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State Sum Models and Quantum Gravity

John W. Barrett

Abstract. This review gives a history of the construction of quantum field
theory on four-dimensional spacetime using combinatorial techniques, and re-

cent developments of the theory towards a combinatorial construction of quan-
tum gravity.

1. State sum models

In this short review I give a brief survey of the history of state sum invariants
of four-manifolds and the attempts to modify them to give models for quantum
gravity. I emphasise at the outset that these are at present just models; we do
not yet know how far they incorporate all the desirable features of a quantum
theory of gravity. For brevity, the review will ignore the long and distinguished
lower-dimensional history of these ideas.

1.1. States and weights. The general framework is as follows. Let σn be a
standard n-simplex, with vertices 0, 1, 2, . . . , n. The state sum model requires a set
of states S to be given for each simplex. These states can be thought of either as
the states of a system in statistical mechanics, or as a basis set of states in quantum
mechanics.

This set of states is the same for any simplex of the same dimension, so one
just has to specify the set of states S(σn) for each n, up to the dimension of the
space-time, n = 4. The idea is that a state on a simplex specifies a state on any
one of its faces uniquely; hence there are maps

∂i : S(σn)→ S(σn−1),

for each i = 0, . . . , n, the i-th map corresponding to the i-th (n − 1)-dimensional
face (opposite the i-th vertex). These satisfy some obvious relations, and the whole
setup is called a simplicial set.

A weight is a complex number which gives an amplitude (or Boltzmann weight)
to a state.

w : S(σn)→ C.
A state sum model uses the states and weights as the information for construct-

ing a functional integral on a triangulated 4-manifold M . A configuration on M
is an assignment of states to all the simplexes in the triangulation such that the
states on the faces of any simplex are given by the boundary maps ∂i. This means
that the states on intersecting simplexes are related, because the common boundary
data must match.
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Figure 1. A state s for a triangle

The functional integral (or partition function) is a complex number calculated
as follows

Z(M ) =
∑

s

∏

σ

w (s(σ)) .

The summation is over the set of all configurations s. The product over simplexes
σ includes a weight factor for each simplex of every dimension.

1.2. Topological models. If the manifold M has a boundary, the states on
the boundary are kept fixed, and the summation over states is only over the states
for the interior simplexes. These states on the boundary are the boundary data for
the quantum field theory. A model is said to be topological if this partition function

Z (M, s(∂M ))

depends only on the triangulation of the boundary, ∂M , i.e. not on the details of the
triangulation of the interior. The first idea for constructing such a state-sum model
(in four dimensions) was the construction of Dijkgraaf-Witten for generic dimension,
based on a finite gauge group[DW]. This was generalised to the Lie group SU (2)
(where the model is unfortunately not finite) by Ooguri[O], and then to the q-
deformed version, the Crane-Yetter state sum, which is again finite[CY, CYK, R].

These models, based on a group or Hopf algebra, all have the feature that there
is only one state for a 0- or a 1-simplex. The set of states states for a 2-simplex is the
set of irreducible representations. The set of states for a 3-simplex is a quadruple
of representations, together with a basis element of the invariant elements in the
tensor product of the four representations h : C→ a1 ⊗ a2 ⊗ a3 ⊗ a4.

S(σ3) = {(a1, a2, a3, a4, h)}.
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Finally, the set of states for the four-simplex has no new information, it is just
the set of possible states for its boundary. The boundary maps are the obvious
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ones, for example

∂i(a1, a2, a3, a4, h) = ai.

The most important weight is the weight for the 4-simplex, given by an inner
product of the five states on the boundary tetrahedra. This inner product is best
described by a diagrammatic calculus called spin networks. The state on each
tetrahedron is represented by the diagram

a2 a4

a31a
h

called a vertex. Each edge of the vertex corresponds to a triangle in the 4-simplex,
and so the five vertices can be connected together by joining the edges pairwise.
The amplitude is thus calculated by using the appropriate inner product pairwise
on factors in the tensor product of all five vertices. However, as we have learnt from
the study of quantum groups and knot theory, the order of the factors in the tensor
product is important. The inner products can only be applied to adjacent factors,
and when permuting the factors an R-matrix has to be used. All these features
are captured in the spin network diagram, which is constructed by connecting the
vertices together on S3, and then projecting S3 → R2 to give a generalised knot
diagram. The amplitude can then be evaluated from the diagram using standard
techniques developed from knot theory.

More recently, the Dijkgraaf-Witten model has been generalised to include non-
trivial states on the 1-simplexes[M], and has a much more intricate structure. As
yet, it is only known how to do this for finite groups. It will be interesting to see if
this theory can be developed for Lie groups.

These models are closely related to some quantum field theories determined
by a Lagrangian. The BF Lagrangian is determined from a connection A on a
principal G-bundle over a 4-manifold M , and a 2-form B of the same type as the
curvature F (A). It is

S =

∫

M

B ∧ F

in which the Lie algebra ‘indices’ on B and F are contracted with an invariant
metric on the Lie algebra.

The BF functional integral ZBF is an average over the fields A and B of the
phase factor eiS , and the quantum field theory problem is to make sense of this
average[CCFM].

There is an intuitive picture of a correspondence of BF theory with the state
sum model based on the Lie group G. By geometric quantization, the irreducible
representations of G correspond to fluctuating vectors in the integral coadjoint
orbits of the (dual) Lie algebra. In the state sum models, the irreducible repre-
sentations are states for the triangles. In the BF theory, one can integrate the B
field over a triangle to give precisely the same picture, namely a fluctuating ele-
ment of the Lie algebra. With some more work, one can also see that both theories
contain a connection[O]. The BF functional integral with a cosmological term is
expected to be related to the Crane-Yetter state sum[BZBF, FK], however this
correspondence is not understood yet in full.
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2. Quantum gravity

2.1. Constrained state sum models. A tetrahedron embedded in R4 gives
rise to edge vectors X,Y, Z, . . . as in the figure, and hence to bivectors

p1 = ∗(X ∧ Y ), p2 = ∗(Y ∧ Z), . . . ∈ Λ2(R4).

Bivectors are the same as anti-symmetric 4× 4 matrices, which can be thought of

2
p

p

X

Z

Y

1

as elements of the Lie algebra of SO(4).
In quantum gravity, the geometry of a tetrahedon fluctuates, giving fluctuating

bivectors, or fluctuating elements of the SO(4) Lie algebra, just as in the topological
models. The difference is that here there are some constraints, such as p1 ∧ p1 = 0
and p2 ∧ p1 = 0. These constraints can be implemented on the set of states for
the tetrahedron in the topological model[BC, BZSF], giving rise to the quantum
tetrahedron[BAR]. The state sum that results from applying the constraints to
the topological model is the model for quantum gravity, defined both for SO(4)
(‘Euclidean gravity’) and SO(3, 1) (‘Lorentzian gravity’)[BC2], using unitary irre-
ducible representations. The SO(4) model also has a quantum group version, which
one might expect to correspond to gravity with a cosmological term.

The Einstein-Hilbert Lagrangian can be written as a modification of the BF
Lagrangian with the group SO(4) or SO(3, 1). Writing the elements of the Lie
algebra as bivectors, the action has the local formula∫

M

ea ∧ eb ∧ F cd εabcd

where e is a frame field (vector-valued 1-form) on M . Thus if the B field in the
BF theory is constrained by

Bab = (ec ∧ ed)εabcd = ∗(e ∧ e)ab

the BF Lagrangian turns into the Einstein-Hilbert Lagrangian. These constraints
are analogous to the constraints in the state sum model [RE2, DPF].

The constraints are that the representations ai are simple representations, those
given by the vanishing of a certain Casimir operator, and h = hC is a certain
canonical element, which is unique[RE]. The area of a triangle, given by |pi|, is
constant for an irreducible representation, and so corresponds to a second Casimir
operator in the quantization. This means that the classical geometries in the
state sum models are determined by the areas of triangles, not by the lengths
of edges, (as in three dimensions[PR]). The implications of this are deep; while
the semiclassical limit for the 4-simplex weight gives exactly the expected Einstein
action[CYA, B, BWA, FK0], the limit for a configuration on a triangulated
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4-manifold gives a version of Regge calculus based on areas, whose geometric in-
terpretation is not yet clear[BRW]. Moreover, the quantum tetrahedron in four
dimensions has just the four degrees of freedom, not the six one would expect from
Euclidean geometry. The explanation of this fact is related to the uncertainty
principle for four-dimensional geometries, and goes to the heart of the difficulty in
providing a conventional geometrical explanation for the semiclassical limit[BB].
A corollary of this is the non-existence of the Wheeler 3-geometry representation
for the wave-function, a phenomenon first noticed in chiral quantum gravity[ACZ].

The constraints can also be applied to spin networks in general: the relativistic
spin network evaluation is the invariant of graphs embedded in S3 when each edge
is labelled with a simple representation, and each vertex is the canonical hc[Y]. In
the case of the quantum group, the evaluation depends on the embedding, and is
sufficiently powerful to distinguish pairs of embeddings of the same graph such as

and , which do not contain any non-trivial knots or links[BGR].

2.2. Matrix models and spin foams. The matrix model action

1

2

∫
dg1 dg2 dg3 dg4 φ

2(g1, g2, g3, g4)

+
λ

5!

∫
dg1 . . .dg10 φ(g1, g2, g3, g4)φ(g4, g5, g6, g7)φ(g7, g3, g8, g9)

φ(g9, g6, g2, g10)φ(g10, g8, g5, g1)

has the structure of a tetrahedron in its first ‘kinetic’ term, and the structure of a
4-simplex in the second ‘potential’ term. This gives Feynman diagrams with topo-
logical structure a set of 4-simplexes which are glued together by identifying pairs
of tetrahedral faces. These topological spaces are 4-manifolds with singularities on
the lower-dimensional simplexes.

The momentum representation for Feynman diagrams amounts to a Fourier
decomposition of the field φ into matrix elements for irreducible representations.
With suitable symmetries for the field φ, the Fourier modes for individual Feynmann
diagrams are exactly the configurations of Ooguri’s topological state sum model
with group G[O]. The appearance of singular 4-manifolds is a natural generalisation
for these models because there are no non-trivial states on the 0- and 1-simplexes,
and so the manifold structure around these simplexes is not necessary. State sum
configurations on these singular 4-manifolds can be described in an equivalent way
as state sum configurations on the dual 2-complex[DP], which are examples of spin
foams[BZSF]. It is possible to modify the matrix model to impose the quantum
gravity constraints, both for G = SO(4)[DFKR, PRO] and for SO(3, 1)[PRO2].
In fact, the matrix model formulation is sufficiently flexible to allow a large class of
simplex weights[RR2]. Physical questions can be addressed by considering sums
with fixed boundary data, which can be reformulated in terms of connections[RR3].

2.3. Triangulation independence. A central question for non-topological
state sum models or spin foam models is how to regain independence from the
triangulation, as this is surely not physical. This problem does not yet have a
convincing solution but there are several avenues open.

The matrix models are a presciption for summing over triangulations, including
different topologies, and defining precise weighting factors for each configuration.
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This eliminates the dependence on one specific triangulation, but leaves the question
of whether the partition function is convergent.

There is a striking convergence with the ideas developed from the canonical
quantization programme in the framework of chiral gravity, in which spin networks
and spin foams play a role[RR, RE0, D]. This leaves the possibility of a continuum
reformulation of these ideas, perhaps by taking a ‘continuum limit’.

The remaining possibilty is that the constrained state sum model is actually
just part of a topological state sum model, in which the remaining states describe
the matter[C]. Such an idea would bring us back to the topological and categorical
roots of the subject.
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