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ABSTRACT: The stability of enzymes is critical for their application in industrial processes, 

which generally require different conditions from the natural enzyme environment. Both rational 

and random protein engineering approaches have been used to increase stability, with the latter 

requiring extensive experimental effort for the screening of variants. Moreover, some general 

rules addressing the molecular origin of protein thermostability have been established. Herein, 

we demonstrate the use of molecular dynamics simulations to gain molecular level understanding 

of protein thermostability and to engineer stabilizing mutations. Carbonic anhydrase (CA) is an 

enzyme with high potential for biotechnological carbon capture applications, provided it can be 

engineered to withstand the high temperature process environments, inevitable in most gas 

treatment units. In this study, we used molecular dynamics simulations at 343 K, 353 K and 363 

K, to study the relationship between structure flexibility and thermostability in bacterial α-CAs, 

and applied this knowledge to the design of mutants with increased stability. The most 

thermostable α-CA known, TaCA from Thermovibrio ammonificans, had the most rigid structure 

during MD simulations, but also showed regions with high flexibility. The most flexible amino 

acids in these regions were identified from RMSF studies, and stabilizing point mutations were 

predicted based on their capacity to improve the calculated free energy of unfolding. Disulfide 

bonds were also designed at sites with suitable geometries, and were selected based on their 

location at flexible sites, assessed by B-factor calculation. Molecular dynamics simulations 

allowed the identification of five mutants with lower RMSF of the overall structure at 400 K, 

compared to wild-type TaCA. Comparison of free energy landscapes between wild-type TaCA 

and the most promising mutants, Pro165Cys-Gln170Cys and Asn140Gly, showed an increased 

conformational stability of the mutants at 400 K.  
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INTRODUCTION 
 

Carbonic anhydrase (CA; EC 4.2.1.1) catalyzes the reversible hydration of carbon dioxide into 

hydrogen carbonate and a proton, with one of the fastest reaction rates known so far in nature. 

Enzymes in this class are encoded by six evolutionarily unrelated gene families (α, β, γ, δ, ξ and 

η), which all have a divalent metal-dependent mechanism, generally Zn-based, as a common 

feature.1 One of the most studied CA families are the α-CAs, in which the Zn2+ ion, typically 

bound by three histidines, activates a hydroxyl group to perform the nucleophilic attack on CO2. 

The resulting Zn-bound hydrogen carbonate is displaced by water, which is in turn deprotonated 

via a proton shuttle mechanism assisted by a neighboring histidine, to re-form the Zn-bound 

hydroxyl.2 

Recently, the use of CAs as potential catalysts for the absorption of CO2 from process gases 

has been investigated.3 CO2 absorbers employ either inorganic or organic bases in aqueous 

solvents, to drive the equilibrium by neutralizing the proton released during the hydrolysis, and 

amine-based solvents have shown particular promise.4 In such processes, regeneration of the 

amine is problematic due to the high energy required to desorb CO2. Amines with low heat of 

desorption have slow CO2 capture kinetics, and CAs have been employed to accelerate the CO2 

capture step. Given the high pH and temperature conditions in the absorption – stripping 

processes, the stability of the CA is crucial for its application at large scale. Two approaches 

have been used for the development of stable CAs: isolation and characterization of enzymes 

from thermophilic bacteria,5 and stability engineering by directed evolution under high 

temperature and pH conditions.6 

Many research efforts are focused on the development of thermostable α-CAs, which have 

relatively short sequences compared to the other families, since they show the highest activities 
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 4

and long-term stability. Four thermostable α-CAs were characterized so far: SspCA from 

Sulfurihydrogenibium yellowstonense, with an optimum temperature of 90 °C, a half-life of 53 

days at 40 °C and kcat = 9.35 x 105 s-1;7 SazCA from Sulfurihydrogenibium azorense, with the 

highest turnover rate amongst thermostable α-CAs, kcat = 4.40 x 106 s-1, and with a similar 

optimum temperature to SspCA but lower stability;8 TaCA from Thermovibrio ammonificans, 

with kcat = 1.60 x 106 s-1 and the highest long-term stability of 152 days at 40 °C9 and PmCA 

from Persephonella marina, with kcat = 3.20 x 105 s-1 and a half-life of 75 days at 40 °C.10 The 

former three enzymes have been structurally characterized.11-13 Inspection of the SspCA crystal 

structure shows a high content of secondary structure, of charged residues and of ionic networks, 

all of these being consistent with features of thermostable proteins.14 On the other hand, TaCA 

has fewer ion pairs, but it was suggested to form two intermolecular disulfide bonds, promoting 

the association of two dimers into a tetramer, which in turn triggers the formation of additional 

four ion pairs. These features were suggested to be responsible for the high thermostability of 

TaCA.13 

Common protein stabilization principles are known, and generally rely on rigidifying features 

such as salt bridges, disulfide bonds and hydrophobic interactions. However, the best strategies 

for stability engineering differ between protein families, and thus are difficult to predict, making 

rational design of protein stability a non-trivial task. Flexible regions can be identified by 

structure-based B-factor analysis or molecular dynamics (MD) simulations.15 Computational 

design of stabilizing point mutations at these hot spots, coupled with disulfide design at sites 

with suitable geometry and energy can increase the chances of finding stabilizing mutations with 

a relatively small screening effort.16 Subsequent stability assessment by MD simulations can 

further reduce the number of variants to be screened for thermostability.  
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 5

In the α-CA family, mesostable CAs have already been engineered for increased 

thermostability using the above strategies. For example, the thermostability of CA from 

Neisseria gonorrhoeae (NgCA) was 8-fold increased by engineering disulfides at the protein 

surface.17 In another study, comparative MD simulations between NgCA and SspCA were used 

to identify stabilizing salt bridges in the thermostable scaffold, which were introduced at similar 

positions in the mesostable protein sequence.18 Analysis of the stability-determining factors of 

the two wild-type proteins and of the newly designed Ser44Arg-Ser139Glu-Lys168Arg NgCA 

mutant showed an improved stability of the latter, suggested by the lower flexibility, lower 

solvent accessible surface area and increased propensity of stable conformations in the Free 

Energy Landscape (FEL)  analysis during the simulations at high temperatures (500 K). 

Nonetheless, given that both catalytic efficiencies and stabilities of thermostable variants are 

higher compared to their mesophilic counterparts (for example, kcat/KM = 5.4 x 107 M-1 s-1 for 

NgCA and = 1.1 x 108 M-1 s-1 for TaCA), a better strategy would be to utilise thermostable 

enzymes as starting points for further improvement of their operation at high temperature. 

Since thermostable enzymes are more rigid than their mesostable counterparts, the design of 

stabilizing mutations based on flexibility analysis is more challenging using these starting points, 

and a common approach for stability optimization relies on random mutagenesis, which involves 

laborious screening efforts. The only example of successful α-CA stability engineering starting 

from a thermostable scaffold has been the directed evolution of TaCA, which resulted in up to 3-

fold improvement in half-life compared to the wild-type variant, using mutations in the N-

terminal region of the protein.19 Directed evolution methods have also led to impressive 4 x 106-

fold stability improvement in the case of β-CA from Desulfovibrio vulgaris.6 A better 
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 6

understanding of the structural features responsible for thermostability in α-CAs is needed, in 

order to design mutants with improved stability, by using the minimum number of mutations. 

The aim of this study is to develop a strategy for the rational design of stabilizing point 

mutations in α-CAs, using thermostable scaffolds as a starting point. Comparative molecular 

dynamics simulations at three different temperatures were used to identify rigid and flexible 

regions in mesostable and thermostable α-CAs, and to assess whether structure rigidity 

corresponds to experimentally determined stability in the case of these enzymes. Relevant 

thermosensitive regions from the most rigid protein structure determined from the simulations 

were targeted by point mutations that would stabilize the structure even further. MD simulations 

were then used to confirm the increased rigidity, which was associated with the stabilization of 

the structure. 

 

METHODS 
 

Protein Sequences and Structures. Protein sequences and crystal structures were retrieved 

from the RSCB protein data bank, as follows: hCAII (3CAJ20); NgCA (1KOQ21); TaCA 

(4C3T13); SspCA (4G7A12); SazCA (4X5S11). The amino acid numbering from the published 

structures was used. Sequence alignments were performed with Clustal Omega 

(https://www.ebi.ac.uk/Tools/msa/clustalo/).22 The initial signal peptide (around 20 amino acids 

at the N-terminus) was not present in any of the sequences except for TaCA, where it was not 

built in the crystal structure owing to disorder, and was therefore not included in the simulations. 

Salt bridges between negative (aspartate, glutamate) and positive (arginine, lysine, histidine) side 

chain functionalities were evaluated using the ESBRI server with a cut-off at 4 Å 

(http://bioinformatica.isa.cnr.it/ESBRI/introduction.html).23  
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 7

Molecular Dynamics Simulations and Analyses. All simulations were performed using 

GROMACS 5.1.224 with CHARMM36 force field25 and the SPC/E water model.26 The 

protonation states of amino acid side chains were adjusted to normal pH 7 conditions. The H++ 

server was used to prepare the series of protonation states.27 The output files from the H++ 

server were used to determine the optimal setting of protonation and deprotonation states of Lys, 

Arg, Asp, Glu and His residues, which were modified using the pdb2gmx command in 

GROMACS. All the crystal structures were prepared before simulation, by removing all solvent 

atoms, such as water, oxygen and solvent molecules, which were not considered part of the 

protein structure or else relevant for the purpose of the study. Structural representations such as 

macromolecule dynamics were visualized with VMD28 and PyMOL. Post analysis of the 

molecular dynamics data was graphically represented with XmGrace or Matlab packages. 

The protein structures were inserted in a triclinic geometry box of water molecules with a 

minimum distance of 1.2 nm between the protein and the box boundaries. The systems were 

neutralized by adding Na+ or Cl- ions. Long range electrostatic interactions were modelled using 

the particle-mesh Ewald method,29 with a cutoff of 0.8 nm, a Fourier spacing of 0.12 nm and 

cubic spline interpolation. Non-bonding van der Waals interactions were applied with a twin 

range potential of 0.8 nm and 1.4 nm.30 All bonds involving hydrogen atoms were constrained 

with the LINCS algorithm.31 Energy minimization (with 2000 steps, by using the steepest 

descent algorithm), temperature, and pressure equilibration were applied with position restraints 

on the protein. The overall system was integrated to a temperature isotherm using Nose-Hoover 

thermostat with a speed of 0.002 ps.32 Initial velocities applied for the different temperatures 

(343 K, 353 K, 363 K, 400 K) were represented by Maxwell Boltzmann distribution. The 
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 8

pressure of the system was isotropically coupled to a barostat of 1 bar by Parrinello – Rahman 

calculations with a temperature coupling constant of 2 ps.33 All simulations were run for 100 ns.  

The analysis of simulation trajectories, including principal component analysis and free energy 

landscapes, is described in detail in the Electronic Supplementary Information. The root mean 

square deviation (RMSD) values were calculated using GROMACS embedded tools.34 These 

were based on standard RMSD calculations following rigid body translation and rotation for 

structural superposition in Cartesian space, minimizing the resulting RMSD value. Root mean 

square fluctuation (RMSF), radius of gyration (Rg), solvent accessible surface area (SASA), 

hydrogen bonds and salt bridges (< 0.4 nm) were calculated using tools within the GROMACS 

simulation package.  

Highly flexible regions were identified from the RMSF analysis, as follows (see also Table 

S2). First, for each isotherm simulation (343 K, 353 K, and 363 K), residues were selected, with 

an RMSF higher than the true average limit µ, where � = �̅ + �, with �̅ = mean of RMSF per 

isotherm and s = standard deviation of RMSF per isotherm. For every sequence of consecutive 

amino acids, residues with the highest RMSF were selected as representatives, and this was 

performed separately at 343 K, 353 K and 363 K. Residues that were selected as representatives 

for at least two isotherm simulations were considered as highly flexible amino acids. Amino 

acids at the N-terminus are naturally flexible, and therefore were excluded from this selection. 

Design of Stabilizing Mutations. Point mutations in TaCA were constructed using Yasara.35 

The relative changes in the folding free energies (∆∆GFold) due to point mutations were 

calculated by FoldX (foldx.crg.es)36 using the wild-type structure of TaCA as a reference 

(∆∆GFold = ∆GFold
mutation - ∆GFold

wild-type). The standard settings of the software were used (T = 

343 K, 353 K, and 363 K; pH = 8.0, ionic strength = 0.05 M). Mutations were evaluated as 
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 9

stabilizing if ∆∆GFold < - 2 kJ mol-1, neutral if -2 kJ mol-1 < ∆∆GFold < 2 kJ mol-1 and 

destabilizing if ∆∆GFold > 2 kJ mol-1.36-37  

Disulfide bonds were predicted with the Disulfide by Design 2.0 web-based platform,38 which 

includes residue proximity and geometry, the highest sum of B-factors and the location of the 

residue as criteria for pair selection. Visual inspection allowed further refinement of this 

selection, and exclusion of candidates disrupting high-consensus residues, catalytic site and 

existing salt bridges. Out of 36 possible pairs identified with DbD 2.0, three disulfide bonds were 

selected for further study, due to their location in high flexibility regions and/or to their favorable 

predicted bonding energy and dihedral angle (see Table S5 for details of the selection process).  

  

RESULTS AND DISCUSSION 

The sequences and structures of mesophilic and thermophilic α-CAs were compared to identify 

consensus and non-consensus regions, as well as common stabilizing features such as salt 

bridges and disulfide bonds. Molecular dynamics simulations were then performed at three 

different temperatures, to understand which regions of the protein are the most flexible. 

Stabilizing mutations were subsequently designed in these regions and their ability to reduce 

flexibility was analyzed by molecular dynamics. 

Sequence and Structural Analysis of αααα-CAs. Six α-carbonic anhydrases from different 

organisms were initially compared by sequence alignment and by inspection of their crystal 

structures (Figure S1): four from thermophiles (SspCA, SazCA, TaCA and PmCA, the latter has 

no published crystal structure), one from a mesophile (NgCA) and one eukaryotic (hCAII). They 

showed similar sequence identities of 45-65%, whilst a lower identity was observed with the 
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 10

eukaryotic hCAII (33-42%), which contains three additional large insertions at positions 98-103, 

126-136 and 230-239 (hCAII numbering)12. The majority of secondary structures is conserved 

throughout all CAs. Non-consensus regions were identified at positions 76-81, 93-99 and 165-

182 (TaCA numbering). Evaluation of the ionic networks (4 Å cut-off) by inspection of the 

crystal structures showed an increased number of intra-monomer ionic interactions for the α-

CAs from thermophiles (10-13 contacts for the thermostable enzymes, compared to 8-9 contacts 

for NgCA and hCAII). The three thermostable α-CA structures showed a glutamate-lysine 

interaction between Glu156 and Lys159 (TaCA numbering; corresponding to Glu133-Lys136 in 

SspCA and SazCA), which was absent from NgCA and hCAII, where the glutamate was 

replaced by arginine and glycine, respectively. In TaCA, these two residues are part of a further 

ionic network with Asp179 and Lys182, connecting helices η4/α2 and η6 (Figure 1; secondary 

structures are numbered according to hCAII, see Figure S1). Another common ionic interaction 

was between His119 and Glu129 (TaCA numbering), which is present in all thermostable CAs 

and hCAII, but is absent from NgCA, where the histidine is replaced by asparagine. Whilst in 

NgCA and hCAII most ionic interactions occur between pairs of amino acids, all three 

thermostable CAs exhibit clusters of charged amino acids, involving ionic networks: Asp102-

Arg192-Arg207 in TaCA, Lys39-Lys41-Arg165-Glu223 in SspCA (Lys39-His41-Glu223 in 

SazCA), and Asp73-Lys75-Glu82-His84 in SazCA (Figure 1). These ionic networks have 

previously been suggested to increase thermostability.12  
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 11

 

Figure 1. Relevant salt bridges and ionic networks in thermostable α-carbonic anhydrases: A) 

TaCA; B) SspCA; C) SazCA. 

Furthermore, all bacterial CAs have an intra-monomer disulfide bridge between Cys47-Cys202 

(TaCA numbering). In contrast to the other bacterial enzymes, the highly stable TaCA adopts a 

tetrameric structure, which is held together by a small core at the center of the tetramer. This 

core is formed by an additional inter-monomer disulfide link between cysteines at position 67, 

and by an inter-monomer ion pair between Lys65-Lys247.13 

Molecular Dynamics Simulations and Analyses. Molecular dynamics simulations at 343 K, 

353 K and 363 K were performed starting from the TaCA, SspCA and SazCA structures devoid 

of signal peptides, to determine the regions with high conformational flexibility, and that are 

hypothesized to affect the thermostability. For comparison, the mesostable NgCA was also 

included in this analysis. To simplify the simulations, monomeric structures were used for all 

enzymes, which did not take into account any stabilization provided by formation of the 

quaternary structures. 

The complete analysis of the molecular dynamics simulation results is presented in the ESI. 

Simulations showed that TaCA and SspCA were stable at the temperatures investigated, 

Page 11 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 12

indicated by the low RMSD observed between the simulation frames and the initial crystal 

topology (average RMSD was 0.14 ± 0.07 nm for TaCA and 0.15 ± 0.08  for SspCA). On the 

other hand, the most active of the three enzymes, SazCA displayed a drastic increase in RMSD 

after 20 ns at 363 K (to approx. 0.50 nm), suggesting denaturation of this enzyme at high 

temperatures. NgCA also showed an unstable behavior at the higher temperature, although on a 

longer timeframe (71 ns, RMSD = 0.40 nm) compared to SazCA. The secondary structures were 

calculated with the DSSP algorithm,39 for each protein and all of the MD trajectories, and 

indicated that no major conformational changes occurred during the simulations. This 

observation confirmed the overall rigidity of the four bacterial CAs at the temperatures 

investigated. A further analysis of the radius of gyration (Rg), used as an indicator of protein 

compactness, indicated a loosening of the structural network at higher temperatures in the case of 

NgCA and SazCA (Rg > 1.80 nm at 80 ns and 25 ns, respectively), while the other two proteins 

had stable Rg values over the given temperature range, with TaCA showing the least fluctuations 

(average Rg = 1.68 ± 0.01 nm). RMSF analysis of the MD trajectories revealed regions with 

increased flexibility, in all proteins studied (Figure 2), and led to the following observations: 

a) The lowest average RMSF values were observed with TaCA (0.09 ± 0.01 nm), followed by 

SspCA (0.10 ± 0.01 nm), suggesting these two proteins to be more rigid. NgCA and SazCA were 

most affected by changes in temperature, showing the highest standard deviation of RMSF 

values at the different temperatures, calculated as a sum for all amino acids (Figure S5);  

b) All structures showed enhanced flexibility at both termini, but particularly at the N-

terminus. Since the signal peptide was not included in any of the crystal structures, and thus in 

the simulations, the flexibility was attributed to the N-terminus structure in α-CAs, perhaps due 

to its proximity to the active site. TaCA showed least flexibility in this region.  
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 13

c) Most regions with enhanced flexibility were common to all enzymes. In particular, amino 

acids 165-182, identified as a non-consensus region from the sequence alignment, showed 

enhanced flexibility in all enzymes. Another common region with enhanced flexibility was at 

position Asn138 (TaCA numbering); 

d) More flexibility was observed in catalytically relevant regions of SspCA and SazCA than in 

the other enzymes. The proton shuttle His64, and the gate-keeper residues Glu95 and Thr175 

(SspCA numbering) were all situated in regions with enhanced flexibility in these two α-CAs.  

 

Figure 2. Backbone (Cα) RMSF of α-CA amino acids, at different simulation temperatures: 

343 K (black line), 353 K (red line), 363 K (green line). Arrows show the enhanced flexibility 

regions in TaCA. 

The RMSF analysis identified residues with high flexibility, starting from the most rigid TaCA 

structure. They were hypothesized to be suitable starting points for the rational design of an 

ultra-thermostable α-CA. For every sequence of consecutive amino acids showing enhanced 

flexibility during an isothermal simulation, one of the residues with the highest RMSF was 
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selected as representative. Representative residues that were selected during at least two 

isothermal simulations, as far away as possible from the active site and not part of secondary 

structures, were considered as highly flexible amino acids (see Methods and Table S2). Seven 

amino acids were identified as highly flexible using this selection procedure: Gly30, Pro42, 

Cys67, Asn138, Thr175, Asp232 and Ala242. From these, Cys67 was previously shown to be 

involved in inter-monomer disulfide bond formation promoting association into a tetramer. 

Therefore, this residue was excluded from further analysis, as the flexibility determined by our 

simulations might not be relevant in solution state, where the enzyme is present in the tetrameric 

form.13 Analysis of the crystallographic B-factors obtained from the tetrameric structure 

indicated values above average for regions around Gly30, Pro42 and Ala 242, but not for the 

other amino acids identified as flexible from the RMSF analysis at different temperatures. 

Hence, we reason that temperature-dependent MD studies are a more reliable way to assess 

flexible regions within protein structures.  

Taken together, the MD simulation observations described above suggest that the rigidity of 

the protein structure can be correlated with the thermostability of α-CAs. Previous experimental 

reports suggested TaCA to be the most thermostable enzyme, followed by SspCA; this is in line 

with our simulation results, which showed that TaCA had the least flexible structure. Simulation 

data also suggests that NgCA is more rigid than SazCA, which is surprising given that the latter 

was isolated from a thermophilic bacterium. This rigidity correlates with the unusual 

thermostability of NgCA at higher temperatures, which was experimentally demonstrated by Jo 

et al., who determined a half-life of 4 h at 70 °C, higher than the SazCA half-life of 3 h at 70 

°C.8,17 On the other hand, the flexibility of SazCA seems to explain its highest activity amongst 

thermostable α-CAs. A clear link between flexibility and activity could not be established, 
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however, since the rigidity of TaCA appears not to be detrimental to its activity, which is higher 

than the activity of SspCA and NgCA.   

Common regions with enhanced flexibility were identified by MD simulations in all the 

bacterial α-CAs, in particular at the protein termini. Most residues at the C-terminus are not in 

secondary structures, and therefore some natural flexibility is expected. On the other hand, the 

high flexibility observed for amino acids located on the α-helices at the N-terminus suggests that 

this region might play a role in defining thermostability in α-CAs. Previous directed evolution of 

TaCA resulted in the most stabilizing mutations being identified at the N-terminus of the protein 

devoid of the signal sequence (i.e. amino acids 26-43 using the numbering from this paper), 

supporting our finding that this region is susceptible to thermosensitivity.19  

The analysis of standard parameters of structural stability showed that TaCA had the highest 

number of intra-protein hydrogen bonds at different temperatures, whilst SspCA had the highest 

number of protein-water interactions, as well as the highest percentage of salt bridge solvent 

accessible surface area (Table 1). Again, this result was correlated with the thermostability of 

these two enzymes. This analysis also suggested that there was space for improving TaCA 

thermostability, by increasing the ionic interactions between the protein and the solvent, 

analogous to SspCA.14 

Table 1. Comparison of Structural Features of Thermostability in Bacterial αααα-CAs 
  Hydrogen bonds SAS (Å) 

Protein Structurea Protein-protein Protein-water Salt bridgesb 
Total 
protein 

NgCA 
initial 159 398 1052   (9.6) 10922 
363 K  154.2 420.2 1088   (9.7) 11235 

TaCA 
initial 175 429 2219 (20.5) 10800 
363 K 159.7 424.3 2320 (20.4) 11386 

SspCA 
initial 165 470 3124 (27.4) 11399 
363 K 151.8 462.4 3262 (27.3) 11968 

SazCA 
initial 171 435 2124 (19.9) 10635 
363 K 153.7 438.6 2177 (18.2) 11989 
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a The data refers to either the initial crystal structure, or the calculated averages for the MD 
simulation at 363 K; b The percentage of SAS of salt bridge residues, compared to the total SAS 
of the protein is given in parenthesis. Salt bridge residues refer to all amino acids involved in a 
salt bridge (< 4 Å) with either another amino acid, or with a charged solute molecule in the 
solvent. The data for all temperatures including standard deviations is represented in the ESI. 
 

The variation of the distance between atoms involved in salt bridges was also analyzed for 

100 ns of molecular dynamics simulations at different temperatures, to gain insight on the 

contribution of the salt bridges to thermostability (Table S4). Previous studies which compared 

NgCA and SspCA suggested that more rigid salt bridges were responsible for the increased 

thermostability of the latter.18 This was confirmed by our simulation results, by increased lengths 

for the NgCA salt bridges, and relatively constant lengths for the SspCA salt bridges. For both 

SspCA and SazCA, we found the charged cluster Lys39-Lys41-Glu223 to maintain the 

interatomic distances during the simulations. However the interaction between Arg165-Glu223, 

which is part of the same cluster in SspCA, exhibited lower stability. In SazCA, the Asp73-

Lys75-Glu82-His84 ionic network showed increased bond lengths after the simulations, 

suggesting the instability of this salt bridge network. In TaCA, the ion pair latch formed by 

Asp102, Arg192 and Arg207 was very stable at different temperatures. In contrast, the extended 

ionic network between Lys158-Asp179-Lys182 seemed to be disrupted when temperatures were 

increased during simulation, indicating the lability of these salt bridges in TaCA. The conserved 

His119-Glu129 and Glu156-Lys159 salt bridges (TaCA numbering) remained stable over the 

conditions studied, showing almost no fluctuations. 

From the MD simulations, the unfolding pathways of the three proteins were analyzed, by 

inspecting the protein conformations at different timescales and temperatures (Figures S7-S10). 

For NgCA, and SazCA, some loss of secondary structure can be observed over time, in particular 

at the surface of the protein. Interestingly, a disruption of the parallel β-sheet structure containing 
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Lys39 (in β2), His41 and Glu223 (in β15) could be observed during the simulation in SazCA, 

particularly at 353 K and 363 K. This was not suggested by the analysis of the salt bridge 

distances presented above, but it might mean that this salt bridge network, present in both SspCA 

and SazCA, is not involved in maintaining the secondary structure. The antiparallel β-sheet β12-

β13 also shortens during the simulation. The N-terminal region, including the helices, appear to 

be very flexible in both NgCA and SazCA, whilst TaCA and SspCA show more rigidity overall.  

Another way to analyze the flexibility and tendency of unfolding is to inspect the free energy 

landscapes (FELs) at different temperatures, which represent the conformational space occupied 

by the enzymes during the simulations. A more expanded landscape with a higher number of 

separated minima indicates higher flexibility, whilst a lower barrier between separated minima 

indicates that a transition into non-native or non-active enzyme conformations is more likely to 

take place. In the case of α-CAs, the differences most prominently unravel in simulations at 

higher temperature (Figure 3). The less stable NgCA and SazCA showed a relatively high 

number of intermediate unfolding states and a broader conformational space overall. On the 

other hand, the more stable TaCA and SspCA displayed a smaller conformational subspace 

during all simulations. The stable CAs showed up to two minima on the FEL, separated by 

relatively low energy barriers. Examining the structures of these minima showed that they were 

all very similar to the crystal structure (as depicted by low RMSD values), while the minima 

structures of the least stable CAs depicted significant differences to the crystal structure. TaCA 

showed the lowest structural variance, which once again strongly supports the better 

thermostability of TaCA, and also gives confidence for the quality of the simulation procedures 

applied.   
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In conclusion, the molecular dynamics simulations presented in this section proposed TaCA to 

be the most rigid of the thermostable α-CAs characterized so far, and this is correlated with the 

increased stability of this enzyme at high temperatures. Nevertheless, flexible sites were 

identified within the TaCA structure, and they were similar to the flexible sites identified in the 

other thermostable CAs. The salt bridge networks identified in SspCA and SazCA, by inspection 

of their crystal structures, were shown to be relatively flexible during the simulations. This was 

in contrast to the ion pair latch of TaCA, which was relatively rigid.  
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Figure 3. Free energy landscapes (FEL) for NgCA, TaCA, SspCA and SazCA from simulations 

at 343 K and 363 K. The x- and y-axis represent the first two eigenvectors, PC1 and PC2 of the 

C-alpha atomic fluctuation. The z-axis represents the free energy in kJ mol -1.  The color 

conventions are depicted as red (energy maxima) and blue (energy minima). A complete 

description of FEL construction is given in the ESI. RMSD values given in Å. 
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Design of Mutations to Increase Thermostability. Previous engineering of protein stability 

has successfully been achieved by decreasing the flexibility of the polypeptide backbone via 

rigidifying interactions, such as disulfide bonds, ion pairs, hydrogen bonds and hydrophobic 

interactions. Disulfide bonds have been suggested to decrease the conformational entropy of the 

denatured state, thus increasing the half-life of the folded protein.15,40 The interaction of charged 

surface residues with solvent molecules at high temperatures was also suggested to increase 

thermostability.15,41-42 Additionally, small volume non-polar residues such as glycine, and 

conformationally restrained proline have been shown to prevail in thermostable proteins, because 

they minimize hindrance and favor entropic stabilization.41,43 Following successful identification 

of flexible regions within the TaCA backbone, the next focus was to assess whether the 

introduction of stabilizing mutations at these hot spots would yield an improved stability at high 

temperature, assessed by a decreased flexibility during MD simulations. These studies were 

performed using the monomeric structure of TaCA, and therefore could only evaluate the impact 

of intra-monomer rigidifying interactions. Since the flexible residues selected by MD simulations 

were not involved in inter-subunit interactions, we hypothesized that any stabilizing effect on the 

monomer would be similar for the tetramer in solution state. Additionally, the residues were not 

in proximity of the active site, in order to maintain flexibility and thus not to influence enzyme 

turnover. 

In a first approach, single mutations at the flexible sites were designed, based on their ability to 

form ionic protein-solvent interactions, and to provide compactness, thus yielding a total of 

seven possible mutations at each site: Asp, Glu, Lys, Arg, His, Pro and Gly. In silico 

mutagenesis was performed using the Yasara software, and the corresponding mutations were 

evaluated based on the difference in folding energy between the mutant and the wild-type protein 
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(∆∆GFold), calculated as an average of three temperatures using the FoldX algorithm.36 The 

folding free energy calculation was performed by following the original publication by 

Schymkowitz et al., and are presented in the ESI. Most single point mutations designed using 

this method were either neutral or destabilizing, in particular at the N-terminus, where the 

removal of Gly30 or Pro42 had a negative impact on stability (Figure S11).  On the other hand, 

introduction of prolines at positions 175, 232 and 242 had an overall stabilizing effect. All 

designed mutations at position 138 were destabilizing, and this was also the case for position 139 

(data not shown), whilst in the same flexible region, Asn140Gly was found to be a stabilizing 

mutation. Following this analysis, four potential stabilizing mutations were identified as 

candidates for MD simulation: Asn140Gly, Thr175Pro, Asp232Pro and Ala242Pro.  

The second strategy for introducing rigidifying interactions was the computational design of 

intra-monomer disulfide bridges. The geometries, distances and energy constraints of all residue 

pairs were evaluated with Disulfide by Design 2.038 within both chains of the protein structure, 

in order to predict possible sites which might form disulfide bonds when mutated into cysteines. 

Given that the stabilizing impact of disulfides is higher in regions with greater flexibility, the 

ranking of potential disulfides was performed using the sum of the B-factors of the residue pair. 

Existing intra-monomer disulfides (Cys47 and Cys 202) were ranked highest, thus validating the 

design method used. A total of 36 additional potential residue pairs were predicted within TaCA, 

in either chain A, B or both (Table S5). From these, after exclusion of unusual torsion angles and 

of potential interference with TaCA salt bridges and catalytic activity, only three pairs were 

selected for MD studies: Gly27Cys-Ile32Cys, Lys159Cys-Ala176Cys and Pro165Cys-

Gln170Cys, all of which are located in high flexibility regions. 
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To assess whether the designed mutations had a stabilizing effect on the TaCA structure, MD 

simulations were performed and the flexibility of the structures was compared to the wild-type 

enzyme. Molecular dynamics simulations at 400 K and over 100 ns identified five mutants with 

an increased rigidity in the protein backbone, indicated by the relatively stable RMSD trace 

during the simulation (Figure 4). Most of these mutations, with the exception of Ala242Pro, 

decreased the flexibility at the N-terminus, although this region was far away from the mutation 

points. Only the disulfide mutant Cys165-Cys170 showed a decreased RMSF in the region 

corresponding to the mutations. Interestingly, although at considerable distance, both the 

disulfide mutant and Thr175Pro introduced flexibility in the loop region 119-125, whilst 

Asn140Gly reduced the flexibility of this loop. Since we have shown that rigidity and 

thermostability are correlated in α-CAs, we propose that the mutants designed here are likely to 

exhibit higher thermostability than the wild-type enzyme. 

 

Figure 4. Molecular dynamics simulation results for the designed TaCA mutants, over 100 ns at 

400 K. A) RMSD of the eight mutants; B) RMSD of the five mutants with improved average 
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RMSD compared to wild-type TaCA; C) RMSF of the five mutants with improved average 

RMSD compared to wild-type TaCA; d) ∆RMSF calculated between the five mutants and wild 

type, with negative values representing an increased rigidity of the protein. 

The best two mutants with overall smaller RMSF values compared to the wild-type protein 

were Pro165Cys-Asn170Cys and Asn140Gly. Although the overall rigidity of the protein was 

increased, the RMSF of the active site residues (Val133, Val143, Leu197, Val206 and Trp209 in 

the CO2-binding pocket) were relatively similar. This suggests that these mutations did not 

interfere with the flexibility of the active site, required for enzyme turnover. Interestingly, the 

hydrophilic proton-shuttle residues (Tyr28, Asn85, Thr198 and Thr199) showed lower flexibility 

in the mutants compared to the wild-type enzyme, which might be a result of a more compact 

protein structure, favoring stronger hydrogen-bonding interactions within the protein, and 

between residues and water molecules. 

Inspection of the FEL landscapes for the most promising mutants, Pro165Cys-Asn170Cys and 

Asn140Gly, showed a clear improvement compared to wild-type TaCA (Figure 5). At this higher 

temperature, the wild-type protein showed a high flexibility, the FEL resembled the pattern of 

the less stable proteins (NgCA and SazCA) at 363 K, and conformations with a disordered N-

terminus were identified in the minima structures. On the other hand, the FEL of the disulfide 

mutant was very close to that of wild-type TaCA at the lower temperature (Figure 3 vs Figure 5), 

thus demonstrating the higher stability of this mutant. Introduction of a rigidifying bond in a loop 

region is likely to be responsible for this stabilization of the protein. Asn140Gly showed an 

intermediate stability, sampling a larger conformational space than the disulfide mutant, but with 

minima structures relatively close to the wild-type TaCA. 
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Figure 5. A) Representation of rigidifying mutation sites within TaCA; B) Free energy 

landscapes for wild-type TaCA, Asn140Gly and Pro165Cys-Gln170Cys from simulations at 

400 K. The x- and y-axis represent the first two eigenvectors, PC1 and PC2 of the C-alpha 

atomic fluctuation. The z-axis represents the free energy in kJ mol -1.  The color conventions are 
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depicted as red (energy maxima) and blue (energy minima). A complete description of FEL 

construction is given in the ESI. RMSD values given in Å. 

 

CONCLUSION 

The results presented here provide an increased insight into the thermostability of bacterial α-

CAs, and suggest a rational approach for the design of mutants of TaCA with increased stability, 

for application in carbon capture biotechnologies. The comparison of bacterial α-carbonic 

anhydrases by molecular dynamics simulations showed that the origin of their stability at high 

temperatures most likely resides in the rigidity of the protein structure. The most thermostable 

TaCA and SspCA enzymes showed the least fluctuation in the protein backbone, and the least 

flexibility in the ion pair networks. FEL analysis confirmed TaCA as the enzyme with the 

highest rigidity, and thus the most stable. The N- and C- termini regions of all enzymes were 

determined by RMSF analysis to be highly flexible. At the difference from previous studies, 

where rigidifying features from thermostable scaffolds were re-designed into mesostable ones, 

we used the most thermostable α-CA as a starting point to systematically investigate all flexible 

sites and their potential for further stabilization. Specific amino acids with RMSF above average 

during dynamics at 343 K, 353 K and 363 K were identified and mutated in silico to a selection 

of charged or small non-polar residues, in an effort to stabilize the protein structure of TaCA, and 

create an ultra-thermostable enzyme. Initial refinement performed with FoldX allowed the 

identification of five stabilizing mutations. In an alternative stabilization approach, three 

disulfide bonds were designed at regions with high flexibility. Out of the eight mutants analyzed 

by MD simulations at 400 K, five showed a more rigid structure than wild-type TaCA, with 

lower RMSD and RMSF values. In particular, the Cys165-Cys170 disulfide bond showed 

Page 25 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



 26

decreased flexibility at the rigidification site, whilst Asn140Gly showed an overall decreased 

flexibility. Comparison of free energy landscapes between the wild-type and mutant TaCA 

demonstrated a higher stability of the mutants at 400 K, in particular for the mutant containing a 

disulfide bond. Future work will include an analysis of combined mutations, to assess their effect 

on TaCA stability. Efforts are currently underway to experimentally characterize the mutants 

suggested by this computational study.  
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Figure 1. Relevant salt bridges and ionic networks in thermostable α-carbonic anhydrases: A) TaCA; B) 

SspCA; C) SazCA.  

 

2106x738mm (96 x 96 DPI)  

 

 

Page 34 of 39

ACS Paragon Plus Environment

The Journal of Physical Chemistry

1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60



  

 

 

Figure 2. Backbone (Cα) RMSF of α-CA amino acids, at different simulation temperatures: 343 K (black line), 
353 K (red line), 363 K (green line). Arrows show the enhanced flexibility regions in TaCA.  
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Figure 3. Free energy landscapes (FEL) for NgCA, TaCA, SspCA and SazCA from simulations at 343 K and 
363 K. The x- and y-axis represent the first two eigenvectors, PC1 and PC2 of the C-alpha atomic 

fluctuation. The z-axis represents the free energy in kJ mol -1.  The color conventions are depicted as red 
(energy maxima) and blue (energy minima). A complete description of FEL construction is given in the ESI. 

RMSD values given in Å.  
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Figure 4. Molecular dynamics simulation results for the designed TaCA mutants, over 100 ns at 400 K. A) 
RMSD of the eight mutants; B) RMSD of the five mutants with improved average RMSD compared to wild-

type TaCA; C) RMSF of the five mutants with improved average RMSD compared to wild-type TaCA; d) 
∆RMSF calculated between the five mutants and wild type, with negative values representing an increased 

rigidity of the protein.  
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Figure 5. A) Representation of rigidifying mutation sites within TaCA; B) Free energy landscapes for wild-
type TaCA, Asn140Gly and Pro165Cys-Gln170Cys from simulations at 400 K. The x- and y-axis represent 
the first two eigenvectors, PC1 and PC2 of the C-alpha atomic fluctuation. The z-axis represents the free 

energy in kJ mol -1.  The color conventions are depicted as red (energy maxima) and blue (energy minima). 
A complete description of FEL construction is given in the ESI. RMSD values given in Å.  
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