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Abstract

We derive and solve models for coagulation with mass loss arising, for example, from

industrial processes in which growing inclusions are lost from the melt by colliding with the

wall of the vessel. We consider a variety of loss laws and a variety of coagulation kernels,

deriving exact results where possible, and more generally reducing the equations to similarity

solutions valid in the large-time limit. One notable result is the effect that mass removal has

on gelation: for small loss rates, gelation is delayed, whilst above a critical threshold, gelation

is completely prevented. Finally, by forming an exact explicit solution for a more general

initial cluster size distribution function, we illustrate how numerical results from earlier work

can be interpreted in the light of the theory presented herein.

Keywords: Smoluchowski coagulation, aggregation, cluster size distribution.

1 Introduction

Aluminium and its alloys are of increasing importance in many industrial sectors for packaging,
transport and construction uses. In recent years, there has been a growing recognition that in
many applications material performance is limited by the presence of micrometre-sized, insoluble
inclusions that are introduced into the molten metal by melting and refining processes which are
conducted prior to the casting of ingots or components, for examples see Engh [1] and Simensen
[2]. Critical properties of, for example, ultra thin foil and thin strip for the packaging industry can
be adversely affected by the presence of such non-metallic inclusions.

In the production of aluminium alloys, molten metal is held in a furnace for periods of up to
several hours before it is cast. At this stage, sub-micrometre sized particles of the insoluble, high
melting point chemical compound titanium diboride (TiB2) are added for the purpose of efficiently
nucleating solid aluminium during subsequent solidification and casting (McCartney [3]). However,
whilst holding the melt in the furnace these TiB2 particles can both agglomerate and also be lost
from the melt by attachment to the furnace walls. Both processes are extremely undesirable, and
practical steps taken to minimise agglomeration and loss, or to remove coarse agglomerates, lead
to significantly increased manufacturing costs. Although there have been considerable advances in
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the capability to measure inclusion content and size distribution in molten aluminium, for example
see Martin [4], there is still a lack of understanding of the kinetics of coagulation in this system. It
is in this context that the present study was undertaken.

Over recent years, generalised forms of Smoluchowski’s coagulation equations have been devel-
oped to model the size-evolution of clusters of particles in such systems. Leyvraz & Tschudi [5] have
noted that the coagulation equations without mass loss could be solved exactly if the coagulation
rates were given by one of two special kernels, that is a function which specifies how the rate of
coagulation depends on the size of the aggregating clusters. The solvable cases which they describe
are the size-independent kernel ai,j = a and the size-dependent kernel ai,j = a(i+ j). Our approach
originally outlined in Davies et al. [6] uses generating functions, and delivers explicit solutions more
simply. This method has been extended to model situations with mass addition (Davies et al. [7])
and mass loss through direct interaction between clusters and the gel (Wattis et al. [8]).

Singh & Rodgers [9] considered aggregation processes which occur simultaneously with mass
loss in the framework of a continuous model. They consider the scenario where oxidation, melting
or evaporation occur on the exposed surface of clusters, and hence take the mass loss term to have
the form − ∂

∂j
(m(j)c(j, t)), where c(j, t) or cj(t) denotes the concentration of clusters of size j at

time t. Hendriks [10] also considers aggregation with mass loss, but only when the aggregation
kernel has the form ai,j = aij, this is the classic kernel which allows gelation and an exact explicit
solution in the case of pure coagulation. The mass loss term used by Hendricks has a similar form
to that used by us, namely, Lj = Acj + Bjcj in the notation introduced later on. Finally we
should note the work of Rotstein et al. [11] in which a mass loss term is introduced in the monomer
equation. In a similar way to the more general loss term we consider, their term can delay or totally
prevent gelation in the case of the coagulation kernel which permits gelation to occur, and they
analyse how the amount of gel formed depends on the strength of the rate of mass removal.

1.1 Model

We use Ck to denote a cluster composed of k monomers. The kinetics of the standard Smoluchowski
agglomeration process

Ci + Cj → Ci+j, rate = ai,j (1.1)

with aggregation rate ai,j can be modelled by defining the concentration of Cj to be cj(t). Using
the law of mass action we then obtain

dcj(t)

dt
= 1

2

j−1∑

i=1

ai,j−ici(t)cj−i(t) −
∞∑

i=1

ai,jci(t)cj(t). (1.2)

Deriving the second sum is more straightforward than the first, it comes from the fact that a cluster
Cj can combine with a cluster Ci of any size 1 ≤ i < ∞ as described by (1.1). Thus we sum over
all i to obtain the rate at which Cj clusters are lost due to aggregation. The first sum in (1.2)
comes from the rate at which Cj clusters are created by the coalescence of smaller clusters through
Ci + Cj−i → Cj. The factor of one half is present to prevent double counting of this process.
Since matter is neither created or destroyed in the coagulation process we expect the total number
of monomers in the system M1 =

∑
∞

j=1 jcj to be time-independent. As a check of (1.2), M1 can
be shown formally to be a constant. More details about this calculation are given at the start of
Section 2.3. To the standard Smoluchowski coagulation equations (1.2) we add a mass loss term of
the form Cj → φ with rate Lj(cj), hence we obtain the system of equations

dcj(t)

dt
= 1

2

j−1∑

i=1

ai,j−ici(t)cj−i(t) −
∞∑

i=1

ai,jci(t)cj(t) − Lj(cj(t)), (1.3)
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In the model of interest to Gudmundsson [12] the clusters are micrometre-sized nonmetallic
inclusions (TiB2) in molten aluminium and the aggregation rates are determined by ai,j = (Ri +
Rj)(Di + Dj). Here Ri is the radius of a sphere with volume iV0 for some element of volume V0,
thus Ri ∝ i1/3; and Di is the corresponding diffusion constant, with Di ∝ 1/Ri. This corresponds
to the continuum regime of Brownian coagulation. Many other kernels have been used to model
aggregation processes, see da Costa [13] for examples. In the process analysed by Gudmundsson,
mass is lost by removal of particles from the melt by transfer to the walls of the holding furnace
for the molten metal. This occurs at a rate Lj(cj(t)) = Ljλcj(t) for some L and λ = 2/3.

We shall consider a more general problem, in which λ is not constrained to 2/3, but could take
any value, and in which the coagulation kernel has the form ai,j = aiαjα(iβ + jβ). This covers the
integrable cases ai,j = a (α = β = 0), as well as ai,j = a(i+j) (α = 0, β = 1), and ai,j = aij (α = 1,
β = 0). The Brownian kernel of Gudmundsson corresponds to a combination of the constant kernel
ai,j = a and the case α = −1/3, β = 2/3.

We thus have the system of equations

dcj(t)

dt
= 1

2

j−1∑

i=1

ai,j−ici(t)cj−i(t) −
∞∑

i=1

ai,jci(t)cj(t) − Ljλcj(t), (1.4)

which models the simultaneous aggregation and mass loss processes. It is the presence of a mass
loss term which is novel in the current study of the coagulation equations. We describe cases in
which information about the solution can be derived exactly and explicitly; this corresponds to
the case λ = 0, where the generating function approach yields a complete solution. The existence
of a closed form exact solution to such a complicated system of equations is remarkable, and the
solution for λ > 0 will share many properties of the solution for λ = 0. We then examine the case of
general λ in more detail, by use of large-time asymptotic methods, and by assuming the existence
of a self-similar solution, which enables various scaling behaviours of the solution to be elucidated.
In the analysis of gelation in a truncated version of Smoluchowski’s coagulation equations, da Costa
derived an equation of the form (1.4), namely equation (10) of da Costa [13]; however, there L < 0
corresponding to a mass gain term, and the second sum has an upper limit of i = N in place
of i = ∞. Similarity solutions of the form derived below should still be applicable in this case;
however, the derivations of exact explicit solutions for the three integrable coagulation kernels will
be complicated by the finite sum.

The paper is split into five sections, in the next section we derive exact explicit solutions for
models where these are available. Section 3 describes the similarity solutions to which the system
may approach in the large-time limit. A more general approach to the fitting of exact solutions to
experimental data and numerical simulations is described in Section 4. The paper concludes with
a summary and discussion of the results.
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2 Explicitly solvable models

2.1 Size-independent aggregation rates

The special case of the parameters being given by ai,j = a, λ = 0 is exactly solvable, this corresponds
to the system

dcj

dt
= 1

2

j−1∑

i=1

acicj−i −
∞∑

i=1

acicj − Lcj. (2.1)

We introduce the generating function C(z, t) =
∑

∞

j=1 cj(t)e
−jz, which transforms the system of

ordinary differential equations (2.1) to

∂C

∂t
= 1

2
aC2 − C(L + aM0(t)), (2.2)

where M0(t) = C(0, t) is the total number of clusters in the system. This quantity satisfies

dM0

dt
= −1

2
M0(aM0 + 2L), (2.3)

and so is given by

M0(t) =
2L%e−Lt

2L + a%(1 − e−Lt)
, (2.4)

where we have assumed monodisperse initial conditions

cj(0) = 0, for j > 1 c1(0) = %. (2.5)

These conditions imply C(z, 0) = %e−z, hence we solve (2.2) to find

C(z, t) =
4%L2e−Lt

(2L + a%(1 − e−Lt))2

(
2L + a%(1 − e−Lt)

2Lez + a%(1 − e−Lt)(ez − 1)

)
, (2.6)

for the generating function C(z, t) and the concentrations cj(t) are then given by

cj(t) =
4%L2e−Lt

(2L + a%(1 − e−Lt))2

(
a%(1 − e−Lt)

2L + a%(1 − e−Lt)

)j−1

. (2.7)

This solution is illustrated in Figure 1. We see that at small times, aggregation is dominant, which
rapidly creates an appreciable number of clusters of larger size. At larger times, there is a slower
decrease in the concentration of clusters of all sizes. For large cluster sizes (j � 1), the maximum
concentration occurs at

tc(j) ∼
1

L
log

(
(2L + a%)j

2L

)
. (2.8)

For larger times the solution (2.7), can be approximated by

cj(t) ∼
4L2e−Lt

a(2L + a%)

(
a%

2L + a%

)j

, (2.9)

which corresponds to the late time depletion of all clusters by loss predominantly due to the explicit
mass removal term, that is loss to the walls of the container.
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Figure 1: Figure of the exact solution (2.7), log cj(t) is plotted against size j and time t, for
1 ≤ j ≤ 10 and 0 < t < 4 for the case % = 1, L = 1, a = 1.

From such a solution other quantities of interest may be found, for example the first few moments
are given by equation (2.4) and

M1(t) = % e−Lt, M2(t) = %e−Lt
(
1 +

a%

L
(1 − e−Lt)

)
, (2.10)

since

M1(t) = −∂C

∂z
(0, t), M2(t) =

∂2C

∂z2
(0, t). (2.11)

This agrees with the experimental results of Gudmundsson [12] where he observes a decay in the
total volume of the material which is exponential. The average cluster size is given by either
M1/M0, or M2/M1, these give similar expressions

M1

M0
= 1 +

a%

2L
(1 − e−Lt),

M2

M1
= 1 +

a%

L
(1 − e−Lt). (2.12)

Initially, both give unity, since all material starts in clusters of unit size; as time progresses the
former rises steadily to 1 + a%/2L, while the latter approaches 1 + a%/L. A measure of the spread
of the distribution can be gained from the polydispersity

M2M0

M2
1

= 1 +
a%(1 − e−Lt)

2L + a%(1 − e−Lt)
. (2.13)

This quantity is initially equal to one, indicating a monodisperse system and rises to 1+a%/(a%+2L)
in the large time limit.

2.2 Size-dependent aggregation rates

In the case ai,j = a(i + j) the coagulation equations have the form

dcj

dt
= 1

2
a

j−1∑

i=1

jcicj−i − acj

∞∑

i=1

(i + j)ci − Lcj. (2.14)

We use the same generating function as earlier (C(z, t) =
∞∑

j=1
cj(t)e

−jz), to rewrite the above as

∂C

∂t
= a

∂C

∂z
(M0 − C) − aM1C − LC, (2.15)
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Figure 2: Figure of the exact solution (2.19), log cj(t) is plotted against size j and time t, for
1 ≤ j ≤ 10 and 0 < t < 4 for the case % = 1, L = 1, a = 1.

subject to the initial data (2.5), which imply C(z, 0) = %e−z. The mass and number in the system
are then governed by

dM1

dt
= −LM1,

dM0

dt
= −M0(aM1 + L), (2.16)

which are solved by

M1(t) = %e−Lt, M0(t) = % exp
(
−Lt − a%

L
(1 − e−Lt)

)
. (2.17)

As with the size-independent kernel, this confirms the exponential decay of the total mass in the
system, however this solution is based on λ = 0 and not λ = 2/3, as was assumed by Gudmundsson.
The above solutions for M0 and M1 allow solving (2.15) by the method of characteristics, which
gives the implicit solution

−z = log
C

%
+ Lt +

a%

L
(1 − e−Lt) + (2.18)

[
1 − exp

(
−a%

L
(1 − e−Lt)

)] [
1 − CeLt

%
exp

(
a%

L
(1 − e−Lt)

)]
.

This is inverted by use of Lagrange’s expansion (see Abramowitz & Stegun [14], eq 3.6.6), which
yields

cj(t) =
%jj−1

j!
e−Lt−T (1 − e−T )j−1e−j(1−e−T ) (2.19)

=
%e−Ltjj−1

j!
T̂ j−1e−jT̂ (1 − T̂ ),

where T = (%a/L)(1 − e−Lt) and T̂ = 1 − e−T . This solution is illustrated in Figure 2.
The second moment can also be determined, from dM2/dt = 2aM1M2 − LM2, we find

M2(t) = %e−Lt exp
(

2a%

L
(1 − e−Lt)

)
. (2.20)

There are then two ways of defining the typical size of a cluster in the system, which give very
similar expressions

M2

M1

= exp
(

2a%

L
(1 − e−Lt)

)
,

M1

M0

= exp
(

a%

L
(1 − e−Lt)

)
, (2.21)

6



and the polydispersity of the system (which is related to the variance of the cluster size distribution)
is given by

M2M0

M2
1

= exp
(

a%

L
(1 − e−Lt)

)
. (2.22)

All these formulae assume that the initial conditions are monodisperse, that is, given by (2.5).

2.3 The gelling kernel

A natural question to ask is whether the presence of the explicit mass loss term alters gelation. In
the absence of a mass loss term (that is if L = 0), the system (1.2) satisfies

djcj

dt
= Jj−1 − Jj, where Jj =

j∑

k=1

∞∑

n=j+1−k

kan,kcnck. (2.23)

Formally, we have dM1/dt = − limN→∞ JN . If this limit is zero then mass is conserved, and if it is
non-zero the system loses mass to a cluster of infinite size, known as the ‘superparticle’ or the ‘gel’.
Intuitively we expect that for large enough λ (or L), the shape of the cluster size distribution will
be altered at large sizes, and so gelation could be prevented; however for small (possibly negative)
λ or small L, the mass loss term may have no effect on gelation. In the case λ = 0 the system is
once again exactly explicitly solvable as we now show. The generating function in this case reduces
the differential-difference equation

dcj

dt
= 1

2

j−1∑

i=1

ai(j − i)cicj−i − ajcj

∞∑

i=1

ici − Lcj. (2.24)

to
∂C

∂t
= 1

2
a

(
∂C

∂z

)2

+ aM1
∂C

∂z
− LC, (2.25)

with initial data C(z, 0) = %e−z. Defining u = −∂C
∂z

we find the partial differential equation

∂u

∂t
+ a(u − M1(t))

∂u

∂z
= −Lu. (2.26)

2.3.1 Pre-gel behaviour

Equations governing the number and mass of clusters can be found by putting z = 0 into (2.25)
and (2.26). This leads to

dM1

dt
= −LM1,

dM0

dt
= −1

2
M2

1 − LM0, (2.27)

which have the solutions

M1(t) = %e−Lt, M0(t) = %e−Lt
(
1 − a%

2L
(1 − e−Lt)

)
. (2.28)

These formulae are only valid in the pre-gelation stage of the process. The partial differential
equation (2.26) is solved by the method of characteristics, leading to

z = log % − log u − Lt +
au

L
(eLt − 1) − a

∫ t

0
M1(s) ds. (2.29)
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In the pregel phase, M1 is given by (2.28) and so we find

e−z =
ueLt

%
exp

(
−aeLt

L
(1 − e−Lt)(u − %e−Lt)

)
. (2.30)

which can be inverted using Lagrange’s expansion, yielding

cj(t) =
%jj−2e−Lt

j!

(
%a(1 − e−Lt)

L

)j−1

exp

(
−%aj(1 − e−Lt)

L

)
, (2.31)

or cj(t) = %e−Ltjj−2T j−1e−jT/j! where T = %a(1 − e−Lt)/L. Note that this new time variable
satisfies T → a%/L as t → ∞. In the limit L → 0 with % = a = 1, this reduces to the classical
solution pre-gelation solution, cj(t) = jj−2tj−1e−jt/j!, where gelation occurs at t = tg = 1. Thus in
the general solution for L 6= 0, gelation occurs at Tg = 1. So if L > %a then gelation is prevented
by the mass loss term since T = 1 is never reached even in the limit t → ∞, whereas for L < %a
gelation is merely delayed from tg = 1/%a to

tg = − 1

L
log

(
1 − L

a%

)
. (2.32)

For small L this asymptotes to tg ∼ (1/%a)(1 + L/2%a); and tg → ∞ as L → %a.
In the pre-gel regime the typical cluster size is given by

M1

M0
=

2L

2L − a%(1 − e−Lt)
,

M2

M1
=

Lµ

L% − a%µ(1 − e−Lt)
, (2.33)

and the polydispersity by
M2M0

M2
1

=
2Lµ − a%µ(1 − e−Lt)

2L% − 2a%µ(1 − e−Lt)
. (2.34)

For general initial data, information on the gelation behaviour of the system can be gained
from the second moment. Here we shall not assume that the initial conditions are monodisperse,
rather we assume that M1(0) = % and M2(0) = µ. The second moment is determined by dM2/dt =
aM2

2 − LM2, which shows that for sufficiently large L, the possibility of gelation may be removed.
The solution for M2(t) is

M2(t) =
µL

aµ + [L − aµ]eLt
. (2.35)

The gel-point occurs at the time at which the second moment diverges (that is M2 → ∞ as t → tg),
which implies

tg = − 1

L
log

(
1 − L

aµ

)
. (2.36)

Thus gelation only occurs if µ > L/a. There is an interesting issue about the sensitive dependence
of gelation to initial data: for example, one can perturb the monodisperse initial data (2.5) by
adding in a small concentration (of order ε � 1) of one particular very large cluster size (size
j ∼ 1/

√
ε). This makes an O(ε) difference to the total number of clusters at time t = 0, an O(

√
ε)

difference to the mass of the system at t = 0, but at O(1) difference to the second moment of the
system. Thus this perturbation can make the difference between a solution undergoing gelation
and not. Thus when analysing cluster size-distributions it is important to use a measure or norm
which takes account of the second moment.

8



2.3.2 Post-gel behaviour

As the gel-point is approached (t → tg), a singularity develops, namely uz → −∞ at z = 0; this
corresponds to the divergence in the second moment, M2(t). The post-gel solution is characterised
by persistence of the singularity in uz at z = 0. By differentiating (2.29) with respect to z we find

∂u

∂z
=

Lu

au(eLt − 1) − L
, (2.37)

and so substituting z = 0 into this, we find

M1(t) = u(0, t) =
L

a(eLt − 1)
for t > tg. (2.38)

It can be checked that at t = tg the formula (2.38) gives M1 = % − L/a as does (2.28), thus M1 is
continuous across the gel-point t = tg.

We now return to (2.29) with M1(t) given by (2.28) for t < tg and by (2.38) for t > tg. In this
latter region we then find

e−z =
eau

L
(eLt − 1)e−au(eLt

−1)/L, (2.39)

and applying Lagrange’s expansion once again, we obtain

cj(t) =
Ljj−2e−j

aj!(eLt − 1)
. (2.40)

Thus as j → ∞ we have the usual post-gel algebraic decay in cluster size with cj ∼ L/
√

2πaj5/2(eLt−
1). Note that: (i) this formula and (2.40) are independent of the initial mass in the system,
%; (ii) (2.40) is a similarity solution of separable form, cj(t) = fj/τ(t); and, (iii) from (2.40)
we determine the number of clusters in the post-gel regime. At t = tg equation (2.28) implies
M0(tg) = %(1 − L/a%)/2, which can then be used as initial data for the ordinary differential equa-
tion for M0(t) in (2.27) to yield the post-gel solution

M0(t) =
L

2a(eLt − 1)
, t ≥ tg. (2.41)

A gelling solution is illustrated in Figure 3, where the gel-time is log 2.
A natural question to consider in this scenario is how much of the initial mass ends up in the

gelled form and how much is removed by the explicit mass loss term, and so ends up adhered to
the wall. To analyse this, we introduce two new quantities: W (t) is the mass adhered to the wall,
and G(t) the mass in the gel. Thus we have M1(t) + G(t) + W (t) = % independent of time. In
the pre-gel phase, G = 0, W = % − M1; and, as t → ∞, M1 → 0, so in the large time limit, we
have G + W = %. We also have dW/dt =

∑
∞

j=1 Ljλ+1cj, which, in the case of λ = 0, simplifies to
dW/dt = LM1. In the pre-gel phase of the reaction, integrating dW/dt = LM1 yields

W (t) = (%/L)(1 − e−Lt), (t ≤ tg), (2.42)

thus at the gel-point we have W (tg) = L/a (assuming monodisperse initial data (2.5)). Integrating
dW/dt = LM1 in the post-gel phase, where M1(t) is given by (2.38), yields

W (t) =
L

a

(
1 + log(1 − e−Lt) − log

(
L

a%

))
, (t ≥ tg). (2.43)
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Figure 3: The exact solution (2.31) for t < tg and (2.40) for t > tg; log cj(t) is plotted against size
j and time t for 1 ≤ j ≤ 10 and 0 < t < 4; on the left for % = 2, L = 1, a = 1, so that the gel-time
tg = log 2; on the right for % = 1, L = 1, a = 1, so that there is no gelation (tg = ∞).
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Figure 4: Graph of proportion of mass ultimately adhered to the wall against the dimensionless
parameter L/a% which indicates the rate of loss of matter from the system.

Thus, ultimately the mass deposited on the wall and in the gelled form is given by

W∞ =
L

a

(
1 − log

(
L

a%

))
, G∞ = % − W∞, (2.44)

provided L < a%. If L ≥ a% then the mass loss term prevents gelation, and so all mass eventually
ends up on the wall. Thus if we look at the proportion of mass adhering to the wall (Φ = W∞/%)
as a function of the nondimensional parameter group L/a% we have the function

Φ(L/a%) =

{
(1 − log(L/a%))L/a%, L/a% < 1,
1, L/a% ≥ 1,

(2.45)

which is continuous and has a continuous first derivative, but has a discontinuous second derivative.
To illustrate this, we consider values of L/a% close to unity, we put L/a% = 1 − ε with 0 < ε � 1
and then find that Φ ∼ 1 − 1

2
ε2. Thus Φ rises from zero at L = 0 to its upper limit at L/a% = 1

where we obtain Φ = 1 as shown in Figure 4.
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3 Similarity solutions

The existence of similarity solutions to the Smoluchowski coagulation equations has been the subject
of much study, analytically, by Kreer & Penrose [15] and da Costa [16] and by asymptotic methods,
for example, by Hendriks et al. [17], and more recently by Davies et al. [6]. Gudmundsson [12]
speculated on the existence of similarity solutions to the mass-losing coagulation equations. Here
we show that such solutions may exist in the case λ < 0.

3.1 Size-independent aggregation rates

For ai,j = a, we seek a solution of the form cj(t) = tγf(η) where η = jtβ is the similarity variable.
We substitute the ansatz into equation (1.4), and find that all terms balance, provided β = 1/λ,
γ = 1/λ − 1. Since β should be negative, we require λ also to be negative for a similarity solution
of this form to exist. Such a scaling satisfies the density conservation equation dM1/dt = −LMλ+1

since M1 ∼ O(tγ−2β), and Mλ+1 ∼ O(tγ−(λ+2)β). From such calculations we find

M0(t) = Φ0t
−1, M1(t) = Φ1t

−1−1/λ, M2(t) = Φ2t
−1−2/λ, (3.1)

where Φk =
∫
∞

η=0 ηkf(η) dη, and so if M2 is to be well-defined we require λ < −2. The average

cluster size, which is given by M1/M0 or M2/M1, increases according to t−1/λ. The polydispersity
M2M0/M

2
1 is constant (independent of time) once the similarity solution has been approached.

With λ < 0, smaller clusters are removed at a faster rate than larger ones, thus the total number
of clusters decays faster than the mass in the system, and higher moments diverge more rapidly,
leading to a cluster size-distribution in which higher moments cease to exist.

The function f(η) satisfies

(1 − λ)

λ
f +

η

λ

df

dη
= 1

2
a
∫ η

0
f(ξ)f(η − ξ) dξ − aΦ0f − Lηλf. (3.2)

where Φ0 =
∫
∞

0 f(ξ) dξ. Unfortunately, in general, such equations are not solvable; however, for
large and small η, asymptotic approximations for f(η) are available.

For small η the leading order balance is between the rate of change term, ηf ′(η)/λ, and the mass
loss term, Lηλf(η). This gives the expression f(η) ∼ e−Lηλ

. A correction term can be calculated
by substituting f(η) = e−Lηλ

g(η) into (3.2). This leads to

(
1

λ
− 1

)
g +

η

λ

dg

dη
+ aΦ0g = 0, (3.3)

at the next order of accuracy, the convolution being much smaller than these terms. This expression
is solved by g(η) = Aηq for some amplitude A and exponent q given by q = λ − 1 − λaΦ0. Thus
we have the expression

f(η) ∼ Aηλ−1−λaΦ0e−Lηλ

, for η � 1, (3.4)

and
cj(t) ∼ Ajλ−1−λaΦ0t−aΦ0e−Ljλt, (3.5)

as t → ∞ and for j � t−1/λ.
For large η, the leading order balance is between the creation of new clusters as described by

the convolution term, the loss by coagulation and the rate of change terms, thus we have

η

λ

df

dη
+
(

1

λ
− 1 + aΦ0

)
f = a

∫ η/2

0
f(ξ)f(η − ξ) dξ. (3.6)
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If we assume f(ξ) is given by the small argument asymptotic expansion (3.4) and all the other
occurrences of f are given by the large asymptotic expansion f(η) ∼ Bηq for some B, q then we
find that all the terms on the left-hand side of (3.6) balance with the contribution to the integral
from the small ξ-range, and that this places no restrictions on the values of B or q. Considering
now the part of the integral where ξ ∼ η, we find that to balance all terms we require q = −1 and
then

aΦ0 = 1
2
aB

∫ 1

0

dx

x(1 − x)
, (3.7)

where the divergences at the end-points of the integral can be ignored since an alternative expression
for f should be used there (3.4). Thus, for large η we have

f(η) ∼ B/η, as η → +∞, (3.8)

and thus cj ∼ B/jt as t → ∞ with j � t−1/λ.
For the coagulation kernel suggested by Gudmundsson, namely ai,j = 2 + (i/j)ω + (j/i)ω with

ω = 1/3, the scalings for a similarity solution are exactly the same as for the constant kernel
ai,j = a. the equation for the self-similar function f(η) is, however, different, and so has different
large and small η asymptotics.

η

λ

df

dη
+
(

1

λ
− 1

)
f + Lηλf + a

(
2Φ0 + ηωΦ−ω + η−ωΦω

)
f

= 1
2
a
∫ η

0
f(ξ)f(η − ξ)

[
2 +

(
η − ξ

ξ

)ω

+

(
ξ

η − ξ

)ω]
dξ. (3.9)

Hence

f(η) ∼ Aηq exp

(
−Lηλ +

λaΦω

ωηω

)
as η → 0+, (3.10)

for some exponent q and some amplitude A; whilst

f(η) ∼ Bηω−1 for η � 1, (3.11)

for some constant B.

3.2 Size-dependent aggregation rates

For ai,j = a(i + j) the coagulation equations have the form

dcj

dt
= 1

2
a

j−1∑

i=1

jcicj−i − acj

∞∑

i=1

(i + j)ci − Ljλcj. (3.12)

Assuming cj(t) = tγf(j/tβ) we find γ = 2/λ − 1, β = −1/λ, and f(η) is determined by

(
2

λ
− 1

)
f +

η

λ

df

dη
+ Lηλf(η) + aΦ1f(η) + aΦ0ηf(η)

= 1
2
aη
∫ η

0
f(ξ)f(η − ξ)dξ. (3.13)

The regime η = O(1) corresponds to j = O(t−1/λ), and in general cannot be solved.
In the large time limit, for λ > 0, it is the small η limit which is of interest, since this corresponds

to aggregation sizes j � t−1/λ. As only a little mass gets into the large cluster sizes before being
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removed from the system, knowledge of the behaviour of such smaller cluster sizes is more important
in physical applications. Thus we consider in more detail the small η asymptotics solution of (3.13).
At leading order the balance is between ηf ′/λ and Lηλf which produces the solution f = e−Lηλ

as
in the case of the size-independent coagulation kernel. The first correction term, however differs;
we substitute f = e−Lηλ

g(η) to determine the prefactor of the exponent, and obtain the equation

(
2

λ
− 1 + aΦ1

)
g +

η

λ

dg

dη
= 0, (3.14)

This implies g(η) ∼ ηλ−2−λaΦ1 , and we thus have

f(η) ∼ Aηλ−2−λaΦ1e−Lηλ

for η � 1. (3.15)

The asymptotic solution for cj(t) is then

cj(t) = Ajλ−2−aλΦ1t−aΦ1e−Ljλt as t → ∞ with j � t−1/λ. (3.16)

For completeness, we quote the large η asymptotics; due to the nonlocal nature of (3.13) isolating
the large η asymptotics is not straightforward. At large η, the dominant terms are the formation
of clusters by the integral term, and the loss by collision with other clusters, thus from (3.13) we
aim to solve

aΦ0ηf = 1
2
aη
∫ η

0
f(ξ)f(η − ξ) dξ, (3.17)

for which f(η) = Bηq appears to be a solution for q = −1 and B = 2Φ0/
∫ 1
0 (x(1−x))−1 dx. However,

this integral is divergent. The solution f(η) = Bη−1 remains, since the divergence is caused by
integrating the function f(ξ) near ξ = 0, where f is not given by Bξ−1 but by (3.15) instead. With
this modification, the solution f(η) = Bη−1 remains valid for large η, but the expression for B
cannot be evaluated without knowing f(η) across the whole range of values from η = 0 upto large
η. Large η corresponds to j � t−1/λ and so we have

cj(t) ∼
B

jt1−1/λ
as t → ∞ with j � t−1/λ. (3.18)

3.3 Gelling kernel

For ai,j = aij we have seen that there is a gelation point if L < aM2(0), and in this case, the post-
gel solution corresponds to a similarity solution; from (2.40) we see that the appropriate scalings
are cj(t) = fj/(eLt − 1). In the case λ < 0 the loss is predominantly taken from smaller cluster
sizes, with larger cluster sizes having smaller loss rates. Since gelation occurs due to the very slow
decay of concentrations with increasing cluster size, loss rates with negative λ will not prevent the
formation of a distribution function with a slowly decaying tail. Thus with small L, gelation should
still occur, and we expect the post-gel solution to have the form of a similarity solution.

Assuming cj(t) = tγf(jtβ), we find a similarity solution provided β = 1/λ and γ = 3/λ − 1.
The form of f(η) is then given by

η

λ

df

dη
+ Lηλf(η) + (3λ − 1)f(η) + aΦ1ηf(η)

= 1
2
a
∫ η

0
ξf(ξ)(η − ξ)f(η − ξ) dξ. (3.19)
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A solution of this equation is not available explicitly, however, some properties of the solution can
be deduced by considering the small and large η behaviour of a solution. Also the behaviour of
certain quantities can be derived, for example

M0(t) ∼ t2/λ−1
∫

∞

0
f(η) dη, M1(t) ∼ t1/λ−1

∫
∞

0
ηf(η) dη. (3.20)

For small η, the leading order balance is between the rate of change term ηf ′(η)/λ and the
loss term Lηλf(η) leading to f(η) = g(η)e−Lηλ

as in previous cases. The correction term is then
determined by solving (

3

λ
− 1

)
g +

η

λ

dg

dη
= 0, (3.21)

the convolution term being smaller than these retained terms. From the above equation we find
g(η) = Aηλ−3 thus we have

cj(t) ∼ Ajλ−3e−Ljλt as t → ∞ for j � t−1/λ, (3.22)

for some constant A.
For large η, the leading order balance is

aΦ1ηf = 1
2
a
∫ η

0
ξf(ξ)(η − ξ)f(η − ξ) dξ, (3.23)

that is, between for the formation of clusters of scaled size η by coagulation and the loss by
coagulation. This leads to the asymptotic expression f(η) ∼ B/η2 for some constant B. Thus, we
have

cj(t) ∼
B

j2t1−1/λ
as t → ∞ with j � t−1/λ. (3.24)

3.4 More general coagulation kernels

We consider some more general coagulation kernels, and show that the above analysis remains
applicable. For the general coagulation kernel ai,j = a(ij)α(iβ + jβ) we find the similarity variable
is η = jt1/λ again, with the concentrations cj(t) being given by t−1+(1+2α+β)/λf(η). The function
f(η) is then given by

η

λ

df

dη
−
(

1 − 1 + 2α + β

λ

)
f + Lηλf + a(Φα+β + ηβΦα)ηαf

= 1
2
a
∫ η

ξ=0
ξαf(ξ)(η − ξ)αf(η − ξ)(ξβ + (η − ξ)β) dξ (3.25)

Assuming α, β > 0 we find the following asymptotic results hold: for η � 1, f(η) ∼ ηλ−1−2α−βe−Lηλ

,
thus

cj(t) ∼ Ajλ−1−2α−βe−Ljλt, as t → ∞ with j � t−1/λ; (3.26)

and f(η) ∼ Bη−1−α when η � 1, thus

cj(t) ∼ Bj1/λt−1+(α+β)/λ as t → ∞ with j � t−1/λ. (3.27)

In the case of diffusion-controlled growth of supported metal crystallite, the aggregation kernel
is ai,j = i−β + j−β, with β = 2/3. In this case, following analysis similar to that presented above,

14



eta 1e-21e-31e-41e-5

1

0.8

0.6

0.4

0.2

0

Figure 5: Graph of the similarity function f(η)/f(ηc) against log η for small η; for the kernels
ai,j = 1 (on the right), ai,j = i + j (in the centre), ai,j = ij (on the left).

we obtain the similarity solution cj ∼ t(1−λ−β)/λf(η) with η = jt1/λ. For small η the asymptotic
solution is f(η) ∼ Aηq exp(−Lηλ + λaΦ0η

−β/β) with q = β + λ − 1 − λaΦ−β, implying

cj(t) ∼ Ajqt1/λ−aΦ
−β exp

(
−Ljλt +

λaΦ0

βjβtβ/λ

)
as t→∞ with j� t−1/λ.

(3.28)

However, in the application we are concerned with here, which is a stirred chamber, the case
of aggregation in a linear shear velocity profile is perhaps more relevant. This corresponds to
ai,j = (i1/3 + j1/3)3, and so following analysis similar to the above, we find the similarity solution

cj(t) = t−1+2/λf(jt1/λ), where the distribution f(η) is given by f(η) ∼ Aηpe−Lηλ

as t → ∞ for
j � t−1/λ; here the constants A, p must satisfy p = λ−2−λaΦ1 where λ < 0 and Φ1 =

∫
∞

0 ξf(ξ) dξ.

3.5 Small η results

For each of the kernels considered above, the small η asymptotics have the form f(η) = Aηqe−Lηλ

with q < 0. This has the form of a single-humped function, with maximum at ηc = (q/λL)1/λ.
Thus provided this occurs at ηc � 1, the form of the similarity solution will also be single-humped,
the maximum having amplitude f(ηc) = Aqe−q/λ/λL. The form of such functions is illustrated in
Figure 5, where results are shown for the case L = 1, a = 1, Φ0 = 1, Φ1 = 1.2, λ = −0.25.

4 Match to experimental results

The exact solutions given in Section 2 did not have the form observed in the numerical simulations
of Gudmundsson (see Gudmundsson [12] and Gudmundsson et al. [18]). One reason for this may
be the differences in the kernel used; in numerical work, Gudmundsson used the more accurate
kernel ai,j = 2 + (i/j)1/3 + (j/i)1/3 for Brownian coagulation, whereas the theory of Section 2
considered the simpler kernels ai,j = a, ai,j = a(i + j). Another reason is that in Section 2 we only
considered λ = 0, whereas Gudmundsson took λ = 2/3 in his numerical simulations. Finally, for
algebraic simplicity we used monodisperse initial data (2.5), whereas more complex initial data were
considered by Gudmundsson. We would have to resort to numerical techniques to solve most of
the more accurate cases; however, more complicated initial data can be handled by the generating
function method of Section 2 and a solution still obtained. In this section we specify a more general
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form of initial data, for example, a single-humped size distribution as given by

cj(0) = Aje−jξ, (4.1)

for some ξ. The maximum of this distribution occurs at j = 1/ξ. Using such initial data, with the
exact method of solution outlined in Section 2 can still be applied, although the algebra is more
complicated.

The initial data for the system are

C(z, 0) =
A ez+ξ

(ez+ξ − 1)2
, M0(0) =

Aeξ

(eξ − 1)2
, (4.2)

where M0 is the number of clusters, and the mass M1 is initially given by M1(0) = −Cz(0, 0) =
Aeξ(eξ + 1)/(eξ − 1)3. Solving (2.3) for the number of clusters we find

M0(t) =
2LM0(0)

(2L + aM0(0))eLt − aM0(0)
. (4.3)

The kinetic equation (2.2) can then be solved, by using the transformation w = 1/C which linearises
the problem and so can be solved by standard methods, which yield

C(z, t) =
α

β(ez+ξ − 2 + e−z−ξ) − γ
, (4.4)

where

α =
4AL2(aM0(0) + 2L)eLt

[aM0(0)(eLt − 1) + 2LeLt]
(4.5)

β = (aM0(0) + 2L)[aM0(0)(eLt − 1) + 2LeLt] (4.6)

γ = aA(eLt − 1)(aM0(0) + 2L). (4.7)

From this we obtain the explicit solution

ck(t) =





α

β

(k−1)/2∑

j=0

(
k−j−1

j

)
(−1)j

(
2 +

γ

β

)m−2j−1

e−kξ, k odd,

α

β

(k−2)/2∑

j=0

(
k−j−1

j

)
(−1)j

(
2 +

γ

β

)m−2j−1

e−kξ, k even.

(4.8)

To assess how the width of the distribution varies in time, we calculate the standard deviation of
the distribution σ =

√
((M2M0 − M2

1 )/M2
1 ). This is determined by

σ2 = 1
2
sech2(1

2
ξ)

[
1 +

aA(eLt − 1) cosh ξ

aA(eLt − 1) + 8LeLt sinh2 1
2
ξ

]
. (4.9)

This grows from its initial value of 1
2
sech2(1

2
ξ) and reaches a finite width in the large time limit.

The form of the resultant distribution and its evolution in time is illustrated in Figure 6. This
shows very similar to the results shown in Figures 4.42 and 4.43 of Gudmundsson [12], namely,
that the peak rapidly decreases in amplitude, and spreads to become a wide distribution, while its
maximum hardly moves at all.
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Figure 6: Plots of the distribution (4.8) in the case L = 1, a = 1, ξ = 0.15, A = 1. The
concentration ck(t) is plotted against aggregation size k for times from t = 0 to t = 0.1 in steps of
size t = 0.01.

5 Conclusions

We have considered a variety of aggregation kernels which permit exact explicit solutions to be
derived in the pure aggregation case. To these coagulation equations we have added a general mass
loss term. In the case of size-independent mass loss rates, explicit solutions are still available, and
we have derived these in Section 2. Due to the presence of stirring in the system under consideration
here, fractal clusters observed in Diffusion-Limitted Aggregation (DLA) do not play an important
role in the kinetics of growth analysed here, instead more compact aggregates are found [12].

The most interesting of these cases is the kernel ai,j = aij, for which gelation is known to exist
in the mass-conserving case. With a mass loss term present, we find that the existence of a gelation
transition depends on the strength of the mass loss term. For small mass loss terms, the gelation
phenomenon persists, albeit with the gelation time delayed due to the presence of the mass loss
term. For stronger mass loss terms, gelation is completely removed from the system. Our analysis
precisely determines how strong the mass loss term should be to prevent gelation.

When the mass loss term is allowed to be size-dependent, explicit solutions are no longer avail-
able, and instead, we have sought similarity solutions. These have been found in the cases where
mass loss decreases with increasing size, in particular, in Section 3.4 we examined the case of a
loss term of the form L(cj) = Ljλcj with λ < 0, for which similarity solutions have the form
cj(t) = t−1+(1+2α+β)/λf(jt1/λ), where the aggregation kernel is ai,j = a(ij)α(iβ + jβ).

The explicitly solvable case, λ = 0, shows no self-similar behaviour and so we postulate that
in the case λ > 0, similarity solutions also fail to exist. However, in the case λ = 0, and ai,j = a
a solution for the cluster distribution function has been found and fitted to an initial cluster size
distribution function containing a single-hump. An explicit solution for t > 0 was then derived.
The single-humped form of solution is seen to persist for small times, with the position of the hump
staying almost static, the distribution becoming smaller in amplitude as mass is lost from the
system, and much broader as aggregation creates clusters of larger sizes. This is in agreement with
the numerical results of Gudmundsson for a system modelling the evolution under agglomeration
of an initially single-humped distribution of TiB2 particles in molten aluminium [12, 18].
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