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Abstract 

 

It has recently been shown [2, 3] that only seven of 

the classical deformation invariants employed in 

hyperelasticity of solids reinforced by two families 

of unidirectional fibres are independent. This short 

communication demonstrates a manner in which 

such a set of seven invariants is conveniently 

identified without much deviation from well-

known features that characterise their classical 

counterparts. It also shows that, unlike several of 

their classical counterparts, these newly identified 

invariants have all their own physical meaning. 

This new development is immediate applicable on 

mass-growth problems of tissue that preserve fibre 

direction [1] and, notably, on problems involving 

mass-growth of a circular tube reinforced by two 

families of helices wound symmetrically around 

the tube in opposite directions. 
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1. Introduction 

 

Mass-growth of a fibre-reinforced circular 

cylindrical tube can naturally be modelled with the 

use of known principles employed in the theory of 

hyperelastcity. It is thus recently shown [1] that, if 

mass-growth preserves the direction and shape of a 

single family of fibres embedded in, and growing 

with and within the tube, then the corresponding set 

of hyperelasticity type equations appears 

overdetermined. However, the extra equations 

emerging in the model enable formation of one or 

more linear relationships between the strain energy 

density for growth, W, and its derivatives with 

respect to the principal deformation invariants of 

the growing system. These relationships are thus 

regarded as partial differential equations for the 

unknown function W, and their solution provides 

valuable information regarding admissible classes 

or forms of W that enable the tube to grow without 

disturbing the shape and direction of its fibres.  

 The outlined new development and its 

concepts are naturally expected to apply on, and, 

hence, become of interest and importance in 

hyperelastic mass-growth problems of several types 

of soft or hard biological tissue. These include 

fibre-reinforced tissue of different geometrical 

shapes and features, and/or tissue reinforced by 

more than one unidirectional family of fibres. 

However, if the number, n say, of fibre 

families embedded in a hyperelastic material is 

bigger than one, then the classical deformation 

invariants involved in the strain energy density are 

not any more independent (e.g., [2, 3]). It follows 

that relationships between W and its derivatives 

that, in analogy with [1] would reflect mass-growth 

ability of the material to preserve fibre direction, 

can be considered as partial differential equations 

for W only after: (i) the exact number, m say, of 

independent invariants is identified; (ii) a manner is 

found for a complete basis of precisely m 

independent invariants to be formed; and (iii) W is 
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considered as function of those m independent 

invariants only.  

Part (i) of this challenge is already dealt 

with by Shariff [2] who showed further that, for n 

≥ 2, the number of independent invariants is given 

by the formula m = 2n + 3. Moreover, Shariff [2] 

showed that six of those 2n + 3 independent 

invariants are strain, while the remaining are 2n - 3 

non-strain invariants. However, parts (ii) and (iii) 

of the outlined challenge are still issues of ongoing 

debate, and their resolution may well depend on 

special features of a particular elasticity problem of 

interest.       

This short communication is motivated by 

its author’s interest to extend the analysis detailed 

in [1] towards hyperelastic mass-growth modelling 

of tissue reinforced by two or more families of 

fibres. It accordingly considers the particular but 

practically important case of tissue reinforced by 

two unidirectional families of fibres (n = 2) and, 

based on the aforementioned useful result [2, 3], 

demonstrates a manner in which a complete set of 

six independent strain invariants can conveniently 

be identified without much deviation from well-

known features that characterise their classical 

counterparts. The analysis is demonstrated in 

Cartesian co-ordinates (Section 2), and shows that 

each one of these newly identified independent 

invariants has its own physical meaning. Section 3 

then shows that a suitable extension to cylindrical 

polar co-ordinates makes these findings directly 

applicable to hyperelasticity problems (of either 

mechanical or mass-growth nature) of a tube 

reinforced by two families of helical fibres wound 

around the tube symmetrically in opposite 

directions.    

  

 

2. Identification of a suitable set of independent 

invariants  

 

It is initially observed that the aforementioned 

formula [2], namely m = 2n + 3, is applicable not 

only for n ≥ 2, but also in the case of hyperelastic 

materials reinforced by a single family of fibres. 

Indeed, for n = 1, that formula gives the right 

number of independent deformation invariants that 

W is dependent on in the case of transversely 

isotropic hyperelasticity. This classical set of 

invariants is  
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where C represents the right Cauchy-Green 

deformation tensor, and the unit vector A defines 

the fibre direction. Not all of the invariants listed in 

(1) have a clear physical meaning but their number 

(m = 2×1 + 3 = 5) is smaller than six. These are all 

strain invariants. Hence, as is correctly implied in 

[2], the remaining, and certainly more important 

part of Shariff’s claim applies only for n ≥ 2.  

The set of classical invariants employed in 

the present case of interest (n = 2) consists of the 

set listed in (1) augmented by the following:   
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where the unit vector B (≠ ±A) defines the fibre 

direction of the second fibre family. It is noted in 

passing that, if the sense of the fibres is not 

significant, then I8 and I10 are customarily 

multiplied by I9 and, hence, become even in A and 

B (e.g., [3, 4]). It will be seen later though (see (6) 

below) that the present development does not 

require such a refinement of I8 and I10.  

I10 is already known and/or claimed 

redundant (e.g., [2-6]), and will be treated as such 

in what follows. Suffice it here to mention the 

existence of the following syzygy:  
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This is a slightly modified version of the syzygy 

(30) of [3], obtained there through a detailed 

cumbersome algebraic process. The implied slight 

modification applied on that syzygy [3] restored its 

consistency with the presently used forms of I8 and 

I10. It is also pointed out for later use that, with the 

exception of I3, (3) involves all the remaining 

invariants listed in (1) and (2).  

When expressed explicitly in a generic 

Cartesian co-ordinate system Oxi, each of the ten 

classical invariants (1) and (2) forms an expression 
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of the six strain components of C, and the six non-

strain components of A and B. Each of the latter is 

a unit vector and, hence, only two of its three 

components are independent. With I10 known to be 

redundant, a possible total number of ten 

independent components of A, B and C still 

exceeds the number (nine) of the invariants 

remaining in (1) and (2). However, the arguments 

detailed in [2, 3] make it clear that only seven of 

the invariants listed in (1) and (2) can be 

independent, while only one of those seven can be 

a non-strain invariant; notably I9.   

A question then arises whether a particular 

Cartesian co-ordinate system, ˆ
iOx  say, can be 

identified, in which all the components of A and B 

are expressible in terms of the single non-strain 

invariant, I9. In such a particular co-ordinate 

system, each of the ten classical invariants listed in 

(1) and (2) will naturally become expressible in 

terms of seven parameters, namely I9 and the six 

strain components of the particular form attained 

by the symmetric Cauchy-Green deformation 

tensor, Ĉ  say.  

It follows that, after the non-strain 

invariant I9 and the redundant invariant I10 are 

temporarily excluded, inversion of a suitably 

chosen set of six, out of the eight remaining 

equations, may yield the components of Ĉ  in 

terms of the invariants listed in (1) and (2). The six 

strain components of Ĉ  will then also be 

identified as invariants of the deformation and, 

along with the non-strain invariant I9, will naturally 

form a set of seven independent strain invariants, 

analogous to those suggested by in [2, 3]. 

Moreover, with Ĉ  being itself a Cauchy-Green 

deformation tensor, every member of such a newly 

formed basis of independent invariants will 

naturally acquire a straightforward physical 

meaning.    

It will be thus shown next that such a 

suitable Cartesian frame is the co-ordinate system 

having its 
1x̂ -axis normal to the plane of A and B, 

and its
3x̂ -axis parallel to the bisector of the acute 

angle, 2Φ, formed by this pair of unit vectors (so 

that 0 < Φ < π/4). In this particular co-ordinate 

system, the unit vectors A and B acquire the form  
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and their non-zero components are given in terms 

of the non-strain invariant, I9 = cos2 , as 

follows: 
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 By temporarily excluding from the 

discussion the invariants I2, I3 and I9, one can then 

express the remaining invariants as follows:  
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                                                                            (6) 

It is noted that I8 and I10 are even in the 

components of Â  and/or B̂ . The aforementioned 

refinement of I8 and I10 (e.g., [3, 4]) is thus not 

required by the present development.  

By virtue of (4), (6) may initially be 

thought of as a set of seven simultaneous algebraic 

equations for the six strain components of the 

symmetric tensor Ĉ . However, the syzygy (3) 

reveals that I10 depends on the remaining invariants 

listed in (1) and (2), with I3 excluded. Hence, (6) is 

essentially equivalent to a set of six simultaneous 

algebraic equations for the six independent 

components of Ĉ . 
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Inversion of (6) leads thus to the following 

set of new invariants:   
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which, in agreement with [2, 3], consists six strain 

invariants and one non-strain invariant. Moreover, 

in agreement with [7, 8], the number of these 

invariants reduces naturally to six in the particular 

case that A and B are orthogonal (J7 = I9 = 0).  

Evidently, each of J1 – J3 represents 

amount of stretch along the direction of the 

corresponding ˆ
ix -axis. On the other hand, each of 

the remaining strain invariants, namely J4 – J6, is a 

measure of the amount of shear encountered on the 

co-ordinate plane noted by the indices of the 

corresponding non-diagonal component of Ĉ . 

Their independence is thus underpinned by the fact 

that each of these six strain invariants can be 

activated or controlled independently from the 

others, by means of appropriately chosen 

homogeneous deformation(s) (e.g., [5, 6, 9]).  

It is pointed out that non-strain invariants, 

like J7, never enter on their own any form of a 

strain energy density, W. Hence, the fact that all six 

of J1 – J6 depend on J7 is a rule rather than an 

exception.  

It is now recalled that neither I2 nor I3 

were included in (6), while, by virtue of (1), the 

following relationships still hold:  
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Moreover, I3 is absent in (3) and is thus also absent 

in all new invariants listed in (7).  

It follows that by inserting (7) into the 

right hand side of (8.b) one more syzygy can 

be obtained and, along with (3), relate the 

classical invariants listed in (1) and (2). That 

syzygy will be analogous to its counterpart 

implied in [3], through lengthy intermediate 

relevant calculations detailed there; see 

Section 3 of [3], after (37).  

Another syzygy that relates the 

classical invariants may also be obtained by 

inserting the components of Ĉ  listed in (7) into 

(8.a). That syzygy will evidently be also 

independent of I3. The considerable amount of 

algebra required for derivation of the explicit form 

of such lengthy syzygy makes the latter 

impractical, and certainly unnecessary for the 

purposes of the present short communication. 

However, its potential length suggests that, rather 

than (3), that syzygy is analogous to the third 

syzygy implied in [3], through the 

intermediate formulas (34)-(36), (29) and 

(28.a) presented there along with other 

necessary relevant calculations.  
 

 

3. Cylindrical polar co-ordinates: Tube 

reinforced by a pair of helical families of fibres 

 

As is mentioned in the Introduction, this short 

communication stemmed from the author’s interest 

to extend the hyperelastic mass-growth modelling 

presented in [1] towards mass-growth of tube-like 

tissue that preserves the shape and direction of  two 

families of unidirectional fibres. In particular, tubes 

reinforced by two families of continuously 

distributed helical fibres wound symmetrically in 

opposing directions are met very often in several 

different kinds of plant and bone structures (e.g., 

[10, 11]), as well as in various forms of tube-like 

soft or hard biological tissue. Arteries and veins 

(e.g., [12-15]), muscles (e.g., [16]), and even living 

creatures of tubular shape [17] are referred to as 

well-known relevant examples.  

Moreover, the use of this particular kind of 

tube fibre-reinforcement is long known in the 



Accepted for publication in the Mechanics Research Communications on 1st September, 2018 

 

5 

construction of a variety of common man made 

articles, such as tyres and fire hose. Tube 

reinforcement with helical fibres has, therefore, 

been of paramount importance in both the 

foundation and development of the non-linear 

theory of fibre-reinforced materials (e.g. [18, 19]). 

As tubes reinforced in this particular manner are 

thus so commonly met in nature and practice, it is 

almost not surprising that the aforementioned 

analysis, results and conclusions are directly 

applicable to their case.  

Consider in this context that, in its 

undeformed configuration, the circular cylindrical 

tube of interest has axial length 2H and occupies 

the region 

 

,   ,20   , HZHΘBRA                  (9) 

 

where, R, Θ and Z are standard cylindrical polar 

coordinates, and the non-negative constants A and 

B (0 ≤ A < B) represent its inner and the outer radii 

(e.g., [1]). In that cylindrical polar co-ordinate 

system the unit vectors implied in (4) acquire the 

form 
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thus showing that 2Φ represents here the angle 

between a pair of helical fibres wound 

symmetrically in opposing directions. 

If Φ is an acute angle, then the remaining 

of the analysis detailed in the preceding section 

holds still, provided that all indices 1, 2 and 3 

appearing there in the components of Â , B̂  and 

Ĉ  are replaced by R, Θ and Z, respectively. If Φ is 

an obtuse angle, then (10) should be replaced by 

the following  
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thus implying that the sign of I9 should further be 

reversed everywhere in (5) and (7).      

 The cylindrical polar co-ordinate system 

(R, Θ, Z) is thus seen to be particularly privileged 

in modelling and solving hyperelasticity problems 

concerning tubes reinforced by two families of 

helical fibres wound symmetrically in opposing 

directions. This is because, when deformation (or 

mass-growth) of such a tube is modelled in 

cylindrical polar co-ordinates, each of the 

components of the Cauchy-Green deformation 

tensor represents one of the six independent strain 

invariants, J1 – J6, defined in (7). The seventh 

independent, non-strain invariant still represents the 

cosine of the angle formed by the two families of 

helical fibres.  
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