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Abstract 

 

The immune system provides an ideal metaphor for anomaly detection in general and 

computer security in particular. Based on this idea, artificial immune systems have been 

used for a number of years for intrusion detection, unfortunately so far with little success. 

However, these previous systems were largely based on immunological theory from the 

1970s and 1980s and over the last decade our understanding of immunological processes 

has vastly improved. In this paper we present two new immune inspired algorithms based 

on the latest immunological discoveries, such as the behaviour of Dendritic Cells. The 

resultant algorithms are applied to real world intrusion problems and show encouraging 

results. Overall, we believe there is a bright future for these next generation artificial 

immune algorithms. 

 

 

Introduction 

 

Artificial Immune Systems (AIS) provide an ideal inspiration for Computer Security in 

general and Intrusion Detection Systems (IDS) in particular. AIS have been successfully 

applied to a number of problem domains including fault tolerance, data mining and 

computer security (Kim 2007). The algorithms central to many AISs and in particular 

those applied to computer security (Hofmeyr 2000) were based on relatively simplistic 

models of T-cells, such as the Negative Selection Algorithm. Unfortunately, these simple 

algorithms have been shown to scale poorly and produce low detection rates often with 

excessive false positive rates. This effect has been proven both experimentally (Kim 

2001) and theoretically (Stibor 2006). A general overview of this area of research is 

given in Kim et al. (Kim 2007). 

 

Yet, the biological immune system is a very effective anomaly detector- surely we should 

be able to build AISs which do the same? This is the puzzle that started our work some 

five years ago through the so called ‘Danger Project’ (EPSRC GR/S47809/01). Our 

conclusion then was that AIS algorithms to date have largely been inspired by the 

adaptive immune system and by biologically-naive models. We hypothesised that new 

research in AIS needs to focus on building more biologically-realistic algorithms which 

are inspired by both the innate and adaptive immune systems. This is as both of these 
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components of the human immune system are vital to the high level of protection the 

immune system provides to the host. This paper gives a summary of the work that has 

happened so far towards the goal of discovering the ‘missing link’ between AIS and IDS. 

 

The aim of this paper is to provide an overview of two algorithms developed as part of 

the Danger Project - the Dendritic Cell Algorithm (DCA) and the Toll-like Receptor 

algorithm (TLR). Both algorithms were developed in parallel within the scope of the 

project. Whilst using similar immunological concepts for inspiration, both algorithms 

focus on different aspects of innate immunology to form the basis of the algorithms. In 

this paper the motivation for the development of both algorithms is provided in the 

Background section, in addition to relevant immunological context information. This is 

followed by a summary of the development of both algorithms. Finally we conclude with 

a qualitative comparison between the two algorithms and suggest future directions for the 

developed systems. 

 

Background 

 

The motivation of the Danger Project was to understand the actual intrusion detection 

mechanisms employed by the immune system and to capture the essence of these 

mechanisms through an abstraction process. These abstract models are implemented to 

form feasible algorithms, capable of performing a useful computational function. In order 

to achieve this, an in-depth understanding had to be achieved in an emerging concept in 

immunology known as the ‘Danger Theory’. The Danger Theory (Matzinger 1994) states 

that the immune system is activated upon receipt of molecular signals which indicate 

damage or stress to the host rather than by pattern matching of ‘non-self’ versus ‘self’. 

 

The Danger Theory is controversial within the world of immunology, as it challenges 

theories previously thought to be central to the function of the human immune system. 

The concept of self non-self discrimination performed by the immune system has been 

the cornerstone of immunology since its postulation by Paul Ehrlich in the late 19th 

Century. The central tenet of immunology is that the immune system responds to the 

presence of foreign entities (termed non-self) and does not respond to the host (termed 

self). This discrimination process is achieved through the careful filtering of the T-cells of 

the adaptive immune system, where cells which react to self proteins are deleted. This 

implies that the immune system consists of a highly tuned population of detector-like T-

cells primed only to match and destroy ‘non-self’ entities, inclusive of viruses, bacteria 

and other pathogenic microbes. 

 

However, questions have been raised regarding the validity of the self non-self paradigm, 

due to its inability to explain a number of documented phenomena. For example it cannot 

explain why autoimmune diseases can occur, where the body responds inappropriately to 

its own proteins generating natural ‘false positives’. Also it does not explain why we do 

not react to our changing body during pregnancy or to the food in our intestines, not to 

mention the plethora of ‘friendly bacteria’ which inhabit our lower intestines, which one 

can buy and consume nowadays! The Danger Theory postulates that the immune system 

is not activated upon the detection of non-self entities alone, and does not react to a 



potential intruder until damage or danger is detected. It has been shown that these 

‘danger signals’ are released as a result of necrotic cell death which can be caused by 

pathogenic infection. The presence of danger signals in combination with proteins 

secreted from the potential infectious agent - termed ‘antigen’ is required to illicit a 

defensive response by the human immune system. 

 

Developments in AIS have in some respects paralleled the developments in immunology. 

The majority of AIS research towards building successful IDS has focused on the 

theories of self non-self discrimination. From this, arose the development of the Negative 

Selection Algorithm, which has been used extensively within AIS. The negative selection 

algorithm is a supervised learning algorithm, consisting of training and testing phases. 

The goal of the negative selection algorithm is to classify bit-string representations of 

real-world data (termed ‘antigen’) as normal or anomalous (Forrest 1999). To achieve 

this, detectors are created consisting of a similar bit-string, with which to match the 

incoming antigen data. During the training phase, the detector population is ‘presented’ a 

subset of antigen, taken only from the ‘normal’ class. Any detector which matches a 

normal antigen during the training phase is deleted. Once training is complete, the 

remaining detectors are tuned to respond only to the data items of the nonself or 

anomalous class as, in theory, all of the self-matching detectors have been eliminated. 

The system is then presented test data to classify as normal or anomalous. 

 

As with the developments in immunology, similar problems have surfaced within AIS. 

Early work with the negative selection algorithm looked promising, but as the algorithm 

was further characterized and applied to larger more complex data, it suffered from the 

problem of the generation of excessive numbers of false positives (Kim 2001). In 

addition, the random generation of the detector’s bit-strings gave rise to both excessive 

detector generation and ‘holes’ in the coverage across the search space. This resulted in 

significant scaling problems for systems using the negative selection algorithm. Despite 

many modifications to representation, matching rules and combination with other AIS 

and evolutionary algorithms, this problem has not been solved. To further criticism, a 

theoretical proof of the scaling problems and false positive generation was recently 

performed by Stibor et al. (2006). 

 

As with immunology, AIS practitioners started to question the validity of the self-nonself 

based algorithms. In 2002, Aickelin and Cayzer (2002) proposed that the use of cutting 

edge immunological principles may hold the key for building successful AIS algorithms. 

As a result of this notion, the Danger Project was proposed and subsequently instigated as 

an interdisciplinary research project, involving both a team of practical immunologists 

and biologically inspired computer scientists. 

 

The Danger Project looked at two aspects of the danger model. Immunologists examined 

how potential danger signals affected the cells of the immune system. In collaboration 

with the immunology team, computer scientists researched how the incorporation of the 

danger model could be used in the improvement of artificial immune systems. This is 

performed in order to construct improved anomaly detection systems for computer 

networks. To achieve this, the cells involved in the recognition of danger were examined 



in considerable detail. These cells are the Dendritic Cells (DCs) of the innate immune 

system.  

 

As part of our work, we have developed design principles (Twycross 2005) and built a 

general system and API named libtissue within which a number of different artificial 

immune system algorithms can be implemented (Twycross 2006). Subsequently, we have 

implemented a range of Danger Theory inspired algorithms, the most advanced ones 

being the toll-like receptor or TLR algorithm (Twycross 2007) and the DCA (Greensmith 

2006). Descriptions of these algorithms follow a brief description of the underlying 

immunology.  

 

A key requirement to building such immune inspired intrusion detection systems and 

algorithms had to be an improved understanding of the correlation of signals processed 

by the DCs of the innate immune system (as depicted in Figure 1), which includes 

characterisation of danger signals. This is currently a highly active area of research within 

immunology and is far from fully understood. As part of our project we had to conduct 

extensive wet lab experiments (Williams 2007) to add to the information derived from 

the existing literature, as knowledge regarding the behaviour and function of DCs in vivo 

is currently incomplete. 

 

<Insert Figure 1 about here> 

 

It is generally thought that DCs are sensitive to their local environment and are affected 

by proximal cell death. The immunological part of our project investigated the effects of 

two types of cell death on DC function. DCs exposed to the signals produced by cells 

dying in a controlled manner (apoptosis) failed to induce DC maturation and were unable 

to support the T-cell cloning required for an immune response. However, apoptotic cells 

co-incubated with necrotic cells significantly suppressed the effects of immune activating 

signals and attenuated T-cell cloning. Hence our study strongly suggests that apoptosis-

induced DC suppression is not an immunological null event, but an active part of the 

peripheral tolerance mechanism in the body. 

 

Following the above immunological experiments, we concentrated on DCs and T-cells in 

our computational models, having identified them as the key agents within Danger 

Theory. DCs collect proteins termed antigen whilst being exposed to environmental 

signal molecules caused by cell death and other events. The combination of signals 

determines the DCs pathway to instigate either tolerance or response when interacting 

with T-cells. T-cells process the information handed over by DCs and then either de-

activate or clone and subsequently respond. Therefore our task was to design a computer 

system that emulates DCs and T-cells in their role as antigen processors with a signal 

based classification scheme, i.e. achieved trough multi-sensor data fusion. 

 

In an abstract model of DC behaviour, DCs exist in one of three states at any given time: 

immature; semi-mature and fully mature. The transition between these various DC states 

is shown in Figure 2. Input signals form four categories, inclusive of PAMPs (pathogen 

associated molecular patterns), danger signals (Matzinger 1994), safe signals and 



inflammation. Within the biological system, PAMPs are molecules released exclusively 

by pathogens; danger signals are released from tissue cells following unplanned necrotic 

cell death; safe signals are released from normally dying cells as an indicator of healthy 

tissue; and inflammation is classed as the molecules of an inflammatory response to 

tissue injury. 

 

<Insert Figure 2 about here> 

 

The receipt of PAMP and danger signals results in the DC producing a mature signal, 

whereas the receipt of safe signals results in the production of a semi-mature signal. 

Inflammation acts as a natural amplifier for all other signal categories. Three output 

signals are produced by DCs in response to signal input: a costimulation signal, and two 

maturation state signals. The costimulation signal indicates that the DC has collected 

sufficient signals to make a decision as to its future maturation status. The maturation 

state signals are subdivided into two opposing signals, mature and semi-mature. 

 

Antigen collected and presented by a DC expressing the mature signal are classed as 

anomalous by the adaptive immune system and any cell displaying the antigen is 

destroyed as it is seen as a threat to the body. Conversely, antigen presented by a `semi-

mature' DC is seen as part of normal cell function, and the adaptive immune system is 

tolerised to the presented antigen. This two-directional decision point is the initial 

intrusion detection component of the human immune system. Due to their importance we 

will revisit DCs in more detail later in the Dendritic Cell Algorithm section. 

 

 

The libtissue system 

 

The aim of this section is to summarise the implementation of libtissue, a prototype 

software system for building second generation AISs and applying them to real-world 

problems. The libtissue software allows researchers to implement AISs as multi-agent 

systems and analyse the behaviour of these systems when they are applied to real-world 

problems. This API framework uses the notion of compartmentalisation (Twycross 2006) 

and tissue to give the system a sense of embodiment. 

 

This system has a client/server architecture where an AIS is implemented as part of a 

libtissue server, and libtissue clients provide input data to the algorithm and response 

mechanisms which change the state of the monitored system. This client/server 

architecture separates data collection by the libtissue clients from data processing by the 

libtissue servers and allows for relatively easy extensibility and testing of algorithms on 

new data sources. The libtissue framework is coded in C as a Linux shared library with 

client and server APIs, allowing new antigen and signal sources to be easily added to 

libtissue servers from a programmatic perspective. AIS algorithms can be compiled and 

run on other researchers’ machines with no modification as libtissue is implemented as a 

library. Clients and servers can potentially run on separate machines, for example a signal 

or antigen client may in fact be a remote network monitor. 

 



AISs are implemented within a libtissue server as multi-agent populations of cells. Cells 

of different types can be created within an environment, called a tissue compartment, 

along with antigen and signals. The problem to which the algorithm is being applied is 

represented by libtissue as antigen and external signals. The libtissue clients collect 

antigen and external signals and pass them to the libtissue server, which makes them 

available to the AISs. Cells express various types of receptors and producers which allow 

them to interact with antigen and control other cells through signalling networks. 

Additionally, libtissue allows data on implemented algorithms to be collected and logged, 

allowing for experimental analysis of the system. Both algorithms presented in this paper 

are implemented using this framework. 

 

 

The TLR algorithm 

 

The ‘TLR’ algorithm is based on innate immune principles and includes abstracted 

versions of T-cells, naively implemented DCs, negative selection, tissue compartments 

and lymph nodes. This work encompasses concepts drawn from central tolerance and 

from the signal model from the infectious nonself theory (Medzhitov 2002). The TLR 

algorithm is based on two populations of interacting cells, namely DCs and T-cells. The 

DCs implemented in TLR collect antigen from an antigen store, and process signals. 

Unlike the DCA, different categories of input signals are not used, with the focus being 

on the nature of the interactions between DCs and T-cells. In TLR, DCs are created as 

immature detectors and sample signals and antigen for a finite specified period of time. If 

the DC receives a signal during antigen collection, it is termed mature, and conversely 

DCs which did not detect the presence of a signal are termed semi-mature. 

 

Once the DCs lifespan is complete, the cell is transferred to a ‘lymph node’ in which it is 

compared against a population of T-cells. The T-cells are assigned sensors termed 

‘receptors’ of the same representation as the antigen presented by the DC population. The 

T-cell receptor responsible for the matching and interaction with DCs is generated during 

a training phase. The T-cells exist in two states, namely naive and activated. A T-cell 

matching antigen presented by a mature DC is activated whereas T-cells matching semi-

mature DCs are removed from the population and deleted. Anomalies are detected and a 

session is classified as `anomalous' if a population of activated T-cells (one or more) is 

generated. 

 

The signals used in TLR are referred to as danger signals, implying signals which may 

represent ‘damage’ or ‘danger’. However, the signals used in TLR are more analogous to 

PAMP signals, indicating an evolutionarily selected signature of intrusion, with a training 

phase used to simulate this evolutionary process. Additionally, the name ‘TLR’ is in 

reference to toll like receptors, which are biologically the membrane bound proteins 

responsible for processing changes in PAMP concentration by DCs. The signals used in 

the TLR algorithm are binary signals, representing ‘signal present’ or ‘signal not present’, 

compiled during a short training period. 

 



A list of signal values is compiled during a training period, termed as the ‘infectious 

signal list’. This list consists of discrete signal values which, when sensed by a DC, 

‘activate’ the TLRs (i.e. sensors) on the DCs. The infectious signal list is initially 

generated to cover all values possible for the three signals. The values of signals seen 

during training are deleted from the infectious signal list, in a similar manner to negative 

selection, resulting in a list of values which are defined as ‘nonself’. During the testing 

phase when the TLR algorithm is presented with data to classify, DCs mature upon the 

activation by any signal, irrespective of its type or value. 

 

Additionally, the training period is used to negatively select the T-cell receptors present 

on each cell within the T-cell population. Initially, a population of T-cells are created 

with receptors generated to match all possible values of input antigen. For example if 

monitoring processes on a host machine, antigen are represented as system call ID 

numbers (Twycross 2006) with 256 unique system call IDs whose values are distributed 

throughout the T-cell population. Whilst using similar concepts as previous negative 

selection work, this is a smaller number in comparison to the total possible amount of 

values used for detector generation in most negative selection based approaches. Normal 

antigen data is used to create a normal antigen profile. This profile is then matched 

against the entire T-cell population and any T-cell matching a normal antigen is deleted 

from the population. This results in two populations of tuned cells which perform the 

anomaly detection. 

 

A summary of the TLR algorithm is given in the forthcoming list, and is represented in 

Figure 3: 

 

1. Record set of system calls made in training data 

2. Record signal values experienced in training data 

3. Compute complement set to 1. and 2. 

4. Create immature DCs (iDCs) with signal receptors randomly drawn from 

complement signal set and with antigen receptors randomly drawn from complement 

system call set 

5. Create naïve T-Cells (nTCs) with antigen receptors randomly drawn from 

complement system call set 

6. iDCs are continually exposed to and sample signals and antigen respectively 

7. If during its lifetime an iDC's signal receptor matches a signal it becomes a mature 

DC (mDC) and migrates 

8. If not migrated at the end of its lifetime an iDC becomes a semi-mature DC (smDC) 

at the end of its lifetime and migrates 

9. Migrated smDCs and mDCs present their antigen and try and match nTCs 

10. If an mDC expresses an antigen that matches an nTC receptor than this turns the nTC 

into an activated T-Cell (aTC) and we have an anomaly 

11. If an smDC expresses an antigen that matches an nTC receptor than this kills the 

nTC to reduce false positives 



12. Migrated smDCs and mDCs and killed nTCs are replaced with new cells as per 4. / 

5. 

 

 

<Insert Figure 3 about here> 

 

The TLR algorithm has been evaluated on a system call anomaly detection problem. A 

process, in this case an FTP server (including child processes) is monitored and the 

system calls made by these processes are gathered to be used as antigen. Memory, file 

and socket resource usage statistics are also gathered and used as external signals. Signal 

receptors on DCs are activated by certain external signal values and antigen receptors on 

naive T-cells are activated by certain antigen values. In order to determine which signal 

and antigen values activate these receptors TLR needs to be provided with a set of 

training data consisting of a sample of normal instances only. 

 

In the case of antigen receptors a new set of permissible T-cell receptor values is created 

by removing all antigens observed in the training set from the set of all possible antigen 

values (around 350 in the case of system call numbers). In a similar way, signal receptors 

are only activated by signal levels not seen in the training set. However, unlike antigen 

receptors, signal receptors are not specific for one particular value, but rather any value 

not seen in the training set. 

 

In order to test TLR we used the publicly available autowux exploit autowux-cert. This 

exploit levers a format string vulnerability, in this case related to the SITE EXEC FTP 

command, in order to obtain by default a remote root shell on the server. It has been seen 

in the wild in manual attacks and automated attacks such as the Ramen worm (SANS 

2001). We also performed an FTP bounce scan attack (Hobbit 1995) in which an attacker 

used an FTP server as an intermediary to perform a network scan and hide the IP address 

of their machine. Both attack types are mixed in with a large number of normal ftp 

sessions captured from external data. 

 

On the above problem, the TLR algorithm achieves false positives rates of 0.15 and true 

positive rates of 0.75. Here we are assuming an equal cost for false and true positives. 

The TLR algorithm, which was unoptimised, used around 10% of the CPU resources 

(Athlon XP 2600+, 1 GB RAM) and never more than 8% of the memory resources on the 

test machine. Generally, CPU usage was only a few percent as cell levels were 

maintained at a low level during normal usage. Overall, TLR was able to detect 

anomalous behaviour resulting from attacks with a high true positive and low false 

negative rate (Twycross 2007) comparable to other state-of-the-art approaches, e.g. Mutz 

(2006). 

 

 

The Dendritic Cell Algorithm (DCA) 

 

The DCA is based on an abstract model of DC behaviour, initially presented in 

Greensmith (2005). In nature, DCs perform the function of antigen presentation, where 



debris found in tissue are collected by DCs, processed to form antigen and presented to 

the adaptive immune system in combination with context information. The context 

information is derived through the DCs processing of various signals, found in the tissue 

at the time of antigen collection (Lutz 2002). As a computational technique, the DCA 

performs correlation of context, derived from the processing of a set of input signals, with 

antigen - the data to be correlated. This is based on the premise that ‘suspects’ in the form 

of antigen can be paired with ‘evidence’ in the form of signals to identify potential 

sources of anomaly or intrusion. A general overview of the DCA is provided in this 

section with a formal description of this algorithm given in Greensmith et al. (2006). 

 

As with TLR, the DCA is a population based algorithm, but unlike TLR consists of DC 

agents alone. The DCA is implemented using the libtissue framework to facilitate the 

creation and update of cells and tissue attributes. A graphical representation of the DCA 

is presented in Figure 4. The algorithm processes two input streams consisting of signals 

and antigen. The signal stream contains a specified number of input signals, which are 

pre-normalised and categorised as PAMP, danger signal, safe signal or inflammation. A 

storage facility for incoming signals and antigen is provided and forms the ‘tissue’ for the 

DCs. The DCA can be described on two levels: firstly at the level of an individual DC 

and secondly at the level of the DC population.  

 

<Insert Figure 4 about here> 

 

Each individual DC in the population is a data-fusion agent. As with the natural system, 

DCs exist in one of three states - immature, semi-mature or mature. Upon creation and 

initialisation, the cell assigned to the immature state. In this state the cell performs 

information processing. Cells are updated at regular intervals, where the DC in question 

copies the values found in the signal matrix to its own internal signal storage. Here the 

DC has the chance to collect and internalise a specified number of antigen data. 

 

An abstraction of the semantics of the natural signals is used to form a schema for the 

signal pre-categorisation. This categorisation is based on the following general principles: 

 

• PAMPs: Pathogenic associated molecular patterns are proteins expressed exclusively 

by bacteria, which can be detected by DCs and result in immune activation. The 

presence of PAMPS usually indicates an anomalous situation. 

• Danger signals: Signals produced as a result of unplanned necrotic cell death. On 

damage to a cell, the chaotic breakdown of internal components forms danger signals 

which accumulate in tissue. DCs are sensitive to changes in danger signal 

concentration. The presence of danger signals may or may not indicate an anomalous 

situation, however the probability of an anomaly is higher than under normal 

circumstances. 

• Safe signals: Signals produced via the process of normal cell death. Cells must die for 

regulatory reasons, and the tightly controlled process results in the release of various 

signals into the tissue. These `safe signals' result in immune suppression. The presence 

of safe signals almost certainly indicates that no anomalies are present. 



• Inflammation: Various immune-stimulating molecules can be released as a result of 

injury. Inflammatory signals and the process of inflammation are not enough to 

stimulate DCs alone, but can amplify the effects of the other three categories of signal. 

It is not possible to say whether an anomaly is more or less likely if inflammatory 

signals are present. However, their presence amplifies the above three signals. 
 

The collected input signals are processed to form cumulative output signals through the 

use of three weighted sum equations. The mechanism of signal processing is described in 

detail in Greensmith et al. (2007a) and is represented graphically in Figure 5. 

Incrementing the costimulation (CSM) output signal is an important feature of the 

algorithm, as it provides a limit to the time spent by the DC sampling the data in the 

‘tissue’. Upon initialisation, each DC is assigned what is termed a migration threshold. 

Upon recalculation of the output signals, the achieved value of the CSM output signal as 

compared to the cell’s migration threshold value. If the value of the CSM signal is greater 

than the migration threshold, then the DC ceases sampling signals and antigen and is then 

transferred to a separate compartment and is assigned a new state (semi-mature or 

mature). Once a cell is removed from the population it is replaced immediately by 

another cell, fixing the population size at a static level. 

 

<Insert Figure 5 about here> 

 

If the cell does not exceed its migration threshold, it continues sampling and the output 

signals accumulate. In implementations of the DCA so far, each DC is assigned a random 

number (within a specified range) for the migration threshold. This ensures that across 

the population, the DCs sample signals and antigen over different time windows. We 

believe this to add an element of robustness to the system. 

 

The remaining two output signals of the DC are assessed once this threshold is exceeded. 

At this point the value of the semi-mature output signal is compared to the value of the 

mature output signal. The context of the cell is assigned as that of the greatest output 

signal value. For example, if during its lifespan, the DC had experienced predominantly 

safe signals, then the value of the semi-mature output signal would be higher than that of 

the mature output signal. Therefore the state of the cell is assigned as semi-mature. 

Conversely, if the cell experienced predominantly PAMP and danger signals, then the 

cell is assigned to the mature state. In the event that both output signals are equal, the 

semi-mature context is assigned. 

 

Following the assignment of the DC’s context, it then presents all antigens that it has 

collected over its lifespan. The presented antigen are accompanied by the context of the 

cell (0 for semi-mature and 1 for mature) and are recorded. This information is used 

following the processing of all input data to calculate the anomaly coefficient for each 

type of antigen. A state diagram is presented in Figure 6 which represents this process. 

 

At the population/system level, three events occur namely update of tissue antigen, 

update of tissue signals and update of DC population. These three processes occur 

asynchronously. Antigen are updated from the system on an event driven basis i.e. when 



it is available from the underlying data, it is fed into the tissue’s antigen storage. The 

incoming signals are pre-normalised by a signal collection demon program and are sent 

to the tissue’s signal matrix at a consistent rate. The population of cells is also updated at 

a specified consistent rate. In our current research in anomaly detection, both cells and 

signals are updated once per second. This update procedure continues until all data is 

processed. 

 

Upon completion of data processing the presented antigen-plus context values are 

analysed to form MCAV anomaly coefficient values. The term ‘MCAV’ refers to the 

‘mature context antigen value’ and is a metric of the proportion of times a particular type 

of antigen is presented in the mature context. By antigen ‘type’ we refer to the fact that 

the antigen data supplied to the system consists of groups of antigen of identical values. 

For example, if computer programs were monitored as antigen, each time the program 

performed an operation, an antigen would be generated with the value of the program’s 

ID number. The MCAV calculation returns a coefficient value between 0 and 1. Values 

closer to 1 indicate that the antigen type has a higher probability of being anomalous. 

This completes the pairing of ‘suspect’ antigen with ‘evidence’ from signals, based on the 

consensus opinion of the DC population over time.  

 

<Insert Figure 6 about here> 

 

Experimentation with the DCA (Greensmith 2005) has shown that it is suitable for the 

detection of anomalies in time-dependent data, where the input data consists of a set of 

input signals to be fused together and ultimately correlated with antigen, for which there 

are multiple types. To demonstrate this ability, the DCA is applied to the detection of 

outbound ICMP ‘ping’ based port scans (Greensmith 2007), with experiments performed 

in both real-time and offline scenarios. 

 

In these experiments the DCA is used to detect which process is responsible for the 

invocation of an nmap port scan. To perform this detection, process IDs are logged each 

time an individual process makes a system call. This process ID forms an antigen for the 

DCA to analyse. Unlike previous AIS approaches to intrusion detection, the DCA does 

not perform pattern matching on the value of the antigen. Instead the classification of 

antigen is based on the processing of signals which are found in the system at the time of 

antigen collection. 

 

In the case of the ping scan investigation, antigen is derived from the process IDs of 

system calls invoked by running programs, with the aim of identifying an anomalous port 

scanning program. In this experiment three out of the four input signal categories are 

used and include the following: 

 

•  PAMPs: The number of ICMP destination unreachable errors per second. High values 

indicate likely anomalous behaviour. 

• Danger Signal: The number of network packets sent per second. Low values of this 

signal may not be anomalous, giving a high value a moderate confidence of indicating 

abnormality. 



•  Safe Signal: The inverse rate of change of packet sending. A measure which increases 

value in conjunction with observed normal behaviour. This is a confident indicator of 

normal, predictable or steady-state system behaviour. This signal is used to counteract 

the effects of PAMPs and danger signals, achieved through the negative weight in the 

signal processing of the DCs. 

• Inflammation: does not feature in this experiment as no suitable signal was available. 
 

It is shown that the DCA can discriminate between the nmap scan and other co-occurring 

normal processes, such as the transfer of a large file, with high rates of true positives and 

low rates of false positives. In Figure 7, the results for the detection of a scan process are 

shown. Higher MCAV coefficients are derived for the two anomalous processes (nmap 

and pts) than for the two normal processes (sshd and bash). Upon application of a 

threshold to the MCAVs at 0.5 all processes are correctly classified. 

 

<Insert Figure 7 about here> 

 

A full sensitivity analysis of the system has been performed (Greensmith 2007a), and the 

DCA is shown to be robust to changes in the mappings of the signal categories and 

system parameters, including variation of the number of DCs created and variation of the 

antigen vector size. Variation is also performed examining the values of the weights used 

in the signal processing. This investigation shows that changing the values of the weights 

has no significant impact on the rate of true positives, but incorrectly chosen weight 

values can increase the observable rate of false positives. 

 

In addition to the application of the DCA to ping scan detection, the algorithm has been 

applied to a static machine learning dataset, and to the detection of prolonged and more 

complex port scans, when applied to the detection of SYN scans (Greensmith 2007b). A 

direct comparison between DCA and TLR is performed in Greensmith (2007c), which 

showed good detection rates for both algorithms. The DCA has found uses within the 

detection of misbehaviour in sensor networks (Kim 2006) and for anomalous object 

detection within mobile robotics (Oates 2007).  

 

 

Discussion and Conclusions 

 

In this paper we have presented the development and application of two algorithms based 

on the Danger Theory, namely the TLR algorithm and the DCA. Both algorithms employ 

abstract concepts inspired by innate immunology. In particular, models of DCs are used 

and abstract computational implementations of these models form the cornerstone of both 

algorithms. DCs are crucial to the protection provided by the natural human immune 

system and therefore we believe these cells to have an important role in AIS. The models 

of DC behaviour present in both algorithms are derived not only from published 

literature, but also from information produced by collaboration with practical 

immunologists, as part of the Danger Project. Aside from the focus on DCs, this work 

also shows that the incorporation of aspects of the innate immune system can be 

beneficial for the development of AISs. As a secondary outcome, the libtissue framework 



is validated as a feasible API system for the purpose of implementing agent-based AIS 

algorithms. This is shown through the implementation of both the DCA and TLR within 

this framework.  

 

TLR has shown to give an improved performance over negative selection on various 

computer security datasets. This includes a marked reduction in false positives in 

comparison to a pure negative selection based approach. While these detection rates are 

promising, it is not possible to make general observations about the performance of TLR 

as it is difficult to compare to other anomaly detection algorithms due to its specific data 

requirements. This includes the need in TLR for two databases of input data, one for 

signals and one for antigen. Standard anomaly detection approaches do not function in 

this manner and thus many standard IDS datasets are difficult use with TLR  

 

One of the central features of TLR is its requirement for training data. Unlike other AIS 

approaches, TLR performs training on multiple types of cell agent which appears to add 

an extra element of tolerance to the generation of false positive errors. However, as with 

many supervised learning algorithms, training data can be difficult to collect. It is not 

trivial to produce a good training set which does not contain any sources of anomaly. 

Additionally it is difficult to assess as to what length the training data should be and what 

diversity of situations can be used to imply normal.  

 

The DCA has a greater reliance on the signal processing aspect by using multiple signal 

models. The DCA does not require training period, but instead uses expert knowledge to 

assign input signals to the appropriate category. The DCA also performs anomaly 

detection with a relatively low rate of false positive errors. However as with TLR, it is 

difficult to perform direct comparisons with more standardized approaches, as the DCA 

has similar antigen and signal input data requirements. Nevertheless, the DCA has shown 

promising results in our own port scanning experiments, and is starting to show good 

results across a range of problem domains, including sensor networks and mobile 

robotics.  

 

There are obvious similarities between the two algorithms. The both perform a type of 

temporal correlation between signals and antigen. Both algorithms contain the concept of 

‘tissue’ and both consist of DCs performing a computational task. Upon closer inspection 

of the two approaches, marked differences can be seen. TLR defines interactions between 

both T-cells and DCs. This is coupled with the training period for the selection of both 

signals and antigen. This is inherently more complex than the single cell and multiple 

signal model employed by the DCA. As a result, the DCA relies on fewer tuneable 

parameters, and has been shown in Greensmith et al (2007a) to be robust to changes in 

the majority of these parameters, inclusive of the weight values used in the signal 

processing mechanism. Additionally, the DCA does not require a training period, which 

avoids the potential disadvantages discussed above.  

 

In conclusion, the DCA and TLR are proof that it is indeed possible to build feasible AIS 

algorithms based on the principles of Danger Theory. While TLR is a good anomaly 

detection algorithm, it is inherently complex. This makes it difficult to understand 



theoretically and troublesome to characterise experimentally. The DCA is not a simple 

algorithm, but it is less complex than TLR, primarily due to its single cell type, parameter 

robustness and its dispensation with the need for training data.  

 

In our future work we intend to further develop the DCA in a number of ways. Future 

investigation with the DCA may involve thorough benchmarking with standard 

techniques, a theoretical investigation of the algorithm, and investigation of methods for 

automated signal selection. Some intended future applications of the DCA may include 

other time-dependent data, such as further work with port scans, earthquake and medical 

imaging data. 

 

See http://www.dangertheory.com for a full list of our papers, test data, the libtissue 

system and both DCA and TLR algorithms. 
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Figure 1: Dendritic Cells under the microscope. 

 

 



 
 

Figure 2: The development of Dendritic Cells 



 
 

Figure 3: Schematic overview of the TLR algorithm. 
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Figure 4: Schematic overview of the DCA. 



 
 

 

 

Figure 5: Input / Output signal transformation within a DC in the DCA. 



 
 

 

Figure 6: How immature DCs turn into either semi-mature or mature DCs in the DCA. 



 
 

Figure 7: Results of the DCA applied to Ping Scan Detection 


