postulates IV and V to-
gether imply that all sets of free states F (λ) and FG(λ) are
closed with respect to any linear topology whose correspond-
ing continuous linear functionals are (all) the observables. For
further details on the issue of closedness of the relevant sets,
refer to Appendix A.

Let us now discuss some consequences of the above assump-
tions in the Gaussian setting. In order to do so, it is important
to understand the topology of the set of Gaussian states in some
detail. In Appendix A, we show that Gaussian states form a
closed set with respect to the trace norm topology (Lemma A1),
and that the map (V, s) 7→ ρG[V, s] that sends a pair formed
by a quantum covariance matrix and a real vector to the corre-
sponding Gaussian state is continuous with respect to the same
topology (Lemma A2). A key difference between a Gaussian
resource theory satisfying Postulates I-V and a corresponding
finite-dimensional theory is that the set of Gaussian states is
non-convex, hence FG(λ) can not be expected to be convex
either. We have instead a weaker property that we dub Gaus-
sian convexity: if a trace norm limit of convex combinations
of free Gaussian states is a Gaussian state, then it must be free.
Importantly, this implies the upward closedness of the set of
free covariance matricesVF (λ), formalized as follows.

Proposition 1. When Postulates IV and V hold, the setVF (λ)
is topologically closed as well as upward closed, in the sense
that, if V ∈ VF (λ) and W ≥ V, then W ∈ VF (λ).

Another desirable property of the set of free covariance
matrices VF (λ) is for itself to be convex. Interestingly, this
does not follow directly from our Postulates, but is indeed
implied by an additional natural assumption, i.e., that the given
set of free Gaussian states FG(λ) is closed under mode-by-
mode mixing with 50:50 beam splitters (Prop. A3).

III. FREE OPERATIONS AND QUANTIFICATION

In any resource theory, a free operation can be any channel
which always maps free states into free states. However, the

physical setting of the given resource can further restrict the
allowed free operations: for instance, in entanglement theory,
the distant laboratories paradigm leads to the set of local op-
erations and classical communication (LOCC). To keep our
results as general as possible, we will consider the maximal
set of resource non-generating operations, and only impose the
natural restriction that free operations should also be Gaussian,
i.e., such that they always map a Gaussian state to a Gaussian
state [10, 56].

Definition 1. A quantum channel Λ : T (HN) → T (HM)
is called resource non-generating if Λ [F (λ)] ⊆ F (µ) for
systems described by variables λ,µ. The set of all resource
non-generating operations is denoted by O(λ → µ), and the
restriction to Gaussian operations byOG(λ→ µ). In particular,
Λ [FG(λ)] ⊆ FG(µ) for all Λ ∈ OG(λ→ µ).

A fundamental question in any resource theory is, given
several resourceful states, to quantify the degree of their re-
sourcefulness and thus compare the usefulness of the states
in operational tasks [17, 21, 22, 57]. For this, one needs a
measure µ : T (HN) → R+ which satisfies two basic criteria:
faithfulness, i.e., being minimum on all (and only on) free
states, µ(ρ) = infσ∈T (HN ) µ(σ) ⇐⇒ ρ ∈ F (λ), as well as
monotonicity, i.e., µ(Λ(ρ)) ≤ µ(ρ) for all free operations Λ.
Here we stress that we can consider the maximal set of free
operations O(λ → µ) without loss of generality, since any
measure monotonic under O(λ→ µ) will also be a monotone
under any smaller subset of free operations. Analogously, in
the setting of Gaussian resources, we will be interested in quan-
tifiers µG : QCMN → R+ defined at the level of covariance
matrices and monotonic under the free Gaussian operations,
so that µG(V ′) ≤ µG(V) where V ′ is the covariance matrix
corresponding to the state Λ(ρG[V, s]) with Λ ∈ OG(λ→ µ).

A general instance of such a measure — a variant of which
has been considered in the characterization of entanglement
before [10] — can be defined for any V ∈ QCMN as

κF (V) B min
{
t ≥ 1

∣∣∣ tV ∈ VF (λ)
}
. (3)

The measure can be easily seen to be faithful in the sense
that κF (V) ≥ 1 and κF (V) = 1 iff V ∈ VF (λ), and the fact
that the set on the right-hand side of Eq. (3) is non-empty is
ensured by the upward closedness ofVF (λ). The properties
and monotonicity of the above quantifier can be summarized
as follows.

Proposition 2. The function κF (·) is finite and well-defined on
all covariance matrices, faithful, continuous, and monotonic
under OG(λ→ µ).

We defer the proof to Appendix B (see Prop. A4). Note that,
if membership of the setVF (λ) can be decided by semidefinite
constraints at the level of covariance matrices, the evaluation
of κF (V) reduces to a semidefinite program. We discuss such
cases in Section V and in Appendix C.
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IV. NO-GO THEOREM FOR GAUSSIAN RESOURCE
DISTILLATION

At the heart of every resource theory lies the problem of
characterizing state transformations which are allowed by the
given set of free operations. In particular, the operational
task of resource distillation deals with using free operations
to convert multiple copies of a given quantum state into a
smaller number of target states, usually representing maximally
resourceful states. This task was first considered in the resource
theory of entanglement with LOCC [58, 59], and has been later
extended to more general settings [60–64] and other quantum
resources [65–67]. Entanglement distillation has also been
considered for Gaussian states [8–10], where the task can be
expressed as using LOCC to transform multiple copies of a
bipartite state ρ⊗n

AB into a state which approaches a maximally
entangled state as n → ∞. An archetypal example of the
analysis of the limitations of the Gaussian paradigm in this
context has been carried out in [10], where it was shown that
Gaussian LOCC protocols are not sufficient to distill Gaussian
entanglement.

Since the existence of a “golden unit” or a unique maxi-
mally resourceful state is not guaranteed in arbitrary quantum
resource theories, we can consider the more general task of
approximately converting multiple copies of a quantum state
into another state which is more resourceful; that is, given
a Gaussian state with covariance matrix V , we ask about the
existence of free operations that implement the transformations
V⊕n → Wn, for some sequence of covariance matrices Wn that
approach a fixed target W such that κF (W) > κF (V). A central
result of this work is a general no-go result entailing that, in any
resource theory in our framework, the distillation of the given
resource with free Gaussian operations is de facto impossible,
as illustrated in Fig. 1. This result is in stark contrast with
the main finding of [17], which instead implies the complete
reversibility of the considered resource theory. Such a dramatic
difference in the conclusions is even more surprising when one
considers that the starting postulates are quite similar in the
two cases, and illustrates clearly the intrinsic limitations of the
Gaussian framework.

Theorem 1 (Gaussbusters). Consider an arbitrary Gaussian
resource theory satisfying Postulates 0-V and two covariance
matrices V,W ∈ QCMN . If κF (W) > κF (V), then it is im-
possible to find a sequence (Wn)n∈N ⊂ QCMN such that
limn→∞Wn = W and the transformations V⊕n → Wn are possi-
ble with Gaussian resource non-generating operations for all
n.

The proof of the above theorem relies on a special property
of the measure κF that we could call, borrowing terminology
from classical probability theory, tensorization property [68]:
for all resource theories in consideration, κF does not change
when multiple copies of a quantum state are considered; more
generally, we have κF (V ⊕W) = max{κF (V), κF (W)} for any
two covariance matrices V,W (Lemma A7). This, together with
the monotonicity of κF , immediately implies that distillation
is impossible since we cannot increase κF with free Gaussian
operations. In the following, we present explicit applications of

our framework to a broad set of continuous variable resources,
namely squeezing (equivalently, nonclassicality), quantum en-
tanglement manipulated via local operations and classical com-
munication or via operations preserving the positivity of the
partial transpose, and steering.

V. EXAMPLES AND APPLICATIONS

Quite remarkably, it turns out that in many — if not all
— physically relevant resource theories,VF (λ) is not only a
convex set, but can even be described by means of semidefinite
programming (SDP) constraints. Although we leave open the
question of whether a general principle can be found from
which the existence of such a description follows naturally, we
will now characterize the quantification of all resources for
which such SDP structure is known to exist. In particular, our
results apply to any resource theory satisfying Postulates 0–V
whose set of free states can be described by constraints of the
kind

VF (λ) =
{
V ∈ QCMN

∣∣∣ V ≥ f (Q) + C, g(Q) ≥ D
}

(4)

where Q is a Hermitian matrix variable of some fixed size, f
and g are linear functions, and C and D are constant Hermitian
matrices. The main advantage of the representation in Eq. (4) is
that the associated quantifier κF in Eq. (3) can then be evaluated
via an efficiently computable semidefinite program:

κF (V) = minimize
ξ,Q

ξ

subject to ξ V ≥ f (Q) + C
g(Q) ≥ D
ξ ≥ 1.

(5)

Alternatively, one can choose to introduce the quantity

υF (V) B max
ζ,Q

{
ζ
∣∣∣ V ≥ ζ( f (Q) + C), g(Q) ≥ D

}
(6)

in which case κF (V) = max {1, 1/υF (V)}. The advantage this
formulation is that the dual of the optimization problem υF
can be expressed by means of the so-called resource witnesses
based on second moments [69], that is, as an optimization
over the expectation values Tr(WV) at the level of the covari-
ance matrix. Assuming that strong duality for the problem (5)
holds (which can be straightforwardly verified for all of the
considered resource theories), we then have the SDP

υF (V) = minimize
W,Y

Tr(WV)

subject to Tr(WC) + Tr(YD) = 1

f †(W) = g†(Y)
W,Y ≥ 0

(7)

where f †, g† are the adjoint maps, that is, the unique linear
maps satisfying Tr( f (A)B) = Tr(A f †(B)) for any Hermitian
A, B.

Many common Gaussian resources can indeed be expressed
and quantified in this way — we will now provide some rep-
resentative examples of such resources, which we have also
collected in Table I.
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Resource f (Q) g(Q) C D Further constraints on Q

Bipartite entanglement [70] QA ⊕ QB QA ⊕ QB — iΩA ⊕ iΩB QA = QT
A , QB = QT

B
Bipartite entanglement (simplified) [71] QA ⊕ 0B QA 0A ⊕ iΩB iΩA QA = QT

A
Negative partial transpose [70] — — iΩA ⊕ (−iΩB) —
Steerability (A→ B) [72] — — 0A ⊕ iΩB —
Nonclassicality [52] — — 1 —

TABLE I. Examples of Gaussian resources whose quantification can be represented in the considered framework. The table relates the resources
with the notation of Eqs. (4), (5). For the sake of clarity of presentation, some additional constraints which one has to impose on the matrix Q
have been considered separately in the rightmost column, although they can be explicitly brought into the form of (4) by including them in the
function g.

A. Squeezing (nonclassicality)

We start by looking at the simplest Gaussian resource
theory of all, namely that of squeezing or nonclassical-
ity [46, 52, 73, 74]. The free states of this theory, also called
classical states from now on, are simply convex mixtures of
coherent states. Within this framework, the goal is usually that
of preparing squeezed states, which may be useful for some
practical (e.g. metrological) tasks [75]. It is not difficult to see
that the continuous variable resource theory of squeezing obeys
all the Postulates we presented. The free operations include
in particular passive transformations, obtained by concatenat-
ing [76]: (i) the addition of ancillae in classical Gaussian states;
(ii) passive unitaries, defined as those symplectic unitaries that
preserve the total photon number; and (iii) destructive Gaussian
measurements. These operations are relatively cheap to realize
experimentally, as passive unitaries can always be implemented
by combining beam splitters and phase shifters [77].

Restricting to the Gaussian setting, free states in this the-
ory admit a remarkably simple description in terms of their
covariance matrices, for ρG[V, s] is a classical state if and only
if V ≥ 1 [52]. This gives us the simple form

κC(V) = minimize
ξ ≥ 1

ξ

subject to ξ V ≥ 1
(8)

which can be easily seen to be exactly computable as κC(V) =

max {1, 1/λmin(V)}, where λmin denotes the minimal eigen-
value. Our main result in Thm. 1 then establishes a no-go
result about the convertibility of nonclassical Gaussian states
under all operations preserving the set of classical states, and
in particular passive operations.

B. Entanglement

The resource theory of quantum entanglement is another
example of a theory for which all of the Postulates hold [3, 17].
Focusing on bipartite entanglement between parties A and B for
simplicity, the set of free states is formed by the separable states
S(A|B). The most operationally relevant set of free operations
includes all transformations that are implementable as local
operations assisted by classical communication (LOCC), and is
a strict subset of all the resource non-generating (separability-
preserving) operations.

In our Gaussian setting, the set VS can be described by
semidefinite constraints of the form

VS(A|B) =
{
V ∈ QCMNAB

∣∣∣ V ≥ γA ⊕ γB, γi ∈ QCMNi

}
.
(9)

which can be easily expressed in the form of Eq. (4) (see
Table I). The associated measure κS can then be computed as a
semidefinite program [69], and corresponds to the inverse of a
quantifier studied in [10].

Notice that Thm. 1 includes as a particular case the result
of [10], showing the impossibility of entanglement distillation
with Gaussian LOCC: in fact, it readily generalizes the result by
showing that distillation with Gaussian separability-preserving
operations is also impossible.

We can strengthen the result even further by relating the
resource theory of entanglement to the one of negative partial
transpose, in which the free states P(A|B) are those with posi-
tive partial transpose across the cut A|B. This set can also be
obtained from Eq. (4) as

VP(A|B) =
{
V ∈ QCMNAB

∣∣∣ V ≥ iΩA ⊕ (−iΩB)
}
. (10)

Here, the quantifier κP admits an analytical characterization as
κP(VAB) = max{1, 1/νmin(ṼAB)}with νmin(ṼAB) being the small-
est symplectic eigenvalue of the partially transposed covariance
matrix [71]. We then notice that, for any sequence of states ρ(n)
which approaches the maximally entangled state in the limit
n → ∞, we have limn→∞ κS(ρ(n)) = ∞ = limn→∞ κP(ρ(n)),
and therefore the distillation of entanglement would necessar-
ily involve increasing κP. By Thm. 1, we get that Gaussian
entanglement distillation is impossible even with Gaussian
operations preserving the positivity of the partial transpose.
Among those operations — which can be strictly more power-
ful than LOCC alone — there are for instance those transforma-
tions implementable by means of Gaussian LOCC assisted by
an unlimited supply of bound entangled Gaussian states [70].

We further remark that the characterization of the set of
separable Gaussian states and their corresponding covariance
matrices can be simplified to [71]

VS(A|B) =
{
V ∈ QCMNAB

∣∣∣ V ≥ γA ⊕ iΩB, γA ∈ QCMNA

}
(11)

which in particular means that the computation of the quantifier
κS can be performed by optimizing only over one of the sub-
systems — this has particular implications for the case where
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one of the subsystems has a larger dimension than the other,
simplifying the computation of the relevant quantities. For
completeness, we give the full forms of the measures κS and
υS simplified in this way in Appendix C.

C. Steering

Another fundamental resource theory is based on the phe-
nomenon of EPR steering [78, 79], in which party A can exploit
quantum correlations to influence the state of another party
B by only performing measurements on A’s subsystem. In
resource-theoretic approaches to steering [38, 72, 80], the free
states are referred to as A→B unsteerable, and free operations
are commonly chosen to be one-way LOCC, reflecting the
asymmetric nature of steering. Steering admits a simplified
characterization when restricted to Gaussian measurements,
allowing for a dedicated resource theory of Gaussian steering
to be established [72, 81–84]. It turns out that the set of free
states TA→B that are unsteerable by Gaussian measurements
on A can be described as [72]

VT (λ) =
{
V ∈ QCMNAB

∣∣∣ V ≥ 0A ⊕ iΩB

}
. (12)

It is then easy to verify that our Postulates are satisfied, and
the no-go result of Thm. 1 holds also for the Gaussian re-
source theory of steering — that is, the distillation of steering
from Gaussian states is impossible by Gaussian steering non-
generating operations, with the latter including all relevant
classes of free operations such as one-way Gaussian LOCC.
We remark that in this case the quantifier κT can be computed
as

κT (VAB) = minimize
λ≥1

λ

subject to λVAB/VA ≥ iΩB,
(13)

with VAB/VA denoting the Schur complement, which
admits an analytical characterization as κT (VAB) =

max{1, 1/νmin(VAB/VA)}. In the particular case when system
B consists of only one mode, log κT is equal to a previously
introduced quantifier of Gaussian steering [81].

VI. CONCLUSIONS

We have introduced a framework for the characterization
of general CV Gaussian quantum resource theories satisfying
a set of intuitive constraints on their set of free states. The
approach allowed us to describe many important resources
such as entanglement, steering, and nonclassicality together
in a common formalism, obtaining novel results in the charac-
terization of the resources as well as shedding light onto their
properties. In particular, we showed that the task of resource
distillation is impossible with free Gaussian operations in the
given resource theories, by proving specifically that, by such
operations, one cannot convert (even infinitely many copies of)
a Gaussian state into another Gaussian state with a higher re-
source content as quantified by the resource monotone defined
in this paper. This establishes fundamental limitations of the
Gaussian paradigm for state transformations.

An interesting open question is whether some sort of con-
verse of Thm. 1 holds. Namely, given any Gaussian re-
source theory and two covariance matrices V,W such that
κF (V) ≥ κF (W), is it always possible to convert a large number
of copies of V into a single copy of W with Gaussian resource
non-generating operations? Even more ambitiously, can the
transformation V → W happen with asymptotic non-zero rate,
if one allows for vanishing errors? These questions will be
explored in further work.

In summary, our results are a step forward in the characteri-
zation of general quantum resources, bridging the gap between
the different approaches to finite- and infinite-dimensional set-
tings, and elucidating the power of Gaussian states and oper-
ations in quantum information processing. Our work opens
an avenue for further investigation of many aspects of CV
resources, including a complete characterization of state trans-
formations as well as operational tasks and protocols such as
resource distillation and dilution beyond Gaussianity.
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Appendix A: Topology of Gaussian states

1. Notation and definitions

For completeness, we recall the relevant definitions and
concepts. Consider a continuous variable system of n modes,
for which we adopt the so-called real notation. In what follows,
we reserve the letter r for the column vector formed by the n
pairs of canonically conjugated field operators, sorted as

r B (x1, . . . , xn, p1, . . . , pn)T . (A1)

Here, the transposition sign refers only to the phase space
degrees of freedom, and does not act on the Hilbert space.
With the help of this notation, the canonical commutation
relations [x j, pk] = iδ jk can be rewritten in a compact vector
form as

[r, rT ] = iΩ B i
(

0 1

−1 0

)
. (A2)

The displacement operator associated with ξ ∈ R2n is given by
D(ξ) B eiξT Ωr and satisfies the identity

D(ξ1)D(ξ2) = e−
i
2 ξ

T
1 Ωξ2 D(ξ1 + ξ2) , (A3)

referred to as the Weyl form of the canonical commutation
relations. Observe that D(ξ)† = D(−ξ) for all real vectors ξ.

The displacement operators can be used to generate the
notable set of coherent states. For u ∈ R2n, one defines

|u〉 B D(u) |0〉 , (A4)

where |0〉 is the vacuum state. Applying the Campbell-Baker-
Hausdorff formula to the exponential that defines the displace-
ment operator, it is not too difficult to show that

〈0|u〉 = 〈0|D(u)|0〉 = e−
1
4 uT u . (A5)

Coherent states are just particular examples of Gaussian
states, defined as thermal states of quadratic Hamiltonians. We
denote the set of Gaussian states of an n-mode system by Gn.
Remember that Gaussian states can be uniquely identified by
their first and second moments, respectively given by

s B Tr[ρ r] (A6)

V jk B Tr
[
ρ
{
(r − s) j, (r − s)k

}]
. (A7)

Here, the anticommutator {H,K} B HK + KH is needed in
order to make the above expression real. While any vector
s ∈ R2n can represent the first moments of an n-mode Gaussian
state, it is well-known that the entries of a real symmetric
matrix V are the second moments of some Gaussian state if
and only if

V ≥ iΩ , (A8)

the above relation encoding the constraints coming from
Heisenberg’s uncertainty principle in this context. Real sym-
metric matrices satisfying Eq. (A8) are called quantum covari-
ance matrices in what follows. It can be shown that every such
matrix is necessarily strictly positive, i.e., Eq. (A8) implies that
V > 0.

For every trace class operator T , it is convenient to define
its characteristic function

χT (ξ) B Tr[T D(ξ)] . (A9)

The operator can be reconstructed from its characteristic func-
tions by means of the following relation [85, Cor. 5.3.5]:

T =

∫
d2nξ

(2π)n χT (ξ) D(−ξ) , (A10)

where the integral converges in the weak topology, see for
instance [85, Cor. 5.3.5]. For more on what this means, see
below.

It can be shown that the characteristic function of a Gaussian
state ρG[V, s] takes the form [51, Eq. (4.48)]

χρG[V,s](ξ) = Tr[ρG[V, s] D(ξ)] = e−
1
4 ξ

T ΩT VΩξ+isT Ωξ . (A11)

Up to a change of variables, Eq. (A10) can then be rewritten
as follows:

ρG[V, s] =

∫
d2nξ

(2π)n e−
1
4 ξ

T Vξ−isT ξD(Ωξ) , (A12)

where the integral converges weakly, see again [85, Cor. 5.3.5].
Among the other things, from Eq. (A10) and (A11) it can be ap-
preciated, that Gaussian states are exactly those quantum states
whose characteristic function is a (multivariate) Gaussian.

A useful formula that we will employ in what follows gives
the action of a random displacement on a Gaussian state: for
all K > 0, one has∫

d2nξ
e−ξ

T K−1ξ

πn
√

det K
D(ξ) ρG[V, s] D(ξ)† = ρG[V + K, s] ,

(A13)
again in the sense of weak convergence. This can be seen as
an immediate consequence of Eq. (A12).

2. Closedness and continuity results

LetHn be the Hilbert space associated with a finite number n
of harmonic oscillators, and let T (Hn) be the set of trace class
operators over Hn. Observe that T (Hn) becomes a Banach

http://dx.doi.org/10.1103/PhysRevLett.115.260501
http://dx.doi.org/10.1103/PhysRevLett.115.260501
http://dx.doi.org/10.1063/1.4935852
http://dx.doi.org/10.2307/2371062
http://dx.doi.org/10.1063/1.532913
http://dx.doi.org/10.1063/1.532913
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space once it is equipped with the trace norm ‖ · ‖1, and its
Banach dual is well known to be identifiable with the set of
bounded operators, denoted by B(Hn). Let us stress here
that this is by no means a mathematical concept only. On
the contrary, in quantum mechanics B(Hn) has a physical
interpretation as the set of all observables on the system.

In general, given a Banach space E it is always possible to
consider its (Banach) dual, i.e., the space E∗ of all continuous
linear functionals ϕ : E → C. Remember that a linear func-
tional is continuous if and only if it is bounded, i.e., if and only
if supx∈E, ‖x‖≤1 |ϕ(x)| is finite. The Banach dual can be used to
induce another topology which is of interest, i.e., the weak
topology, defined as the coarsest topology that makes all the
functionals in E∗ continuous. As a matter of fact, the topolo-
gies on E such that the corresponding continuous dual is E∗ are
exactly those that are coarser than the norm topology (induced
by the norm on E) and finer than the weak topology. This is
a special case of the Mackey-Arens theorem [55, Thm. 8.14].
For a discussion of these concepts, see [86, Sec. 2.5] or [87,
Sec. 3.11].

If E is infinite-dimensional it can be shown that the weak
topology is always different (in fact, as the name suggests,
strictly coarser) than the norm topology. Hence, when it comes
to taking closures (something we shall be concerned with) one
has to specify which topology is used, as in general the weak
closure will be larger than the norm closure. However, this is
not always the case. Indeed, there is an important class of sets
for which weak and norm closure always coincide, i.e., that of
convex sets (see [86, Thm. 2.5.16] or [87, Sec. 3.12]). By the
above discussion, it should be clear by now that all topologies
on a Banach space E such that the corresponding continuous
dual coincides with the Banach dual E∗ have in fact the same
closed convex sets.

The Banach space we care about here is T (Hn), hence the
norm topology is induced by the trace norm ‖ · ‖1, and the weak
topology is nothing but the the coarsest topology that makes
all linear functionals Tr[A(·)] : T (Hn) → C continuous, for
all A ∈ B(Hn). Inside T (Hn) lies the set of Gaussian states,
denoted by Gn, where n is the number of modes. It is not
completely trivial to show that Gn is norm-closed, and so we
first show this result below.

Lemma A1. The set of Gaussian states Gn ⊂ T (Hn) is closed
with respect to the topology induced by the trace norm.

Proof. We have to show that given a sequence ρ(k)
G of Gaussian

states with the property that limk ‖ρ
(k)
G −ρ‖1 for some trace class

operator ρ, we have that ρ itself is a Gaussian state. In what
follows, we denote by V(k) and s(k) the covariance matrix
and displacement vector of ρ(k)

G , respectively, so that ρ(k)
G =

ρG[V(k), s(k)].

The first step in the proof consists in showing that V(k) and
s(k) are bounded sequences, i.e., that there exists M ∈ R such
that ‖V(k)‖∞, |s(k)|2 ≤ M for all k (where ‖ · ‖∞ is the operator
norm, and | · |2 the Euclidean norm for vectors). In order to see

why, write

〈u|ρG[V(k), s(k)]|u〉

=

∫
d2nξ

(2π)n e−
1
4 ξ

T V(k)ξ−is(k)T ξ 〈u|D(Ωξ)|u〉

(1)
=

∫
d2nξ

(2π)n e−
1
4 ξ

T V(k)ξ−is(k)T ξ 〈0|D(−u)D(Ωξ)D(u)|0〉

(2)
=

∫
d2nξ

(2π)n e−
1
4 ξ

T V(k)ξ−is(k)T ξe−iuT ξ 〈0|D(Ωξ)|0〉

(3)
=

∫
d2nξ

(2π)n e−
1
4 ξ

T V(k)ξ−is(k)T ξe−iuT ξe−
1
4 ξ

T ξ

=

∫
d2nξ

(2π)n e−
1
4 ξ

T (V(k)+1)ξ−i(s(k)+u)T ξ

(4)
=

2ne−(s(k)+u)T (V(k)+1)−1(s(k)+u)

√
det (V(k) + 1)

.

The justification of the above steps is as follows: (1) we used
the definition of coherent states, Eq. (A4); (2) we applied
Eq. (A3) twice; (3) we made use of Eq. (A5); (4) we performed
the Gaussian integral. Now, we take the limit k → ∞ on both
sides of the equality

〈u|ρG[V(k), s(k)]|u〉 =
2ne−(s(k)+u)T (V(k)+1)−1(s(k)+u)

√
det (V(k) + 1)

. (A14)

On the left-hand side we get 〈u|ρ|u〉 because of the properties
of the convergence in norm. Let us now look at the right-
hand side. Observe that det (V(k) + 1) ≥ ‖V(k)‖∞ + 1, and
that the exponential term is at most 1. If the sequence V(k)
were unbounded, then there would exist a subsequence km on
which ‖V(km)‖∞ → ∞, which implies by the above equality
that 〈u|ρ|u〉 = 0. Since this would happen for all u ∈ R2n,
we would deduce that 〈ψ|ρ|ψ〉 = 0 for all vectors |ψ〉 ∈ Hn,
because coherent states are dense, and ρ is a bounded (even
trace class) operator. It is elementary to verify that this would
imply that ρ = 0 identically, a contradiction. Hence, we are
led to conclude that V(k) must be bounded, i.e., V(k) ≤ M1
for some M ∈ R.

This implies immediately that (V(k) + 1)−1 ≥ (M + 1)−11,
hence if the sequence s(k) were unbounded, for every fixed u
we could find a subsequence km on which |s(km) + u|2 → ∞,
which implies that

e−(s(km)+u)T (V(km)+1)−1(s(km)+u) ≤ e−
1

M+1 |s(km)+u|22 −→
m→∞

0 .

Since the determinant appearing in Eq. (A14) is always at least
1, we would deduce that the whole r.h.s. of Eq. (A14) tends to
0 on that subsequence, hence that 〈u|ρ|u〉 = 0 for all u ∈ R2n,
again a contradiction.

This shows that V(k) and s(k) form bounded sequences.
Since they live in finite-dimensional spaces, they will admit
two simultaneously convergent subsequences

V(km) −→
m→∞

V ,

s(km) −→
m→∞

s .
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Clearly, one still has limm→∞ ‖ρG[V(km), s(km)]−ρ‖1 = 0. Now,
we use this to take the limit m → ∞ on both sides of the
equality

Tr[ρG[V(km), s(km)] D(ξ)] = e−
1
4 ξ

T ΩT V(km)Ωξ+is(km)T Ωξ , (A15)

which is just a rewriting of Eq. (A11) (here, ξ ∈ R2n is fixed).
On the left-hand side we have

lim
m→∞

Tr[ρG[V(km), s(km)] D(ξ)] = Tr[ρD(ξ)] = χρ(ξ)

because the convergence of the sequence of states is in trace
norm, and D(ξ) is a bounded (even unitary) operator. On the
right-hand side, by our hypotheses

lim
m→∞

e−
1
4 ξ

T ΩT V(km)Ωξ+is(km)T Ωξ = e−
1
4 ξ

T ΩT VΩξ+isT Ωξ .

The equality above then implies that

χρ(ξ) = e−
1
4 ξ

T ΩT VΩξ+isT Ωξ ,

from which we see that the limit state ρ has a Gaussian charac-
teristic function, hence it is Gaussian. �

There is another continuity result that we shall need in what
follows. In a way, this can be considered as a strengthening
of [56, Lemma 1].

Lemma A2. Consider a continuous variable system with n
degrees of freedom. The map

QCMn ⊕R
2n −→ T (Hn)

(V, s) 7−→ ρG[V, s] ,
(A16)

which sends a pair (V, s), where V is a QCM and s a real
vector, is continuous with respect to the trace norm. Here, the
topology on

QCMn ⊕R
2n ⊂ M2n(R) ⊕R2n ' R(2n)2+2n

is understood to be the standard one.

Proof. We have to show that whenever limk→∞ V(k) = V
and limk→∞ s(k) = s one has also limk→∞ ‖ρG[V(k), s(k)] −
ρG[V, s]‖1 = 0. At first glance we seem to have a problem
here, as the trace distance of two Gaussian states is not a
handy object when dealt with from the phase space perspective.
However, we can exploit the Fuchs-van de Graaf’s inequality
‖ρ − σ‖1 ≤ 2

√
1 − F(ρ, σ)2 to upper bound the trace distance

by means of a fidelity-based quantity. The fidelity between
two Gaussian states happens to have an explicit expression
in terms of their first and second moments [88, Eq. (9)-(14)].
One can verify by direct inspection that this is continuous with
respect to the involved covariance matrices and displacement
vectors, and of course it reduces to 1 when the first and second
moments of the first state coincide with those of the second

state. Hence,

lim
k→∞
‖ρG[V(k), s(k)] − ρG[V, s]‖1

≤ lim
k→∞

2
√

1 − F(ρG[V(k), s(k)], ρG[V, s])2

= 2

√
1 −

(
lim
k→∞

F(ρG[V(k), s(k)], ρG[V, s])
)2

= 2
√

1 − (F(ρG[V, s], ρG[V, s]))2

= 2
√

1 − (1)2

= 0 ,

as claimed. �

Appendix B: Gaussian resources

1. Free states

Lemma A3. Let τ be a linear topology onT (HN) (the space of
trace-class operators) such that the corresponding continuous
dual is (τ,T (HN))′ = B(HN) (the space of bounded operators).
If Postulates IV and V hold, then all sets of free states F (λ)
are closed with respect to τ.

Proof. Since the weak topology on T (HN) is by definition
the coarsest topology that makes all functionals Tr[A(·)] :
T (HN) → C continuous (where A ∈ B(HN) is generic), any
topology τ that satisfies the hypothesis will be finer than the
weak topology. Thus, it suffices to show that all sets F (λ)
are weakly closed. This follows since F (λ) are norm-closed
and convex by assumption, and weak closure and norm clo-
sure always coincide for convex sets by Mazur’s theorem (see
e.g. [86, Thm. 2.5.16] or [87, Sec. 3.12]). �

Lemma A4. When Postulate V holds, the set of Gaussian free
states FG(λ) is norm-closed.

Proof. By definition FG(λ) = F (λ) ∩ GN . The set F (λ) is
norm-closed by Postulate V, and the set GN of all Gaussian
states is also norm-closed by Lemma A1. Since the intersection
of closed sets is closed, we conclude. �

Proposition 1. If Postulate V holds, then the setV(λ) is topo-
logically closed. If also Postulate IV holds, thenV(λ) becomes

‘upward closed’, in the sense that V ∈ V(λ) and W ≥ V implies
W ∈ V(λ).

Proof. We first show that V(λ) is topologically closed. By
Lemma A2, we know that the map Γ : QCMN → T (HN)
whose action is defined by Γ(V) B ρG[V, 0] is continuous with
respect to the trace norm. With this notation, the setV(λ) can
be rewritten as

V(λ) = Γ−1 (FG(λ)) .

Since FG(λ) is norm-closed by Lemma A4, and the preimages
of closed sets via continuous maps are closed, we conclude
thatV(λ) is closed as well.
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We now move on to the second claim. Since we already
showed thatV(λ) is topologically closed, it is enough to show
that is strictly upward closed, i.e., that for all V ∈ V(λ) and
W > V one has also W ∈ V(λ). This is an easy consequence
of Eq. (A13). If we substitute there K = W − V , on the left-
hand side we get a state in cl (coFG(λ)), the closed convex
hull of the set of free Gaussian states. From the right-hand
side we learn that this state is actually a Gaussian state, hence
by Gaussian convexity of the set FG(λ) it must be also free.
Finally, its covariance matrix is V + K = W, which leads us to
conclude that W ∈ V(λ). �

Proposition A3. Assume that Postulates I, II and V hold.
Moreover, let the set of Gaussian free states be invariant under
local mixing with 50:50 beam splitters, i.e., assume that for
any pair of states ρ, σ ∈ FG(λ) of a system with total number
of modes N one has N⊗

j=1

U(π/4) j, j

 (ρ ⊗ σ)

 N⊗
j=1

U(π/4) j, j


†

∈ FG(λ) , (A1)

where U(π/4) j, j is the unitary that implements the action of a
50:50 beam splitter on the j-th mode of ρ and the same mode
of σ. Then the corresponding set of free covariance matrices
V(λ) is convex.

Proof. Since V(λ) is topologically closed by Prop. 1, it is
convex if and only if it is midpoint convex, meaning that 1

2 (V +

W) ∈ V(λ) whenever V,W ∈ V(λ). Hence, let us show that
V(λ) is midpoint convex. Picking V,W as above, construct the
state ρG[V, 0]⊗ρG[W, 0], which is free by Postulate I, and whose
covariance matrix is V ⊕ W =

(
V

W

)
. By hypothesis, mode-

by-mode mixing with a 50:50 beam splitter yields another free
state, whose covariance matrix will be

1
2

(
V + W V −W
V −W V + W

)
.

Tracing away one of the two spatially separated subsystems
leaves the other in a state with covariance matrix 1

2 (V + W).
Such a state must be free by Postulate II, hence we conclude
that 1

2 (V + W) ∈ V(λ), as claimed. �

2. Quantification and distillation

We remind the reader that in general a Gaussian completely
positive map Λ from A to B acts on covariance matrices as
follows [9, 10]:

Λ : VA 7−→
(
ΓAB + ΣVAΣ

)/
(ΓA + ΣVAΣ) . (A2)

Here, ΓAB is the quantum covariance matrix associated with
the Choi state of the map, and Σ is the matrix that reverses the
signs of all the momenta of the system on which it is acting,
i.e.,

Σ B

(
1

−1

)
(A3)

according to the block decomposition of Eq. (A2). The Schur
complement of a 2 × 2 block matrix M =

(
P X
Y Q

)
with respect

to one of its square invertible blocks is given by

M/P B Q − YP−1X . (A4)

It is elementary to verify that the above quantity behaves well
under scalar multiplication, in the sense that (λM)/(λP) =

λ(M/P) for all scalars λ , 0. Furthermore, it is known that the
Schur complement admits the following variational representa-
tion:

M/P = max
{
R : M ≥ 0 ⊕ R

}
, (A5)

the ordering of the set on the right-hand side being the pos-
itive semidefinite (aka Löwner) ordering. From Eq. (A5) it
follows in particular that M/P is monotonically non-decreasing
in M > 0. For more details on the properties of Schur com-
plements we refer the reader to the excellent monograph [89].
A straightforward consequence of the above discussion is the
following result.

Lemma A5. If ΓAB represents a Gaussian free operation Λ ∈

OG(λA → λB), then(
ΓAB + ΣVAΣ

)/
(ΓA + ΣVAΣ) ∈ V(λB) ∀ VA ∈ V(λA) .

(A6)
Equivalently,

∀ VA ∈ V(λA) ∃ WB ∈ V(λB) : ΓAB ≥ (−ΣVAΣ) ⊕WB .
(A7)

Proof. The first claim is a direct reformulation of the defini-
tion of resource non-generating operations, obtained via the
explicit action of a Gaussian completely positive map as given
by Eq. (A2). As for the second, let us observe that the in-
equality ΓAB ≥ (−ΣVAΣ) ⊕ WB implies, by Eq. (A5), that(
ΓAB + ΣVAΣ

)/
(ΓA + ΣVAΣ) ≥ WB. Since the right-hand side is

the covariance matrix of a free state by hypothesis, and Prop. 1
holds, we deduce that the left-hand side is a free covariance
matrix as well. The converse inequality is proved similarly, by
realizing that Eq. (A5) implies that

ΓAB + ΣVAΣ ≥ 0A ⊕
(
ΓAB + ΣVAΣ

)/
(ΓA + ΣVAΣ) C 0A ⊕WB ,

which leads immediately to ΓAB ≥ (−ΣVAΣ) ⊕WB, as claimed.
�

We now come to the discussion of the properties of the κF
function defined in Eq. (3). We first state some elementary
facts.

Lemma A6. The set TF (V) B
{
t ≥ 1

∣∣∣ tV ∈ V(λ)
}

is non-
empty and topologically closed for all V ∈ QCMN as long as
V(λ) is non-empty.

Proof. We first show that TF (V) , ∅ for all V ∈ QCMN .
Picking W ∈ V(λ) , ∅, it is easy to see that

‖W‖∞‖V−1‖∞ V ≥ W , (A8)
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where ‖ · ‖∞ denotes the operator norm. Observe that quantum
covariance matrices are always strictly positive, hence V−1

exists. We then write

‖W‖∞‖V−1‖∞ V ≥ ‖W‖∞‖V−1‖∞ λmin(V)1

= ‖W‖∞‖V−1‖∞ ‖V−1‖−1
∞ 1

= ‖W‖∞1
≥ W .

By the upward closedness of VF (λ) (Prop. 1), one deduces
immediately that max

{
1, ‖W‖∞‖V−1‖∞

}
∈ TF (V), showing

that the set is non-empty. To show that it is also topologically
closed, just observe that

TF (V) =
(
[1,∞) · V

)
∩V(λ) . (A9)

The left-hand side of the above identity is the intersection of
two closed sets, thanks to Prop. 1, hence it is itself closed. �

The following is a refinement of Prop. 2 from the main text.

Proposition A4. The function κF (·) defined by Eq. (3) is:

(a) finite and well-defined for all V ∈ QCMN;

(b) faithful, in the sense that κF (V) = 1 if and only if V ∈
V(λ);

(c) such that κF (sV) ≥ s−1κF (V) for all s ≥ 1;

(d) monotonically non-increasing under OG(λ→ µ); and

(e) continuous.

Proof. Claim (a) follows directly from Lemma A6, while (b) is
obvious from the definition. As for (c), one can distinguish two
cases: if sV ∈ V(λ), then on the one hand s ≥ κF (V), while
on the other hand κF (sV) = 1 ≥ s−1κF (V); if sV < V(λ), then

κF (sV) = min
{
t ≥ 1

∣∣∣ tsV ∈ V(λ)
}

= s−1 min
{
t′ ≥ s

∣∣∣ t′V ∈ V(λ)
}

= s−1 min
{
t′ ≥ 1

∣∣∣ t′V ∈ V(λ)
}

= s−1κF (V) .

We now turn to the proof of (d), i.e., the monotonicity
of κF under Gaussian free operations. Call ξ B κF (V).
Then, by virtue of Eq. (A2), all we have to show is that
κF

(
(ΓAB + ΣVAΣ)

/
(ΓA + ΣVAΣ)

)
≤ ξ, for all free Gaussian

operations represented by covariance matrices ΓAB as in
Lemma A5. This amounts to proving that ξ

(
ΓAB + ΣVAΣ

)/
(ΓA +

ΣVAΣ) ∈ V(λB). We write

ξ
(
ΓAB + ΣVAΣ

)/
(ΓA + ΣVAΣ)

(1)
=

(
ξΓAB + ξΣVAΣ

)/
(ξΓA + ξΣVAΣ)

(2)
≥

(
ΓAB + ξΣVAΣ

)/
(ΓA + ξΣVAΣ)

(3)
∈ V(λB) .

The justification of the above steps is as follows: (1) comes
from homogeneity; (2) uses the monotonicity of the Schur com-
plement, together with the observation that since ξ = κF (V) ≥
1 one has ξΓAB ≥ ΓAB; (3) is an elementary consequence of
Eq. (A6) applied to the free covariance matrix ξV .

A useful observation that follows from the just established
property (d) is that κF (·) is also monotonically non-increasing
with respect to the positive semidefinite ordering. In fact,
adding some positive semidefinite matrix to the input never
creates a resource state out of a free state, i.e., it is always a
free operation.

What is left to show is claim (e). We will break the proof
into two steps: first, we will show that lim sup∆→0 κF (V +

∆) ≤ κF (V) for all V > 0 (upper semicontinuity); second,
we will complement this bound by means of the inequality
lim inf∆→0 κF (V + ∆) ≥ κF (V) (lower semicontinuity). Clearly,
the two statements together imply that lim∆→0 κF (V + ∆) =

κF (V), which is claim (e). Now, the upper semicontinuity rests
on the upward closedness of V(λ). For a sufficiently small
perturbation ∆, write

V + ∆ ≥ V − ‖∆‖∞1

≥ V − ‖∆‖∞‖V−1‖∞V

=
(
1 − ‖∆‖∞‖V−1‖∞

)
V ,

we deduce that
V + ∆

1 − ‖∆‖∞‖V−1‖∞
≥ V .

Using properties (c) and (d), this in turn implies that(
1 − ‖∆‖∞‖V−1‖∞

)
κF (V + ∆) ≤ κF

(
V + ∆

1 − ‖∆‖∞‖V−1‖∞

)
≤ κF (V) ,

from which it follows that

κF (V + ∆) ≤
κF (V)

1 − ‖∆‖∞‖V−1‖∞
.

In particular,

lim sup
∆→0

κF (V + ∆) ≤ lim
∆→0

κF (V)
1 − ‖∆‖∞‖V−1‖∞

= κF (V) ,

which proves upper semicontinuity. The lower semicontinuity
comes instead from the topological closedness of the setV(λ),
as established by Prop. 1. To see why, consider a V > 0 and
a sequence of sufficiently small perturbation matrices (∆n)n∈N
such that limn→∞ ∆n = 0. Since κF (V + ∆n) (V + ∆n) ∈ V(λ)
for all n, taking a subsequence (nk)k∈N such that limk→∞ κF (V +

∆nk ) = lim infn→∞ κF (V + ∆n), we obtain by closedness that

V(λ) 3 lim
k→∞

(
κF (V + ∆nk ) (V + ∆nk )

)
=

(
lim
k→∞

κF (V + ∆nk )
)

V

=

(
lim inf

n→∞
κF (V + ∆n)

)
V ,

which implies in turn that κF (V) ≤ lim infn→∞ κF (V + ∆n),
proving lower semicontinuity and hence claim (e). �
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Remark. In fact, we have shown that

κF (V) ≤ max
{

1, ‖V−1‖∞ min
W∈V(λ)

‖W‖∞

}
. (A10)

for all V ∈ QCMN .

Remark. An inspection of the above proof of the monotonicity
result (Prop. 2(d)) reveals that the only property of the Choi
covariance matrix ΓAB we have made use of is its positive
semidefiniteness. This observation shows that κF is monotonic
under any operation of the form specified by Eq. (A2) with
ΓAB ≥ 0.

The fundamental property of the κF measure we employ
here concerns its behaviour when multiple copies of the same
state are considered.

Lemma A7. For all λ,µ, consider the κF functions identified
via Eq. (3) by the sets of free covariance matricesV(λ),V(µ),
and V(λ ⊕ µ). Then for all V ∈ QCMN and W ∈ QCMM ,
where N =

∑
j n j and M =

∑
j m j, it holds that

κF (V ⊕W) = max{κF (V), κF (W)} .

Proof. Call η B max{κF (V), κF (W)}. From Prop. 1 and from
the inequalities η ≥ κF (V), κF (W) we deduce immediately that
ηV ∈ V(λ), ηW ∈ V(µ). By Postulate I, we deduce that

η (V ⊕W) = (ηV) ⊕ (ηW) ∈ V(λ) ⊕V(µ) ⊆ V(λ ⊕ µ) ,

which implies by definition that κF (V ⊕ W) ≤ η =

max{κF (V)F , κF (W)}. As for the opposite inequality, call
ζ B κF (V ⊕W). Then ζ(V ⊕W) ∈ V(λ ⊕ µ), and by Postu-
late II we can generate a free state of the first system by tracing
away the second. At the level of covariance matrices this
amounts to performing a local projection, for which we adopt
the same notation as in the characterization of Postulate II in
the manuscript. We then obtain

ζV = Π (ζ(V ⊕W)) ΠT ∈ ΠV(λ ⊕ µ) ΠT ⊆ V(λ) .

This shows that κF (V) ≤ ζ = κF (V ⊕ W). Repeating
the reasoning with W instead of V we get also κF (W) ≤
κF (V ⊕ W), and putting the two inequalities together we
have max{κF (V), κF (W)} ≤ κF (V ⊕W), which completes the
proof. �

Theorem 1. Consider an arbitrary Gaussian resource theory
satisfying Postulates 0-V and two covariance matrices V,W ∈
QCMN . If κF (W) > κF (V), then it is impossible to find a
sequence (Wn)n∈N ⊂ QCMN such that limn→∞Wn = W and
the transformations V⊕n → Wn are possible with Gaussian
resource non-generating operations for all n.

Proof. If said transformation were possible, by combining
Prop. 2 and Lemma A7 one would obtain

κF (V) = κF
(
V⊕n

)
≥ κF (Wn) .

Since κF is continuous, one has limn→∞ κF (Wn) = W and
hence also κF (V) ≥ κF (W), which is a contradiction. �

Remark. The remark after Prop. 2 has an important conse-
quence here. Namely, we now see that the above no-go result
still holds if one allows as free operations all resource non-
generating maps of the form given by Eq. (A2) with ΓAB ≥ 0.
Remember that a map acting on the second moments as in
Eq. (A2) is a valid physical transformation (completely posi-
tive map) if and only if ΓAB is a quantum covariance matrix,
i.e., if and only if ΓAB ≥ iΩAB. Since this is a strictly stronger
constraint than simply requiring that ΓAB ≥ 0, this observa-
tion extends the validity of Thm. 1 even further. For instance,
its domain of applicability now includes the maps considered
in [56, Eq. (24)-(26)], since the corresponding Choi covariance
matrices can be shown to be positive semidefinite provided [56,
Eq. (27)] is obeyed. However, as some of these maps will
be unphysical, the extension discussed here may be regarded
mainly as a mathematical curiosity.

Appendix C: Semidefinite programming representation of
Gaussian resources

1. Quantum entanglement

Recall that the characterization of the set of separable states
ρG[VAB, s] ∈ SA|B can be simplified to [71]

ρG[VAB, s] ∈ SA|B ⇐⇒ VAB ≥ γA ⊕ iΩB, (A1)

which gives the following semidefinite representation of the
quantifier κS:

κS(VAB) = minimize
λ,γA

λ

subject to λVAB ≥ γA ⊕ iΩB

γA = γT
A

γA ≥ iΩA

λ ≥ 1

(A2)

where one can equivalently consider the subsystem B instead.
The Lagrange dual of υS can be obtained as

υS(VAB) = minimize
W,X

〈W,VAB〉

subject to 〈W22, iΩB〉 + 〈X, iΩA〉 = 1
Re(W11) = Re(X)
W, X ≥ 0

(A3)

where W =

(
W11 W12

W†12 W22

)
and we use the Hilbert-Schmidt inner

product 〈X,Y〉 = Tr(XY). With respect to the dual problem in
Ref. [69] which requires an optimization over the spaces of
Hermitian matrices H2n ⊕ H2n, using the simplified the condi-
tion for separability in Eq. (A1) reduces the optimization space
to H2n ⊕ H2nA .

To see that we were justified in claiming that the optimal
value of υS is equal to the optimal value of the dual, we will
show that strong duality holds. Take W?⊕X? = 12n+2nA + i

2n Ω⊕

ΩA, and notice that W? ⊕ X? > 0 since it is Hermitian and all
of its eigenvalues are given by 2n±1

2n > 0, and Tr
(
W?

22iΩB

)
+
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Tr (XiΩA) = 1. This means that W? and X? form a strictly
feasible solution to the dual problem, and so Slater’s condition
is satisfied and strong duality holds [90].

2. Steering

The primal problem corresponding to the quantifier of A→
B steerability κT is then given by

κT (VAB) = minimize
λ≥1

λ

subject to λVAB ≥ 0A ⊕ iΩB.
(A4)

An important property of the Schur complement is that, given
a Hermitian matrix M =

(
P X
X† Q

)
such that P > 0, we have

M ≥ 0 ⇐⇒ M/P ≥ 0 [89]. Now, since VA > 0, we can
equivalently write

κT (VAB) = minimize
λ≥1

λ

subject to λVAB/VA ≥ iΩB.
(A5)

The corresponding inverse dual is given as

υT (VAB) = minimize
W

〈W,VAB〉

subject to 〈W22, iΩB〉 = 1
W ≥ 0

= minimize
W

〈W,VAB/VA〉

subject to 〈W, iΩB〉 = 1
W ≥ 0.

(A6)

Taking W? = 12n + i
2n Ω, we have that W? > 0 since it is

Hermitian and its eigenvalues are given by 2n±1
2n > 0, and

Tr
(
W?iΩ

)
= 1. This means that W? is a strictly feasible

solution to the latter dual problem, so Slater’s condition is
satisfied and strong duality holds.

In fact, Eq. A5 suggests an interesting alternative character-
ization of this quantifier in terms of a symplectic eigenvalue
problem. To see this, consider first the following result (see
also [91]).

Proposition A5. The smallest symplectic eigenvalue νmin(V)
of any V > 0 can be expressed as

νmin(V) = max
{
λ ≥ 0

∣∣∣ V ≥ iλΩ
}

= min
{
〈W,V〉

∣∣∣ 〈W, iΩ〉 = 1
}
.

(A7)

Proof. Recall that a matrix S is called symplectic if S ΩS T =

Ω. By Williamson’s theorem [92, 93], there exists a sym-
plectic matrix S such that S VS T = D ⊕ D with D =

diag (ν1(V), . . . , νn(V)) > 0 being a diagonal matrix of the
symplectic eigenvalues of V . We then have

max
{
λ

∣∣∣ V ≥ iλΩ
} (1)

= max
{
λ

∣∣∣ S VS T ≥ iλS ΩS T
}

= max
{
λ

∣∣∣ D ⊕ D ≥ iλΩ
}

(2)
= max

{
λ

∣∣∣ D − λ2D−1 ≥ 0
}

(3)
= max

{
λ

∣∣∣ ν j(V)2 − λ2 ≥ 0 ∀ j
}

= νmin(V)

(A8)

where (1) follows since any symplectic matrix is non-singular,
(2) follows from the Schur complement condition for positive
semidefiniteness, and (3) follows since both D and D−1 are
diagonal with ν j(V) > 0 ∀ j. The second line of Eq. (A7) then
follows by strong Lagrange duality. �

This leads to the following simple representation:

υT (VAB) = νmin (VAB/VA) . (A9)

The quantifier can thus be related to a commonly used mea-
sure, the Gaussian A → B steerability [81] NT (VAB) B
−

∑
k log min{1, νk(VAB/VA)}. In particular, in the case of a

bipartite system where nB = 1, VAB/VA has only one symplec-
tic eigenvalue and therefore we have NT (VAB) = log κT (VAB).
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