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Abstract

The introduction of delays into ordinary or partial differential equation models

is well known to facilitate the production of rich dynamics ranging from periodic

solutions through to spatio-temporal chaos. In this paper we consider a class of scalar

partial differential equations with a delayed threshold nonlinearity which admits

exact solutions for equilibria, periodic orbits and travelling waves. Importantly we

show how the spectra of periodic and travelling wave solutions can be determined

in terms of the zeros of a complex analytic function. Using this as a computational

tool to determine stability we show that delays can have very different effects on

threshold systems with negative as opposed to positive feedback. Direct numerical

simulations are used to confirm our bifurcation analysis, and to probe some of the

rich behaviour possible for mixed feedback.
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1 Introduction

Delayed differential equations (DDEs) arise naturally as models of dynamical systems

where memory effects are important. Indeed in models of population biology, ecology

and epidemiology they are almost ubiquitous [1]. Delays also arise in many physiological

systems as part of a feedback loop – one classic example being the pupil light reflex [2],

though many others are wonderfully described in [3,4]. In contrast to models without

delay the analysis of DDEs is notoriously hard and has generated considerable activity

in the mathematics community (see for example [5]). This is directly attributable to

the fact that the solution space for DDEs is infinite dimensional despite only a finite

number of dynamical variables appearing in a model. Consider for example a simple

scalar DDE that often arises in physiological modelling: v̇ = −v/τ + f(v(t− τd)), where

f(v(t − τd)) is a nonlinear function of v at time t − τd. Even here the characteristic

equation, 1/τ + λ− f ′(v) e−λτd = 0, determining the stability of a fixed point v can have

an infinite number of solutions making the spectral analysis challenging [6]. Probing the

properties of fully nonlinear oscillations that are known to arise when f(v) is taken to be a

“humped” function, such as the Hill function f(v) = θn/(θn+vn), is harder still. However,

progress is possible for this case in the limit n → ∞, so that f(v) becomes piecewise

constant: f(v) = 1, v ∈ [−θ, θ] and is zero elsewhere. Information about the time where a

solution crosses the threshold at θ is now enough to self-consistently determine a periodic

oscillation in closed form [7]. Since threshold models are relatively common in the applied

biological sciences, arising for example in models of calcium release [8], neural tissue [9]

and gene networks [10], it is worthwhile developing a more comprehensive treatment of

delayed threshold models. Since both positive and negative feedback are seen as important

enhancers of the properties of biological systems [11] generic examples from both these

classes, as well as a mixture of the two, should be considered. Moreover, in biological

systems where transport is important it is common to use diffusion as a model for this

process. With this in mind we concentrate in this paper on threshold-diffusion equations

with delay.

In section 2 we introduce our model of choice, a delayed scalar PDE, and discuss some

known results for smooth nonlinearities. We then introduce three distinct threshold non-

linearities describing negative, positive and mixed feedback models. As a precursor to the

analysis of travelling waves we first neglect space and consider the generation of periodic

oscillations in delayed threshold models in section 3. As well as briefly reviewing known
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results for the construction of such orbits we present the first treatment of their stability.

The Floquet exponents are given in terms of the zeros of a complex analytic function.

Importantly an examination of the spectrum shows that the model with negative feedback

generates stable oscillations with period larger than twice the delay, whilst the positive

feedback model generates unstable orbits with period less than twice the delay. In sec-

tions 4 and 5 we study travelling wave solutions of the full delayed PDE model, calculating

wave speed and stability as a function of the delay. Once again we determine stability

in terms of the zeros of a complex analytic function, which in the context of travelling

waves we refer to as an Evans function. Computation of the Evans function shows that

there is a stable front and an unstable standing bump in the model with positive feedback

and that periodic waves can undergo instabilities in the model with negative feedback.

Direct numerical simulations are used to confirm our predictions, and also establish that

such wave phenomenon are robust in the sense that they persist for smooth caricatures

of the feedback nonlinearities. The case of mixed feedback is discussed in section 6. Here

we show that, neglecting space, there can be more complex oscillations than occur in the

case of purely negative feedback. We also demonstrate a spatio-temporal chaotic solution.

Finally we discuss natural extensions of the work in this paper.

2 The model

We consider a delayed scalar PDE for the variable v = v(x, t) with x ∈ R and t ∈ R+,

which takes the form
∂v

∂t
= −v

τ
+D

∂2v

∂x2
+ f(v(x, t− τd)), (1)

where τd > 0 represents a fixed delay. Here f(v) is a given nonlinear function, τ > 0 is

a decay constant and D > 0 a diffusion coefficient. We may interpret (1) as perhaps the

simplest delayed reaction-diffusion equation imaginable. In particular, with f(v) = pv e−v

we recover the diffusive Nicholson’s blowflies equation [12]. Making use of comparison

principles, monotone-iteration schemes and fixed-point theorems several results for mono-

tone travelling waves of (1) are now known. For a recent discussion and an extension to

cover nonmonotone travelling waves we refer the reader to the recent article by Trofim-

chuk and Trofimchuk [13]. However, the focus of the work in this paper will be on choices

of f for which we may explicitly construct solutions of (1), as well as determine their

stability. Motivated by the interest in various forms of threshold feedback in biological

and physiological systems we consider three distinct choices for the nonlinear function f :
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I Negative feedback with f(v) = H(h− v).

II Positive feedback with f(v) = H(v − h).

III Mixed feedback with f(v) = H(v − h1)H(h2 − v), h2 > h1.

Here, H is a Heaviside step function and h, h1 and h2 are constant thresholds. In all

the cases I-III the presence of a threshold nonlinearity means that (1) can effectively be

treated as a piece-wise linear (PWL) system. The study of PWL systems has allowed for

important advances not only in the understanding of excitable systems [14] but also in

the field of engineering [15,16].

To see how delay-induced dynamics can differ between the various types of feedback it is

first worthwhile to treat the case of zero diffusion and assess dynamics in a point model.

3 Periodic solutions: zero diffusion limit

In the case of zero diffusion we recover the widely studied delayed ODE model

v̇ = −v
τ

+ f(v(t− τd)). (2)

Many results concerning the existence of periodic orbits are now known for the cases of

smooth monotone positive and negative feedback [17]. Moreover, a Poincaré-Bendixson

type theorem exists showing that chaotic behaviour is not possible in these cases [18].

However, for mixed feedback, as would occur for example in the Mackey-Glass model [3],

very complex dynamics is possible [19]. Recent work of Röst and Wu [20] has established

that this can include heteroclinic orbits from the trivial equilibrium to a periodic orbit

oscillating around the positive equilibrium. However, we shall focus here on simple T -

periodic solutions of the form v(t) = q(t) with q(t) = q(t + T ). Importantly, with direct

access to the shape of the periodic orbit, we shall show how to pursue a full Floquet

analysis, without recourse to any approximations [21].

3.1 Negative feedback

For the case of negative feedback, f(v) = H(h − v), and with 0 < h < τ , there are no

fixed points of (2), and it is natural to look for periodic solutions like those depicted in

Fig. 1 (left). Assuming that q(t) crosses h from below, then after a delay τd, q(t) evolves

according to q(t) = A+e−t/τ , where time is measured from when q = A+. Next q(t) crosses

h from above, and after a delay τd evolves according to q(t) = A−e−t/τ + τ(1 − e−t/τ ),
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Fig. 1. Left: Periodic solution in a model with negative feedback. Right: Periodic solution in a

model with positive feedback. In both cases τ = 1, h = 0.5 and τd = 2.

where time is now measured from when q = A−. Here A± are the maximum and minimum

values of q(t). Introducing an origin of time such that q(0) = A− and times t1 and t2 as in

Fig. 1 (left), then q(t1) = q(t1 + t2 + τd) = h and solving these equations for t1 and t2 and

matching solutions at t = 0 and t = t1 + τd gives the period of oscillation T = 2τd+ t1 + t2

as [7]

T = 2τd + τ

(
ln
R− e−τd/τ

R− 1
+ ln

[
R + (1−R)e−τd/τ

])
, (3)

where R = τ/h. The amplitude of oscillation is given by A = A+−A− = τ
(
1− e−τd/τ

)
. A

plot of the period and amplitude of the periodic orbit as a function of the delay is shown

in Fig. 2 (left). We observe that both period and amplitude increase with the delay and

that T > 2τd. To establish the stability of the periodic solution we need to determine the

Floquet exponents. Although for arbitrary smooth f this is a hard problem, for which

progress has been made only in some special cases [22], we may make explicit progress

here for the case of a threshold model.

Linearising (2) around a T -periodic solution according to v(t) = q(t) + u(t), for a small

perturbation u(t) gives

u̇ = −u
τ

+ f ′(q(t− τd))u(t− τd). (4)

Introducing the T -periodic function z(t) and the Floquet exponent λ we now look for

solutions of the form u(t) = z(t) eλt u(0). Substitution into (4) shows that z(t) is the

T -periodic solution of

ż + (λ+ ε)z = f ′(q(t− τd))z(t− τd) e−λτd , ε =
1

τ
. (5)
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Fig. 2. Period T and maximum and minimum values A± of an oscillatory solution as a function

of the delay τd. Here τ = 1 and h = 0.5. Left: Solution branch for the model with negative

feedback. Right: Solution branch for the model with positive feedback.

Using the fact that the Green’s function for (5) is η(t) = e−(ε+λ)tH(t), we may write the

formal solution in the form z(t) = η(t) ∗
[
f ′(q(t− τd))z(t− τd) e−λτd

]
, where ∗ denotes a

temporal convolution. Since the periodic orbit q(t) has just two threshold crossings (at

t = t1 and t = T − τd) then f ′(q(t− τd)) is T -periodic and takes the form

f ′(q(t− τd)) = −
∑
m∈Z

{
δ(t− (t1 + τd)−mT )

|q′(t1)|
+

δ(t−mT )

|q′(T − τd)|

}
. (6)

Hence for ε+ λ > 0 (i.e. to the right of the essential spectrum) the periodic solution can

be calculated as

z(t) = −
e−λτd

1− e−T (ε+λ)

{
ηP (t− (t1 + τd))

|q′(t1)|
z(t1) +

ηP (t)

|q′(T − τd)|
z(T − τd)

}
, (7)

where ηP (t) is the periodic extension of η(t) restricted to the domain [0, T ). Substitution

of t = t1 and t = T − τd into (7) yields a pair of simultaneous linear equations for the

unknown amplitudes (z(t1), z(T − τd)). Demanding a non-trivial solution of this system

gives an equation for the Floquet exponents in the form E(λ) = 0, where

E(λ) = det

A(T − τd, λ) + 1 B(t1, λ)

A(t2, λ) B(T − τd, λ) + 1

 . (8)

HereA(t, λ) = p(λ)η(t)/|q′(t1)| and B(t, λ) = p(λ)η(t)/|q′(T−τd)|, where p(λ) = e−λτd /(1−
e−T (ε+λ)), q′(t1) = 1 − h/τ and q′(T − τd) = −h/τ . Solutions will be stable provided

Re λ < 0. To compute the zeros of E(λ) it is practical to first decompose λ as λ = ν+ iω.
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Fig. 3. Floquet exponents as zeros of a complex analytic function E(λ). Floquet exponents occur

where the zero contours of ER(λ) and EI(λ) (red and blue lines) intersect. Note the presence of a

zero exponent, as expected for a system with time-translation symmetry. Left: spectrum for the

orbit shown in Fig. 1 (left). Since there are no zeros of E(λ) in the right hand complex plane the

solution is stable. Right: spectrum for the orbit shown in Fig. 1 (right). The presence of zeros

of E(λ) in the right hand complex plane show that the solution is unstable.

The pair (ν, ω) may then be found by the simultaneous solution of ER(ν, ω) = 0 and

EI(ν, ω) = 0, where ER(ν, ω) = Re E(ν + iω) and EI(ν, ω) = Im E(ν + iω). Hence an ex-

amination of a plot of the zero contours of EI,R can be used to reveal the point spectrum

– with Floquet exponents occurring where the two contours intersect. A plot obtained

in this fashion is shown in Fig. 3 (left). From time-translation symmetry of the periodic

orbit we see one exponent with λ = 0 as expected, and some others just slightly to the

left of the imaginary axis. For the solution branch shown in Fig. 2 (left) no exponents are

ever found in the right hand complex plane and so this branch of periodic orbits is stable.

3.2 Positive feedback

For the case of positive feedback, f(v) = H(v − h), and with 0 < h < τ there are two

stable fixed points of (2) at v = 0 and v = τ . Assuming that a periodic orbit can coexist

with these fixed points we look for a solution like that depicted in Fig. 1 (right). Here

we have introduced the four unknowns A± and T±, which denote the largest (A+) and
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smallest (A−) values of the trajectory and the times spent above (T+) and below (T−) the

threshold h. The trajectory increases from A− for a duration T+ and decreases from A+

for a duration T−. The values for these four unknowns are found by enforcing periodicity

of the solution and requiring it to cross threshold twice as in Fig. 1 (right). The details

of this calculation are presented in [23], where it is found that the period of oscillation

T = T+ + T− satisfies the transcendental equation

T = 2τd + τ

(
ln
R− e(T−τd)/τ

R− 1
+ ln

[
R + (1−R) e(T−τd)/τ

])
, (9)

where R = τ/h. The amplitude of oscillation is given by A = A+−A− = τ
[
e(T−τd)/τ −1

]
.

A plot of the period and amplitude as a function of τd is shown in Fig. 2 (right). In

contrast to the model with negative feedback we observe that τd < T < 2τd.

In a similar fashion to the calculation for negative feedback in section 3.1 we may calculate

the Floquet exponents in terms of the zeros of a complex analytic function E(λ), which

this time takes the form

E(λ) = det

 A(T − τd, λ)− 1 B(T − τd + T−, λ)

A(T − τd + T+, λ) B(T − τd, λ)− 1

 . (10)

Here A(t, λ) = p(λ)η(t)/|q′(T − τd)| and B(t, λ) = p(λ)η(t)/|q′(T − τd + T+)|, where

q′(T − τd) = 1 − h/τ and q′(T − τd + T+) = −h/τ . A typical spectral plot is shown in

Fig. 3 (right) from which it can be clearly seen that there are exponents in the right half

of the complex plane. Indeed the whole of the solution branch in Fig. 2 (right) is found

to be unstable.

Periodic solutions of the mixed model f(v) = H(v − h1)H(h2 − v), h2 > h1, may be

analysed in a similar way to the negative and positive feedback models described above.

For example orbits with v > h1 that repeatedly cross h2 will have properties analogous

to those of the model with negative feedback, and so will be stable if τ > h2. We will not

pursue this further here. Rather we move on to the question as to whether periodic orbits

persist in the spatially extended model with D 6= 0. The short answer, of course, being

yes. However, since periodic orbits in the model with positive feedback are unstable it is

informative to first pursue the study of non-periodic waves and specifically to see if there

are global connections between the fixed points at v = 0 and v = τ .
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4 Positive feedback: fronts and bumps

The existence of travelling front solutions in reaction-diffusion systems with delay is now

reasonably well understood [24–26]. Recent work by Samaey and Sandstede has also shown

how to determine the stability of waves [27]. These authors emphasise that the analytical

determination of spectra is such a hard problem in general that resorting to numerical

computation is sensible. However, for the special case of threshold nonlinearity we will

show here that it is relatively easy to pursue questions relating to wave speed and stability.

In this section we shall first study travelling front solutions before moving on to standing

bumps.

4.1 Travelling front

In a co-moving frame a stationary solution that connects the fixed point at v = 0 to the

one at v = τ describes a travelling front (heteroclinic connection). Introducing ξ = x+ ct,

and remembering that f(v) = H(v − h), equation (1) becomes

c
∂v

∂ξ
+
∂v

∂t
= −v

τ
+D

∂2v

∂ξ2
+H(v(ξ − cτd, t− τd)− h), (11)

where v = v(ξ, t). A travelling wave solution q(ξ) is obtained upon letting ∂v/∂t→ 0, so

that q satisfies

D
d2q

dξ2
− cdq

dξ
− εq = −H(q(ξ − cτd)− h), ε =

1

τ
. (12)

Now consider a monotone front solution where q(ξ) ≥ h for ξ ≥ 0 and q(ξ) < h for ξ < 0.

In this case

q(ξ) =


τ + A em−(ξ−cτd) ξ − cτd ≥ 0

B em+(ξ−cτd) ξ − cτd < 0
, (13)

where

m± =
c±
√
c2 + 4εD

2D
. (14)

Continuity of q and q′ at ξ = cτd gives the coefficients A and B as

A =
m+τ

m− −m+

, B =
m−τ

m− −m+

. (15)
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The circles denote results from direct numerical simulations performed using the Matlab delay

differential equation integrator dde23.

The speed of the front is then determined by demanding that q(0) = h, giving an implicit

equation for c:

h em+cτd =
m−τ

m− −m+

, (16)

subject to q(0) ≤ q(cτd). For τd = 0 equation (16) may be re-arranged to give the speed

explicitly as

c =
1/h− 2/τ√
1/h− 1/τ

√
D, h < τ. (17)

A plot of the front speed as a function of the delay τd is shown in Fig. 4, showing that as

the delay increase the speed decreases. Note that standing fronts with c = 0 occur when

τ = 2h for any value of τd. Our results are in contrast to those of, for example, the delayed

Fisher equation [24], for which there is a range of speeds at which a front may travel. In

our system the fixed points of the piecewise linear system (12), at q = 0 and q = τ , are

both saddles, and hence we expect heteroclinic connections between them to occur only

at isolated values of c.

To determine the stability of the front we consider perturbations of the form v(ξ, t) =

q(ξ) + u(ξ, t). To first order we have from (11) that

cuξ + ut = −u
τ

+Duξξ + δ(q(ξ − cτd)− h)u(ξ − cτd, t− τd). (18)
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Perturbations of the form u(ξ, t) = u(ξ) eλt lead to the eigenvalue problem

Qu = δ(q(ξ − cτd)− h)u(ξ − cτd) e−λτd , Q = −Ddξξ + cdξ + λ+ ε. (19)

The Green’s function, η, of the linear differential operator Q (Qη = δ) may be calculated

(using Fourier transforms) as

η(ξ) =
∫ ∞
−∞

dk

2π

eikξ

Dk2 + ick + λ+ ε
=

1

D(k+(λ)− k−(λ))


ek−(λ)ξ ξ ≥ 0

ek+(λ)ξ ξ < 0
, (20)

where

k±(λ) =
c±

√
c2 + 4(ε+ λ)D

2D
. (21)

Here we have assumed that λ+ ε > 0 (i.e. we are to the right of the essential spectrum).

We may now solve (19) in the form u(ξ) = η(ξ) ∗ [δ(q(ξ− cτd)−h)u(ξ− cτd) e−λτd ], where

∗ denotes convolution. Using the result that δ(q(ξ− cτd)−h) = δ(ξ− cτd)/|q′(0)| we have

that

u(ξ) = A(ξ, λ)u(0), A(λ, ξ) =
η(ξ − cτd)
|q′(0)|

e−λτd . (22)

Demanding a non-trivial solution at ξ = 0 gives the condition E(λ) = 0, where

E(λ) = 1−A(0, λ) = 1− m+ −m−
k+(λ)− k−(λ)

e(m+c−k+(λ)c−λ)τd

= 1−
√
c2 + 4εD√

c2 + 4(ε+ λ)D
e(m+c−k+(λ)c−λ)τd . (23)

Using the fact that k±(0) = m± we see that E(0) = 0, as expected for a system with

translation invariance. The function E(λ) is real-valued if λ is real. Furthermore, the

complex number λ is an eigenvalue of (19) if and only if E(λ) = 0. The function E(λ) thus

provides us with an analytic tool for locating the point spectrum (isolated eigenvalues) of

the linearised problem obtained after considering perturbations around a travelling wave

solution. As such we shall refer to it as an Evans function (even though we do not attempt

here to prove that the algebraic multiplicity of an eigenvalue is equal to the order of the

zero of the Evans function). The Evans function has now been used to study the stability

of travelling waves in a number of PDE models (see [28] for a recent discussion), though

it is fair to say that for dissipative systems there are very few which possess explicit

Evans functions [29]. For τd = 0 then there is a single solution of E(λ) = 0 with λ = 0.

Indeed, for this case there are no solutions of E(λ) = 0 in the right half of the complex

plane. Since E ′(0) > 0 the zero-eigenvalue is simple, and so the travelling front solution

11



is stable. For τd 6= 0, there are always non-zero solutions of E(λ) = 0 and a dynamic

instability is in principle possible. It may be possible to show analytically that in practice

these bifurcations do not occur, but here we just state that a numerical calculation of the

spectrum shows that the front is stable even in the presence of delays. (Note here that

all of our stability results relate to local stability; proving that a particular solution is

globally attracting is more difficult [30].)

4.2 A standing bump

Here we consider time-independent standing waves v(x, t) = q(x) that satisfy(
−D d2

dx2
+ ε

)
q(x) = H(q(x)− h), x ∈ R. (24)

For a symmetric bump solution that connects the fixed point at v = 0 to itself (homoclinic

connection), crossing through the threshold h only twice, we may write

q(x) =


τ + A1 em+(x−∆) +A2 em−(x−∆) 0 ≤ x ≤ ∆

A3 em−(x−∆) x > ∆
, (25)

with m± = ±
√
ε/D and q(−x) = q(x). Matching the solution and its first derivative

at x = ∆, enforcing the threshold condition q(∆) = h, and fixing an origin such that

q′(0) = 0, gives

tanh(m+∆) =
h

τ − h
, A1 =

h

e−2m+∆−1
, A2 =

h

1− e2m+∆
, A3 = h. (26)

For positive ∆ we require τ > 2h. The stability of the bump is determined along similar

lines to section 4.1 using c = 0 and

δ(q − h) =
δ(x−∆)

|q′(∆)|
+
δ(x+ ∆)

|q′(∆)|
. (27)

(Note that |q′(−∆)| = |q′(∆)|.) Perturbations to the bump in the form v(x, t) = q(x) +

u(x, t) can then be shown to satisfy the equation

u(x) =
e−λτd

|q′(∆)|
[η(x−∆)u(∆) + η(x+ ∆)u(−∆)], (28)

where η(x) = e−k|x| /(2Dk), with k =
√

(ε+ λ)/D. Substitution of x = ±∆ into (28)

yields a pair of linear equations for the unknown amplitudes (u(∆), u(−∆)). Demanding
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a non-trivial solution of this system gives the spectrum as the zeros of the Evans function:

E(λ) = det


e−λτd η(0)
m+h

− 1 e−λτd η(2∆)
m+h

e−λτd η(2∆)
m+h

e−λτd η(0)
m+h

− 1

 . (29)

It is simple to check that E(0) = 0 as expected from spatial translation symmetry. A

further calculation also establishes that E ′(0) < 0 and that for λ ∈ R then limλ→∞ E(λ) =

1. Hence, the Evans function must have at least one positive zero on the real axis, showing

that the bump is always unstable.

5 Negative feedback: periodic travelling waves

The model with negative feedback and D = 0 was shown to support stable periodic

oscillations in section 3.1. For non-zero diffusion it is thus natural to look for periodic

travelling waves and see whether they are also stable. We shall show in this section

that although a family of such waves can be supported, not all of them are stable. Our

discussion treats separately two different types of domain: i) the unbounded real line; and

ii) a finite system with periodic boundary conditions. In both these cases it is convenient

to introduce the linear differential operator

P = −D(dξ −m+)(dξ −m−), (30)

with m± given by (14), so that the travelling wave ODE for q(ξ) may be written Pq =

H(h− q(ξ − cτd)).

5.1 Infinite domain

For the case of an infinite domain the Green’s function of P is given by

η(ξ) =


η−(ξ) ξ ≥ 0

η+(ξ) ξ < 0
, (31)

where η±(ξ) = exp(m±ξ)/[D(m+ −m−)]. We may now solve for q(ξ) using a convolution

to give

q(ξ) =
∫ ξ

−∞
dξ′η−(ξ − ξ′)H(h− q(ξ′ − cτd)) +

∫ ∞
ξ

dξ′η+(ξ − ξ′)H(h− q(ξ′ − cτd)). (32)
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Fig. 5. Families of periodic travelling waves. Left: speed c versus period ∆ and right: phase φ

versus ∆. Here D = 1, τ = 2 = τd and h = 1.5. The circles denote results from direct numerical

simulations.

For a periodic wave oscillating around h we have that H(h− q(ξ)) = H(φ∆− ξ)H(ξ) for

some φ < 1 and q(ξ) periodic in ∆. We may then calculate q(ξ + cτd) = F(ξ) + G(ξ),

where

F(ξ) =
−∞∑
m=−1

∫ φ∆

0
dξ′η−(ξ − ξ′ −m∆) +

∞∑
m=0

∫ φ∆

0
dξ′η+(ξ − ξ′ −m∆)

=
1

D(m+ −m−)

{
em−(ξ+∆)

1− em−∆

1− e−m−φ∆

m−
+

em+(ξ−∆)

1− e−m+∆

1− e−m+φ∆

m+

}
, (33)

and

G(ξ) =


∫ ξ

0 dξ′η−(ξ − ξ′) +
∫ φ∆
ξ dξ′η+(ξ − ξ′) 0 ≤ ξ < φ∆∫ φ∆

0 dξ′η−(ξ − ξ′) φ∆ < ξ < ∆
,

=
1

D(m+ −m−)


em−ξ −1
m−

+ 1−em+(ξ−φ∆)

m+
0 ≤ ξ < φ∆

em−ξ − em−(ξ−φ∆)

m−
φ∆ ≤ ξ < ∆

. (34)

Enforcing the two threshold conditions

q(0) = h and q(φ∆) = h, (35)

gives us two simultaneous equations for the two unknowns (φ, c), which can be solved

numerically to obtain the dispersion relationships c = c(∆) and φ = φ(∆). Interestingly

there can be many disconnected branches of solution to these dispersion curves. An il-

lustrative plot of some of the dispersion relationships is shown in Fig. 5, together with

14



0 10 20 30 40
0.5

1

1.5

2

ξ

q φ∆

cτ
d

0 ξ

q

∆

cτ
d

h

Fig. 6. Left: A periodic travelling wave profile on an infinite domain in the model with negative

feedback, corresponding to the rightmost data point (circle) plotted in Fig. 5. Here c = 3.1523,

φ = 0.6396, τ = 2 = τd, D = 1, ∆ = 20 and h = 1.5. Right: A wave on a finite domain of length

∆ with periodic boundary conditions, showing the notation used for its construction.

results from direct numerical simulation. However, not all solutions of (35) correspond to

valid periodic travelling waves. Each alternate family (shown with dashed lines in Fig. 5)

actually corresponds to a wave for which q > h on (0, φ∆), whereas in the derivation

of (33) and (34), we assumed that q < h on (0, φ∆). In Fig. 6 (left) we show a plot of a

periodic wave obtained using the above prescription. Although it is possible to develop a

stability condition along the lines for a front, this does not lead to any closed form ex-

pressions for the spectrum (as we get an infinite set of relations between perturbations at

the threshold crossing points). However for a finite domain it is possible to make explicit

progress as we show next.

5.2 Finite domain

Here we consider a finite domain of length ∆ such that the wave is periodic with q(ξ) =

q(ξ + ∆). Moreover we shall focus on the case for which q(ξ) crosses threshold only twice

as shown in Fig. 6 (right), though more general solutions can be constructed in a similar

fashion. In this case q(ξ) is parametrised by the six unknowns (A1, A2, A3, A4, c, φ) as

q(ξ) =


A1 em+ξ +A2 em−ξ 0 < ξ < (1− φ)∆

τ + A3 em+ξ +A4 em−ξ (1− φ)∆ < ξ < ∆
, (36)
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where φ is the fraction of the period for which q < h. Matching the solution and its first

derivative at ξ = (1 − φ)∆ and ξ = ∆ can be used to determine the four amplitudes.

Enforcing the threshold conditions at ξ = (1 − φ)∆ − cτd and ξ = ∆ − cτd gives two

further implicit equations for the pair (c, φ) that we may solve numerically to determine

the wave properties. On doing this we recover the families of periodic travelling waves on

an infinite domain found in section 5.1. For the calculation of stability we follow along

similar lines to section 4.1 and make explicit progress using the result that the periodic

Green’s function of Q (given by the right hand side of (19)) can be obtained in closed

form as

ηP (ξ) =
1

D(k+ − k−)

{
ek−ξ

1− ek−∆
−

ek+ξ

1− ek+∆

}
, 0 < ξ < ∆, (37)

with ηP (ξ) = ηP (ξ+∆) and k± defined as in (21). The linearised equation for the evolution

of perturbations, Qu = −δ(h− q(ξ − cτd))u(ξ − cτd) e−λτd , has the solution

u(ξ) = −
∫ ∆

0
dξ′ηP (ξ − ξ′)δ(h− q(ξ′ − cτd))u(ξ′ − cτd) e−λτd . (38)

Using the result that

δ(h− q(ξ − cτd)) =
δ(ξ − (1− φ)∆)

|q′((1− φ)∆− cτd)|
+

δ(ξ −∆)

|q′(∆− cτd)|
, (39)

we have

u(ξ) = − e−λτd
{
ηP (ξ − (1− φ)∆)u((1− φ)∆− cτd)

|q′((1− φ)∆− cτd)|
+
ηP (ξ −∆)u(∆− cτd)
|q′(∆− cτd)|

}
. (40)

Substitution of ξ = (1 − φ)∆ − cτd and ξ = ∆ − cτd yields two simultaneous equation

for the unknown amplitudes at these positions. Demanding a non-trivial solution of this

linear system gives the Evans function

E(λ) = det

A((1− φ)∆− cτd), λ) + 1 B((1− φ)∆− cτd), λ)

A(∆− cτd), λ) B(∆− cτd), λ) + 1

 , (41)

where

A(ξ, λ) = e−λτd
ηP (ξ − (1− φ)∆)

|q′((1− φ)∆− cτd)|
, B(ξ, λ) = e−λτd

ηP (ξ −∆)

|q′(∆− cτd)|
. (42)

Here the derivative of the wave, q′, is easily calculated from (36).

We can use this calculation to investigate the stability of the families of solutions shown

in Fig. 5. Zeros of the Evans function can be found in exactly the way demonstrated
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Fig. 7. Real part of the rightmost roots of E(λ) as a function of ∆ for the slowest branch of

solutions shown in Fig. 5.

in Fig. 3, and since they are isolated, zeros can be followed as parameters are varied.

In Fig. 7 we plot the real part of the rightmost complex pair of roots of E(λ) for the

slowest branch of solutions shown in Fig. 5. (Over the range of ∆ shown, the imaginary

part of the roots varied between about 0.9i and 1.0i.) We see that as ∆ decreases below

approximately 8, this branch of periodic travelling waves becomes unstable through a

Hopf bifurcation. Figure 8 shows this instability in a direct numerical simulation. We

chose a domain of size 10 and an initial condition that led to a travelling wave with only

two threshold crossings, as analysed above, so that initially ∆ = 10. With D = 1, this

solution is known to be stable. In order to see the instability predicted by Fig. 7 we need

to decrease ∆, i.e. decrease the domain size while keeping a periodic travelling wave with

only two threshold crossings as the solution. However, from (1) it is clear that rescaling

x : x 7→ ax, is equivalent to rescaling D: D 7→ D/a2. In the simulation shown in Fig. 8

we switched D from D = 1 to D = (10/7)2 = 100/49 at t = 120, which is equivalent to

switching ∆ from 10 to 7. As predicted by Fig. 8, the travelling wave becomes unstable

and the resulting solution is a spatially homogeneous oscillation of the form described in

Sec. 3.1. The third fastest branch in Fig. 5, indicated with a dotted line in that figure, is

unstable over the range of ∆ values shown. In Fig. 9 we plot contours of |E(λ)| (where

λ = ν + iω) at two different points on this branch. At both points we see that |E(λ)| has

a pair of complex conjugate roots with positive real part, indicating instability. Similar

results show that the fifth fastest branch in Fig. 5, indicated with a dash-dotted line, is

also always unstable (results not shown).

In the final section we discuss solutions that emerge for mixed feedback and see that

in some sense they can be regarded as hybrids of behaviour found for either positive or

negative feedback alone. We conclude with some discussion about potential further work.
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Fig. 8. Simulation of (1) with negative feedback, f(v) = H(h− v), on a domain of size 10, with

periodic boundary conditions. D was switched from D = 1 to D = 100/49 at t = 120. Other

parameters are τ = τd = 2, h = 1.5.
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Fig. 9. Contours of |E(λ)|, equally spaced from zero (blue) to 2 (red) when ∆ = 20 (left) and

when ∆ = 2.6 (right), for the branch shown with a dotted line in Fig. 5. In both cases |E(λ)|
has a pair of complex conjugate roots with positive real part.

6 Discussion

For positive feedback we have seen that the scalar DDE (1) favours travelling monotone

front solutions, whilst for negative feedback either homogeneous oscillations or periodic

travelling waves are preferred. When delays are not present travelling monotone fronts

may still occur, but neither the homogeneous oscillations nor the periodic travelling waves

exist. Thus the presence of delays can drastically change the possible types of behaviour

in the very simple reaction-diffusion model we have studied. Interestingly for a broad

class of smooth mixed feedback (that combines negative and positive feedback) it is now
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Fig. 10. Solutions in the zero diffusion limit for mixed feedback. Top: τd = 3. Middle: τd = 4.

Bottom: τd = 5. Other parameters are τ = 2, h1 = 0.5, h2 = 1.5.

known that (1) can support a travelling wave that is a hybrid of a monotone front and a

periodic. This non-monotone front has an exponentially decaying profile in one direction

that connects to a periodic oscillation in the other [13]. It is easy to replicate such solutions

in direct numerical simulations with the non-smooth choice f(v) = H(v − h1)H(h2 − v),

h2 > h1, though we have not pursued their construction here. Such direct simulations

further show that mixed feedback can lead to more complex behaviour. As an example,

in Fig. 10 we show complex oscillations for the system in the zero diffusion limit, while

Fig. 11 shows spatio-temporal chaos in the full model.

It is important to emphasise that all of our results for the scalar model (1) have used the

fact that the function f was piece-wise constant, in order to explicitly construct solutions

and determine their stability. Thus our approach naturally extends to vector systems of

the form

∂v

∂t
= −v

τ
+D

∂2v

∂x2
+ F (v(t− τd), a), (43)

τa
∂a

∂t
= H(v − θ)− a, (44)

where F (v, a) = f(v) − a or F (v, a) = f(v − a(t − τd)) for example, and τa and θ are

parameters. In models like this, a can be thought of as a negative feedback term. Such

systems, with a positive feedback model for f , are known to support travelling pulses (as
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Fig. 11. A spatiotemporally chaotic solution, for mixed feedback. Parameters are τd = 5, τ = 2,

h1 = 0.5, h2 = 1.5, D = 1.

well as fronts) and having piece-wise constant nonlinear terms, can be analysed in the

same way as described here. See [31,32] for a related analysis of systems with nonlocal

interactions. Interestingly, delay induced periodic oscillations are also possible in non-

smooth models for a relay controller of an externally forced system with delayed feedback

[33]. It would be interesting to assess the stability of such solutions with the techniques

we have developed here.

All of the solutions we have discussed are structurally stable and are thus expected to

persist for f smooth but sufficiently step-like. (For example, in the case of negative feed-

back one could take f(v) =
[
1 + e−β(h−v)

]−1
; our results correspond to taking β → ∞.)

We have numerically verified this for all solutions discussed (results not shown). For a

smooth function f , the software package DDE-BIFTOOL [34] could be used to follow

the front and standing bump solutions as heteroclinic and homoclinic connecting orbits,

respectively [35]. The package can also follow periodic orbits, so could be used to study

both the periodic orbits that occur in the zero diffusion limit and the periodic orbits

corresponding to period travelling waves that we found. Another interesting possibility

would involve the use of the function f(v) = H(v − h)e−r/(v−h)2
(where r is a positive

constant) in the positive feedback case, as used in [36]. This function is exactly zero for

v < h, but is infinitely differentiable everywhere. Part of the travelling front described in

Sec. 4.1 could be constructed in the same way:

q(ξ) = hem+ξ, ξ < cτd, (45)

while the remainder of the front could be found by numerically shooting; solving the
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equation

D
d2q

dξ2
− cdq

dξ
− q

τ
= − exp [−r/(q(ξ − cτd)− h)2], (46)

on cτd < ξ (with a history given by (45)), and searching for the value of c for which

the solution of (46) tends to the upper fixed point q∗, which is a solution of q∗ =

τ exp [−r/(q∗ − h)2]. All of the above are topics of ongoing work and will be reported

upon elsewhere.
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