
IWAVE: Interactive Web-based Algorithm Visualization
Environment

Internal Visual Learning Lab Report
September 2007

Ben Moss

School of Computer Science and Information Technology
University of Nottingham

bxm@cs.nott.ac.uk

Abstract

This report discusses one of the challenges faced
in the teaching and learning of introductory com-
puter programming. The demographic of students has
changed considerably in recent years, and teaching
styles must adapt accordingly to suit the change in
learning styles. Some of the issues involved in mak-
ing these changes are discussed, before introducing a
method for calculating the relative difficultly of a con-
cept based on the submission rate and average mark
of its exercises. This method was applied to the re-
sults of students’ programming exercises throughout a
semester to identify one concept area that is particu-
larly problematic - Arrays.

A customized visual learning environment for in-
teractive animation of programming code was devel-
oped, allowing students to visualize code and the af-
fects of any changes they make. In addition, a de-
ployment wizard was developed to allow a practitioner
to integrate the learning environment with their ex-
isting learning material with minimal effort. These
tools were then used to create a demonstration learn-
ing resource targeted towards the concept of Arrays.

1 Introduction

The Programming module G51PRG is core to all
undergraduate degree programmes in the School of
Computer Science and Information Technology (ap-
proximately 150 students per year). Running over
two semesters, the first semester provides an intro-
duction to programming concepts and the tools used,
whereas the second semester focusses more on appli-
cation of these concepts in combination with other
advanced topics. The module is based around the
Java programming language.

The first semester is divided into eight distinct
units that roughly equate to different core concepts,
and previously-completed units are typically prereq-
uisites for their successors. A major part of the learn-
ing and assessment process is a set of weekly program-
ming exercises, which are automatically assessed via
the CourseMarker system, based on several criteria
(e.g. functionality, quality, methodology, complete-
ness, etc.). Between one and three exercises are set
each week, and students are encouraged to work on
them in their own time, but assistance is provided by
postgraduate demonstrators in weekly lab sessions.

Over the past ten years the demographic of stu-
dents who take the Programming module has changed
considerably. Classes are no-longer predominantly
single-honours computer science students, but come

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/162670854?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1


Internal VLL Report Capital Awards: Jan 2007

from a wide range of academic departments, includ-
ing engineering, humanities and business. The dif-
fering backgrounds and expectations in this diverse
student group require alternative methods from the
classical teaching and learning styles used for intro-
ductory programming. This “new breed” of program-
ming student tends to struggle with many of the con-
cepts which are critical for learning programming,
particularly when skills such as spatial awareness and
abstraction are involved. Students are often confused
by the syntax of the code, which can inhibit and re-
move them from the semantics of the exercise’s un-
derlying problem.

In a response to the changes in the demographics
of programming students, numerous research has in-
vestigated problems concerning the visualization of
program execution [2]. For example, code syntax
can be encapsulated in visual objects to allow stu-
dents to concentrate on what the code means (its
semantics), rather than how it is represented (its syn-
tax). Many institutions use passive visualization in
course notes to cover concepts such as arrays, meth-
ods and objects by use of single diagrams (statically)
or by use of animation (dynamically). However, cre-
ating passive teaching resources is time consuming
and can be difficult to maintain. Further research
has addressed these problems by developing interac-
tive methods that can automatically generate dia-
grams and animations from samples of program code
[1]. This interactive method is typically seen as a
time-saving mechanism for the lecturer, but if such
mechanisms were presented to the student, then they
could be encouraged to develop a deeper understand-
ing of topics through experimentation with different
aspects of their program code (i.e. they can actu-
ally see the affects of adding, deleting, moving and
substituting code fragments).

Despite the time-saving capabilities of existing
code animation technologies, it is generally under uti-
lized in introductory programming modules. Two
suggested reasons for the narrow adoption of such
visualization software are:

• A lack of dissemination amongst practitioners
(i.e. teachers are not aware that such teaching
aids exist);

• The typical steep learning curve for practitioners
to embed it into their current teaching practices,
and for students to use it in their learning pro-
cess.

2 Aims and Objectives

The overall aim of this project is to automatically
visualize the execution of program code to comple-
ment the teaching experience for practitioners of in-
troductory programming and the learning experience
of their students. This aim will be achieved through
the following objectives:

• To determine concepts students find most dif-
ficult, using evidence from our automated-
assessment system (CourseMarker);

• To select one of these difficult concepts where
teaching and learning can be enhanced by visu-
alizing the execution of program code;

• To develop a system for creating and deploying
visual teaching and learning resources;

• To demonstrate use of the system through a
range of examples within the selected difficult
concept, exploiting the interactive visual learn-
ing aspect of the system, allowing students to ex-
periment freely by modifying the example code.

Additionally, the system should have the following
practitioner-oriented goals:

• Usable: To minimize the extra knowledge re-
quired by the practitioner to create and deploy
program code visualizations as visual learning
resources.

• Malleable: To minimize the effort required to
make small changes to an existing visual learning
resource that was created with the same system
(e.g. correcting small mistakes, or making regu-
lar yearly changes).

• Embeddable: To use widely-adopted and/or
standards-compliant technologies to aid integra-
tion with existing teaching resources and encour-
age wider adoption/dissemination.

2



Internal VLL Report Capital Awards: Jan 2007

The system also aims to achieve the following
student-oriented goals:

• Usable: To provide a system that students can
use effectively, with little or no training.

• Interactive: To allow students the ability to
view animations of both code examples from
the notes and their own coursework code at any
stage during its development.

3 Methodology

The project was conducted in three phases. The
first stage involved analysis of the extant data from
CourseMarker. This was followed by customization
of the Jeliot system for closer integration with the
module’s requirements. The third stage involved de-
velopment of a software wizard, that enables a prac-
titioner to create instances of the customized Jeliot
system for specific code examples without requiring
any additional technical knowledge. The final stage
ties the previous stages together as a demonstration
in the form of an on-line lesson. This lesson ad-
dresses one of the problems found by analysis of the
extant data using visual examples provided by the
customized Jeliot system, and was developed using
the software wizard.

3.1 Analysis

To determine the introductory programming con-
cepts that students find difficult, the CourseMarker
results for semester 1 of the 2005-06 academic year
were analysed. These results are comprised of an
integer percentage representing the overall exercise
score, for each exercise, and for every student. Stu-
dents have the option of whether to submit each ex-
ercise, but non-submission results in an exercise score
of zero. However, it is possible to determine between
a submitted and non-submitted exercise score of zero,
the former case being a rare occurrence. Each exer-
cise belongs to a unit, which may contain one or more
exercises designed to test the core programming con-
cept of that unit. In an effort to remove any bias,
students who did not complete semester one due to

transfer, withdrawal, or suspension of the course were
not included in the analysis.

For each of the eight units, two values were deter-
mined from the data. The average submission rate is
the percentage of a unit’s exercises for which a stu-
dent solution was submitted. It was assumed that
this value would provide an indication of a unit’s dif-
ficulty, since more difficult exercises typically result
in less students attempting and submitting their so-
lutions (see Figure 1).

Average Submission Rate

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8

Unit

P
er

ce
n

ta
g

e

Figure 1. Average Submission Rate

The average submitted mark is the average score
of a unit’s submitted exercises. It was assumed that
this value would provide an indication of a unit’s dif-
ficulty, since more difficult exercises typically result
in lower marks for submitted solutions (see Figure 2).

Average Submitted Mark

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8

Unit

P
er

ce
n

ta
g

e

Figure 2. Average Submitted Mark

The average submission rate and average submit-

3



Internal VLL Report Capital Awards: Jan 2007

ted mark values were combined to form an average
difficulty metric, which is a single comparative value
for each unit (see Equation 1).

difficulty = submissionrate×submittedmark (1)

The average difficulty metric is intended to mea-
sure the comparative difficulty of each introductory
programming concept (see Figure 3). For overall
comparison, all three averages are included in Fig-
ure 4.

Average Difficulty Metric

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8

Unit

P
er

ce
n

ta
g

e

Figure 3. Average Difficulty Metric

All Averages

50.0

60.0

70.0

80.0

90.0

100.0

1 2 3 4 5 6 7 8

Unit

P
er

ce
n

ta
g

e

SUB % Mean SUB Mark Difficulty Metric

Figure 4. All Averages

The results indicate a downward trend in both sub-
mission rate and average mark as the semester pro-
gressed, and this trend is amplified in the average
difficulty metric. In all three values, Unit 6 (Arrays)
is anomalous to the gradual downward trend, being

markedly lower than other units, and the only unit
with an average difficulty metric below 60%.

In programming, arrays are abstract container-like
structures used for storing a list of values. For ex-
ample, an array might be used to store a list of each
item’s price when paying for shopping at a super-
market checkout, or a list of lap times in an athlet-
ics event. Arrays are typically taught using draw-
ings or diagrams that depict an array as a series of
connected boxes, in which their values can be writ-
ten. However, visualizing arrays in this manner can
be extremely time consuming, particularly when the
contained values change.

3.2 Jeliot Customization

To develop a system for creating and deploying vi-
sual teaching and learning resources a brief survey
of code animation tools was conducted. The survey
indicated that the Jeliot system would be highly suit-
able for this project for the following reasons:

• Java code animation: The system animates
code written in the Java programming lan-
guage, which is the language used throughout
the G51PRG module.

• Low-level visualization: The system is well-
suited for visualizing low-level programming con-
structs such as variables and control blocks, as
opposed to high-level constructs such as data
structures and object-oriented structures. Low-
level constructs are covered in introductory pro-
gramming, whereas high-level constructs tend to
be taught in more advanced modules.

• Interactive: The system allows students to
modify examples and instantly visualize the ef-
fects of their modifications.

• Web deployable: The system incorporates
Java Web Start technology, which allows it to
be deployed via the Web.

• Open source: The system is developed as open-
source software, and as such users are permitted

4



Internal VLL Report Capital Awards: Jan 2007

to change, improve, and redistribute it in mod-
ified or unmodified form. This allows the soft-
ware to be customized for local integration with
existing teaching and learning resources.

• Written in Java: The system itself has been
developed using the Java programming lan-
guage, allowing better integration with other
Java-based software used as part of G51PRG for
teaching and learning.

The first stage of Jeliot ’s customization concerned
integrating the existing G51PRG IO (input/output)
system into Jeliot. Student’s often find Java’s IO
too complex at the introductory level, and therefore
G51PRG students are given an alternative method
that simplifies the processes. Similarly, the Jeliot
system also provides its own simplified alternative,
but this is not directly compatible with the G51PRG
simplification. Therefore it was necessary to integrate
the G51PRG IO method into the Jeliot system to al-
low G51PRG students to visualize their own exercise
solutions in Jeliot without them having to make sig-
nificant changes to their solutions.

The second stage of customization involved several
changes to the Jeliot GUI. The layout was modified
to maximize the size of the visualizations, and the
controls were organized in a more logical manner.
To better integrate the system with existing teach-
ing and learning practice, a new colour theme and
icon set was created.

3.3 Wizard Development

The Jeliot system is primarily designed as a learn-
ing tool, whereby students create and edit their code
using Jeliot as desktop software to visualize the pro-
gram execution. Despite being deployable via Java’s
Web Start, the Jeliot system is not well-suited for
teaching practitioners to deploy a visualization for a
specific code example. In other words, for a practi-
tioner to allow their students to visualize a code ex-
ample via the Web, the students would need to launch
Jeliot via Web Start, download/copy the code exam-
ple from the Web, then open/paste the code example
into Jeliot. It would be far simpler, if Jeliot could be
launched with the code example pre-loaded.

For a code example to be pre-loaded when Jeliot is
launched, several steps are needed that require com-
plex technical knowledge of the Jeliot system and
Java’s Web Start technology. A software wizard was
developed to simplify this process, by leading the user
through a sequence of simple steps, and gathering the
required information to perform this complex task.
When Jeliot is launched, it loads a default template
Java code example. This default template is archived
into the single Web Start file, which is built through
an ant build script that incorporates compilation and
code signing. The overall process is comprised of four
stages:

1. Incorporating a user-specified code example into
the source material, which is used to build Jeliot.
The code example is translated into an internal
format that Jeliot can interpret and built into
a resource file using a default skeleton resource
file.

2. Creating a build file from a user-specified JDK
installation path and a default skeleton build file.

3. Creating a Java Web Start JNLP file from two
user-specified values (a name and a URL) and a
default skeleton JNLP file.

4. Executing the generated build file to build an
executable Jeliot jar file from the source mate-
rial generated in the first stage. The jar file is
then digitally signed using a predefined crypto-
graphic key store, and the deployable Web Start
files are generated and packaged into a release
folder, ready for copying to the Web server.

3.4 Demonstration

The wizard has been used to visualize a range of ex-
amples to complement the existing teaching resources
for Unit 6 (Arrays). These visualizations have been
embedded into a Web-based lesson on the subject of
arrays, covering the basic and intermediate concepts.
The Web-based system for delivery of the lesson is
based around standardized Web technologies, such as
XML, XSLT, CSS, and Java, for maximum compat-
ibility and longevity. The code examples have been

5



Internal VLL Report Capital Awards: Jan 2007

carefully chosen to demonstrate the key concepts of
arrays, whilst fully exploiting the use of visualiza-
tion for greater impact. Students can also experiment
freely by modifying the example code as part of their
self study. The demonstration has been integrated
with the existing Web-based teaching materials for
the G51PRG module.

4 Conclusions

The analysis stage of this project showed a grad-
ual downward trend in both the submission rate and
average mark of students throughout the semester.
This pattern was amplified in the average difficulty
metric, which combines the students’ submission
rate and average mark. The downward trend sug-
gests that the module’s units become more difficult
throughout the module, which is both intended and
expected. The result for Unit 6 (Arrays) was anoma-
lous to the gradual downward trend, being markedly
lower than other units for all measurements, and the
only unit with an average difficulty metric below 60%.
This anomalous result suggests that Unit 6 covers a
concept that the students find more diffult than any
of the others covered in the semester. From previous
experience of the teaching staff involved, it was ex-
pected that the concept of Arrays would be the most
difficult, but this is not intentional, and is a problem
that needs to be addressed.

In order to address the problem, the Jeliot sys-
tem was customized for integration with the G51PRG
module. The customizations were focussed around
ease of use for the students; providing seamless inte-
gration with existing teaching materials and software.
A software wizard was developed for practitioners to
easily deploy instances of the customized Jeliot sys-
tem. The wizard devolves all the complexities of de-
ploying an example visualization into existing teach-
ing material by guiding the user through a simplified
decision-making process.

Having developed a visualization environment that
could be integrated into existing teaching materi-
als using the deployment wizard, a demonstration
project was created. The demonstration was based
around extending existing lecture notes and example

code to produce two lessons (Basic and Intermedi-
ate) on the concept of Arrays. The lessons incorpo-
rate “one-click” visualizations of the code that can
be viewed by students. The visualizations are in-
teractive, allowing students to modify the code and
instantly see the affects of their changes in the visu-
alizations.

The scope and depth of this project have been lim-
ited by its relatively short duration (8 weeks). The
main impacts of this limitation were in the analy-
sis and demonstration stages. Other factors might
have an affect on trends in the average mark and
submission rate of a unit’s exercises. For example,
the weighting of exercises, the time taken to com-
plete a unit, and clashes with deadlines for other
coursework or social events occurring at the time of
study/assessment. Future work should consider stu-
dent results over several years to minimise the impact
of external factors.

Throughout this research, priority was placed on
developing a generic system that could be useful in
any of the concepts, rather than identifying and de-
veloping materials for the most problematic concept.
Moreover, it was deemed that user trials would not
be effective in such a short time period, and could
not be scheduled to coincide with the Unit 6 learn-
ing. Future work should consider running user trials
to coincide with student learning for Unit 6, and com-
paring the resulting difficulty metrics with previous
years’ results.

The deliverables of this project have been dissem-
inated via the Web, for maximum exposure.

References

[1] E. S. J. T. Mordechai Ben-Ari, Niko Myller.
Perspectives on program animation with jeliot.
Springer: Software Visualization: International Sem-
inar, 2269:618–621, 2002.

[2] U. Z. T. Crews. The flowchart interpreter for intro-
ductory programming courses. In 28th Annual Fron-
tiers in Education Conference, volume 1, pages 307–
312, November 1998.

6


