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Abstract

Planar cell polarity (PCP) occurs in the epithelia of many animals and can lead to the alignment of hairs,
bristles and feathers; physiologically, it can organise ciliary beating. Here we present two approaches to mod-
elling this phenomenon. The aim is to discover the basic mechanisms that drive PCP, while keeping the models
mathematically tractable. We present a feedback and diffusion model, in which adjacent cell sides of neighbour-
ing cells are coupled by a negative feedback loop and diffusion acts within the cell. This approach can give rise
to polarity, but also to period two patterns. Polarisation arises via an instability provided a sufficiently strong
feedback and sufficiently weak diffusion. Moreover, we discuss a conservative model in which proteins within a
cell are redistributed depending on the amount of proteins in the neighbouring cells, coupled with intracellular
diffusion. In this case polarity can arise from weakly polarised initial conditions or via a wave provided the
diffusion is weak enough. Both models can overcome small anomalies in the initial conditions. Furthermore,
the range of the effects of groups of cells with different properties than the surrounding cells depends on the
strength of the initial global cue and the intracellular diffusion.

1 Introduction

During development, polarity is a common feature of many cell types. One example is the polarisation

of whole fields of epithelial cells within the plane of the epithelium, a phenomenon called planar cell

polarity (PCP). It is widespread in nature and plays important roles in development and physiology.

Prominent examples include the epithelial cells of the wing, leg, abdomen and eye of insects like the

fruit fly Drosophila melanogaster [1], polarised tissue morphogenesis in vertebrates and sensory hair

cells in vertebrate ear (reviewed in [13]). The underlying dynamics are not fully understood yet, but it

is general consensus that PCP is driven by a three-tiered mechanism. The first tier provides directional

cues to each cell, the second amplifies these cues via a feedback loop and the third tier performs the

readout. Tiers one and three seem to be tissue specific, whereas a network of proteins centred around

the transmembrane protein Frizzled, also referred to as core proteins, may constitute a mechanism for

tier two that is common to all tissues.

In many cases PCP signalling organises the polarity of cells in a coordinated fashion over a whole

tissue, as manifested in the alignment of structures such as bristles, hairs or feathers. For example, in

the Drosophila wings every cell elaborates a hair that points distally. Experimentally induced clonal

clusters of cells in which the function of the core network components is disrupted (e.g. by mutation or
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mis-expression) induce domineering nonautonomy, characterised by hairs in the surrounding wild-type

cells pointing in wrong directions [16]. This striking phenomenon shows that polarity is disrupted not

only in cells of the clone, but also in neighbouring cells, and suggests that intercellular signalling

contributes to amplifying polarity in tier two.

Two models for PCP, focusing on the wing of the fruit fly, have been developed by Amonlirdviman et

al. ([2], [12]) and Le Garrec et al. [8] (applied to the Drosophila eye in [7]). Both models centre around

the idea of amplification of polarity via asymmetric complex formation of the core proteins. This is

based on experimental results, which show that in the wing the core proteins become distributed

asymmetrically along the proximal-distal axis just before the initiation of hair growth [14]. Both

models are encoded as large systems of differential equations and solved numerically in two dimensions

for hexagonal shaped cells. Therefore, they tend to be rather complex and do not lend themselves to

mathematical analysis very easily. Furthermore, because of the lack of appropriate biological data,

the feedback mechanisms in these models are mainly based on assumptions.

Our aim is to assess the nature of PCP in a more generic setting that encompasses a broad class of

specific models. To this end, we have developed two models for the generation of planar cell polarity

based on juxtacrine signalling. This is supported by the findings of Chen et al. [3] that one of the

core proteins, Flamingo, forms homodimers between neighbouring cells and functions as a signal to

mediate intercellular signalling of two other core components, Frizzled and Van Gogh [17].

Our first model is the feedback and diffusion model in which a positive feedback loop couples adjacent

cell sides of neighbouring cells and diffusion acts within a cell. It is a non-conservative approach

because regulated production and degradation of proteins are included. In section 2 we carry out

analysis and numerical simulations for this model.

Our second approach is based on a conservative model, in which the proteins in each cell are just

redistributed. We assume that this redistribution within a cell depends on its neighbouring cells; this

is also coupled with intracellular diffusion. The analysis and numerical simulations for this model are

presented in section 3.

These generic approaches give us the opportunity to get some insight into the basic mechanisms present

in PCP. Our main targets are to investigate the dependence of PCP emergence on the strength of

the feedback and the strength of the diffusion; analyse their potential to overcome anomalies in the

initial conditions; and investigate the behaviour of the system for clones – groups of cells that have a

different amount of proteins or a different strength of feedback than the rest of the cells.

2



lj+1lj rjrj−1

Diffusion

FeedbackFeedback

(a)

0 2 4 6 8 10
0

0.5

1

1.5

cell number

ac
tiv

ity

(b)

Figure 1: Illustration of the Feedback and Diffusion Model; (a) shows the mechanism of the feedback
and diffusion model and (b) an example of a homogeneous polarised steady state.

2 Feedback and Diffusion Model

We consider first a one-dimensional line of cells each having two sides, with rj and lj representing

generic PCP activities on the right and left side of cell j, respectively. These activities can be regarded

as accumulations of certain PCP proteins. We assume that adjacent faces of neighbouring cells in-

hibit each other by juxtacrine intercellular signalling and that these interactions are described by the

following system of equations:

l̇j = −lj + f(rj−1) + d(rj − lj),

ṙj = −rj + f(lj+1) + d(lj − rj),
(1)

where f is a decreasing positive function representing inhibition, with f(0) finite and positive. In

the examples that follow, we choose f(x) = ce−x2
or f(x) = 1

1+qxk with positive c, q and k, where

the first choice is a one-parameter family and the second one a two-parameter family of inhibition

functions. The coefficient d ≥ 0 in (1) measures the rate of intracellular diffusion of PCP activity.

This is summarised in Figure 1(a).

We have a system in which the feedback loop gives a pattern forming potential such that at the inter-

face between cells we have low activity on one cell side next to high activity in the adjacent side of the

neighbouring cell; diffusion couples this within a cell to give coherence. Our objective is to investigate

this interplay quantitatively.

We refer to the case when all cells are the same at steady state, i.e., lj = L and rj = R for all j,

as a homogeneous steady state of the system (1). If L = R we call it a homogeneous unpolarised

steady state and if L 6= R a homogeneous polarised steady state. Figure 1(b) shows an example of a

homogeneous polarised steady state.

For the subsequent analysis we assume that we have an infinite row of cells.
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2.1 Existence of steady states

System (1) always has a unique homogeneous unpolarised steady state U with U = lj = rj , because

in this case the corresponding steady state equations reduce to U = f(U) which has a unique solution

since f is decreasing. Assuming a homogeneous steady state (L,R) exists, (1) reduces to a system of

two ODEs, with nullclines given by

L =
f(R) + dR

1 + d
, R =

f(L) + dL

1 + d
.

Setting g(x) := f(x)+dx
1+d , we see that g(0) is finite and positive. Furthermore, limx→∞ g(x) ≥ 0. The

system has a pair of homogeneous polarised steady states if g′(U) < −1, i.e., f ′(U)+d
1+d < −1. This

implies d < −f ′(U)+1
2 . Since d ≥ 0, this leads to the condition f ′(U) < −1, which is necessary but

not sufficient. At a homogeneous polarised steady state (L,R) the inequality
(

f ′(R)+d
1+d

) (
f ′(L)+d

1+d

)
< 1

holds. Examples of L- and R-nullclines of systems with homogeneous polarised steady states are shown

in Figure 2.
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Figure 2: Nullclines for homogeneous states of (1) with f(x) = 1.5e−x2
and different choices of d; (a)

d = 0; (b) d = 0.08. The solid lines are the R-nullclines and the dashed lines the L-nullclines, the
homogeneous polarised steady states are indicated by stars, and the homogeneous unpolarised steady
state by a circle.

We next investigate the existence of an unpolarised period two pattern, i.e., lj = rj = V red for j

even and lj = rj = W for j odd. Since this pattern is independent of diffusion, system (1) reduces to

Ẇ = −W + f(V ),

V̇ = −V + f(W ),

which is essentially the same as the lateral inhibition system analysed in [4]. The period two pattern

exists if f ′(U) < −1 at the homogeneous steady state U of (1).

2.2 Stability analysis

In this section we analyse the stability of the homogeneous steady states of system (1) to homogeneous

and inhomogeneous perturbations. We start by linearising the system about a homogeneous steady
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state (L,R). Thus, with lj = L + l̃j and rj = R + r̃j , neglecting terms higher than first order, we get

˙̃
lj = −l̃j + f ′(R)r̃j−1 + d(r̃j − l̃j),

˙̃rj = −r̃j + f ′(L)l̃j+1 + d(l̃j − r̃j).

Suppose the solutions of the above system are of the form l̃j = L0e
ikj+λt and r̃j = R0e

ikj+λt, re-

spectively, where λ is the growth rate of perturbations with wave number k. Substituting into the

linearised equations, dividing by eikj+λt and omitting the tildes yields

λL0 = −L0 + f ′(R)R0e
−ik + d(R0 − L0),

λR0 = −R0 + f ′(L)L0e
ik + d(L0 −R0).

(2)

Nontrivial solutions of system (2) require

0 = det
[(

−1− d f ′(R)e−ik + d
f ′(L)eik + d −1− d

)
− λI

]
= det(A− λI). (3)

If Reλ < 0 for both solutions of (3), the homogeneous steady state is stable. Equivalently, for stability

tr(A) < 0 and det(A) > 0 have to hold. The first condition (tr(A) < 0) is always fulfilled. To

investigate the second one, we consider the case where the homogeneous steady state is both stable

to homogeneous perturbations (i.e., for k = 0) and unstable to inhomogeneous perturbations (i.e., for

at least one k 6= 0).

Homogeneous unpolarised steady state

First we suppose L = R = U , i.e., we consider a homogeneous unpolarised steady state. Furthermore,

assume k = 0, i.e., a homogeneous perturbation. Then, we get det(A) = 1 + 2d(1− f ′(U))− f ′(U)2,

which is greater than 0 if d > −f ′(U)+1
2 since f ′(U) < 0.

Now consider k 6= 0. For the determinant we get det(A) = 1 + 2(1− f ′(U) cos k)d− f ′(U)2. If d = 0

the homogeneous steady state is unstable for all k 6= 0 if f ′(U) < −1. Otherwise, it is unstable if

cos k < −f ′(U)2 − 1− 2d

2df ′(U)
, for some k 6= 0.

Hence, d has to satisfy

−1 < −f ′(U)2 − 1− 2d

2df ′(U)
.

Since f ′(U) < 0 and d > 0 we get

2d(f ′(U) + 1) < f ′(U)2 − 1 = (f ′(U) + 1)(f ′(U)− 1).

Thus,

2d < f ′(U)− 1, if f ′(U) > −1 (4)
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and

2d > f ′(U)− 1, if f ′(U) < −1. (5)

We see that equation (4) implies d < 0, which contradicts our assumptions, whereas (5) holds for all

d. Hence, for f ′(U) < −1 the homogeneous unpolarised steady state is unstable to inhomogeneous

perturbations.

Combining the results for k = 0 and k 6= 0 we conclude that if f ′(U) < −1 and d > −f ′(U)+1
2 hold,

system (1) exhibits spatial instabilities. Since Reλ is maximal if det(A) is minimal and k = π is a

minimum of det(A), π is the fastest growing mode. Hence, we expect to observe patterns of period

two.

To clarify these results Figure 3 shows the dispersion relation λ(k) of the largest eigenvalue λ of system

(1) for the inhibition function f(x) = 1.5e−x2
and different values of d. In this case f ′(U) = −1.1682

for the homogeneous unpolarised steady state U and therefore both the figure and the analysis above

show that there are instabilities for all d > 0.0841.
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Figure 3: Dispersion relation for the homogeneous unpolarised steady state (f(x) = 1.5e−x2
, different

values of d); d = 0, the homogeneous unpolarised steady state is unstable to homogeneous perturba-
tions, the polarised steady state arises; d ≥ 0.2, the homogeneous unpolarised steady state is stable to
homogeneous perturbations and unstable to inhomogeneous perturbations, we get period two patterns.

Homogeneous polarised steady state

As a next step we investigate the case L 6= R. The corresponding matrix is

A =
(

−1− d f ′(R)e−ik + d
f ′(L)eik + d −1− d

)
and its determinant is given by

det(A) = 1 + 2d− f ′(L)f ′(R)− (f ′(L)eik + f ′(R)e−ik)d.

For k = 0 we wish to obtain stability. Hence, we get d > f ′(L)f ′(R)−1
2−(f ′(L)+f ′(R)) which is true for all d ≥ 0,

because f is decreasing and f ′(L)f ′(R) < 1 (see Section 2.1). Again we seek instability for at least

6



one k 6= 0. Therefore, we get d < f ′(L)f ′(R)−1
2−(f ′(L)eik+f ′(R)e−ik)

< 0. This is a contradiction since we chose

d ≥ 0. Thus, if homogeneous polarised steady states exist they are always stable.

Period two patterns

We continue by analysing the stability of period two patterns. We take every two cells together and

label their sides with lj ,mrj ,mlj , and rj (derived from “left”, “middle right”, “middle left” and “right”

side, respectively). We linearise about a steady state (V,W ) using lj = V + l̃j ,mrj = V + m̃rj ,mlj =

W + m̃lj and rj = W + r̃j . Omitting higher order terms, this yields

˙̃
lj = −l̃j + f ′(W )r̃j−1 + d(m̃rj − l̃j),

˙̃mrj = −m̃rj + f ′(W )m̃lj + d(l̃j − m̃rj),

˙̃
mlj = −m̃lj + f ′(V )m̃rj + d(r̃j − m̃lj),

˙̃rj = −r̃j + f ′(V )l̃j+1 + d(m̃lj − r̃j).

Now suppose l̃j = Aeikj+λt, m̃rj = Beikj+λt, m̃lj = Ceikj+λt and r̃j = Deikj+λt. Therefore, we get

λA = −A + f ′(V )De−ik + d(B −A),

λB = −B + f ′(V )C + d(A−B),

λC = −C + f ′(W )B + d(D − C),

λD = −D + f ′(W )Aeik + d(C −D),

and the corresponding matrix is
−1− d d 0 f ′(V )e−ik

d −1− d f ′(V ) 0
0 f ′(W ) −1− d d

f ′(W )eik 0 d −1− d

 .

Let k = 0, i.e., assume period two pattern. The eigenvalues in this case are

λ1 = −1 +
√

f ′(V )f ′(W ),

λ2 = −1−
√

f ′(V )f ′(W ),

λ3 = −2d− 1 +
√

f ′(V )f ′(W ),

λ4 = −2d− 1−
√

f ′(V )f ′(W ).

Whenever the period two pattern exists f ′(W )f ′(V ) < 1 holds, and therefore Reλi < 0 for all i =

1, ..., 4. Hence, this state is always stable to perturbations of period two or less.

Now consider k 6= 0. The eigenvalues in this case are too complex to study analytically, but numerical
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analysis suggests that this steady state is always stable to inhomogeneous perturbations. Figure 4

shows the dispersion relation of the largest eigenvalue for a particular choice of f and different d. As

we can see the steady state is stable for every d > 0 we have chosen, which supports the results of the

numerical analysis.
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Figure 4: Dispersion relation for the growth rate of period two spatial perturbations (f(x) = 1.5e−x2
,

different values of d); the period two pattern is always stable.
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Figure 5: Summary of the dependence of the stability of steady states on f ′(U) and d. The dots
indicate the parameter values chosen for the simulations in Figure 6 (see Section 2.3).

The results of our linear stability analysis are summarised in Figure 5. There are three regions of

interest. Region (a) is characterised by 0 > f ′(U) > −1. For values in this region, the homgeneous

unpolarised steady state of system (1) is stable. Regions (b) and (c) are seperated by the line d =

−f ′(U)+1
2 (see Section 2.1). The period two pattern is stable in region (b) as well as region (c). The

homegeneous polarised steady state is only stable in region (c).

2.3 Numerical simulations

System (1) was simulated for a row of 100 cells, using the Matlab ODE solver ode45. At the boundaries

we assumed r0 = r1 and l101 = l100. Periodic boundary conditions gave similar results (results not

shown). Both are compatible with the boundary condition chosen for the analysis of the homogeneous
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steady states, but are incompatible with our analysis of the period two patterns. However, in this

case the effects of the boundary conditions are restricted to the three cells closest to the boundaries

as can be seen in Figure 6.

The plots in Figures 6–9 were generated using f(x) = ce−x2
with different values for c, different values

for d and four different types of initial conditions. We have also considered f(x) = 1
1+qxk with positive

q and k, but the results were similar, as expected from the analysis. For clarity, only the first 10 cells

are shown in each figure, but the patterns continue in the obvious way.

In the second column of Figure 6 we see that all cells evolve to the homogeneous unpolarised steady

state irrespective of the initial conditions, if c = 0.5 and d = 0.1. These results stay the same if d is

increased. This is consistent with our analysis, because for this choice of parameters f ′(U) > −1 at

the homogeneous unpolarised steady state U and therefore we are in region (a) of Figure 5. Hence,

by increasing d we do not cross any bifurcation lines.

The figures in the third column of Figure 6 display the final state for d = 0.4 and c = 1.5, with different

initial conditions shown in the first column of Figure 6. For these simulations we are in region (b)

of Figure 5. Hence, the numerical results support the results from the analysis that the unpolarised

steady state is stable to homogeneous perturbations. For inhomogeneous perturbations, period two

patterns arise, spreading out as a wave. Similar waves have been investigated in [11]. As expected,

the same patterns result if d is increased.

The results in the last column of Figure 6 show the final states for c = 1.5 and d = 0.08 and

the three different initial conditions displayed in the first column of Figure 6, respectively. They do

not change if d is decreased which again can be explained by looking at Figure 5 since we are now

in region (c). The last column of Figure 6 illustrates the fact that the homogeneous polarised steady

state and the inhomogeneous period two pattern are both stable for the same parameter values. The

final state achieved depends on the initial condition. Because of this we had a closer look at the initial

conditions by moving gradually from the one in the second row of Figure 6 to the one in the third row.

Therefore we decreased the initial value rj(0) for j ≥ 2 from 1.1 to 0.5 in 0.1 steps while lj(0) = 0.5

for j ≥ 2. The results are that down to rj(0) = 0.9 the cells become stably polarised. For rj(0) = 0.8

to rj(0) = 0.6 the cells are polarised transiently, but subsequently a patterning wave arises from the

left end of the row for the boundary conditions r0 = r1 and l101 = l100 or from both ends for periodic

boundary conditions. If rj(0) = 0.5 the patterning wave starts immediately and no polarisation takes

place. However, if we weaken the initial polarity of the initial condition in the second row of Figure 6

and decrease d we can still get the homogeneous polarised steady state.

These results show that apart from a small d and small f ′(U) we also need sufficiently uniform initial
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initial conditions c = 0.5 and d = 0.1 c = 1.5 and d = 0.4 c = 1.5 and d = 0.08
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Figure 6: Steady state patterns of PCP activity for system (1) for different initial conditions and
different choices of c and d. 100 cells were simulated, but only the first 10 are shown, for clarity.
Patterns in the rest of the domain continue in the obvious way.

conditions to achieve polarity. Inhomogeneous initial conditions will give rise to period two patterns,

which always spread as a wave. Therefore, a small diffusion coefficient d is essential to overcome

anomalies in initial conditions. This dependence is shown in Figure 7. If d is small enough the model

can overcome random noise in the system as well as correct single cells that are initially polarised in

the opposite direction to the surrounding cells (see Figure 7(b)). However, these single cells have to

be more weakly polarised than their neighbours. If we increase d the cells pointing in the opposite

direction give rise to a period two pattern (shown in Figure 7(c)).
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Figure 7: Initial condition with errors and the corresponding final states for system (1) for different
values of d and c; (a) initial condition, (b) result for d = 0.02 and c = 1.5, (c) result for d = 0.08 and
c = 1.5.
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Analysis of clones

To study PCP experimentally, clonal clusters of cells in which a certain gene is either knocked out or

overexpressed, are induced in the tissue [18]. The behaviour of the wild-type tissue around the clone

gives insight into the interplay of the genes involved in the process.

We consider two different ways of representing clones in our model. In the first, we change the initial

amount of activity in a group of cells in the row while having the same feedback in all cells. In the

second, we alter the strength of the feedback in a group of cells while having the same initial amount

of activity in every cell. The results of the first method (inclusion of a few cells in the row that have

less activity than the rest) are shown in Figure 8.

initial conditions d = 0.02 d = 0.07
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Figure 8: First column: initial conditions for clones containing either an odd or even number of cells
that have less initial activity in each cell than the surrounding cells and different strength of initial
global cue in the wild-type cells. The difference between left and right side in the first and third row
is 0.05 and in the second row 0.1; second and third column: the corresponding final states for system
(1) for c = 1.5 and different diffusion parameters.

We have considered clones comprising either an odd or even number of cells. Initially, we have

chosen two different strengths of global cue in the cells surrounding the clone. The difference between

left and right in the wild-type cells in the initial conditions in the first and third row of Figure 8 is 0.05

and in the second row 0.1. The second and third column of Figure 8 correspond to different values

for the diffusion parameter. In all cases we observe a wave of period two pattern, which is initiated at
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the interface between the clone and the surrounding cells and moves in both directions. How far this

wave spreads depends on the strength of the initial cue in the surrounding cells and the diffusion. For

a strong initial cue and small diffusion we get a short range of the effect of the clone. Increasing the

diffusion or decreasing the strength of the initial global cue in the wild-type cells increases the range

of the effect of the clone as shown in the first two rows of Figure 8.

For the even numbered clone we get similar results, apart from a peak that occurs in the clone instead

of a regular period two pattern. The results for a weak initial global cue in the cells surrounding the

clone are shown in the third row of Figure 8. Results for a strong initial global cue are analogous (not

shown). We get similar results if the activity in the cells in the clone is higher than in the rest of the

cells (results not shown).

Figure 9 shows the result of changing the strength of the feedback in a group of cells. The clones

in the first and second rows of Figure 9 have an odd and even number of cells, respectively. In the

initial conditions we chose the weak global cue with a difference of 0.05 between left and right sides in

the cells surrounding the clone. The diffusion parameter is set to 0.02. The second and third column

of Figure 9 differ in the choice of feedback strength in the clone. In the second column we chose

c = 1.4 and in the third c = 0.5. The feedback in the surrounding cells is always set to c = 1.5.

The two choices of feedback strength for the clone cells represent two different cases of steady state

behaviour. For c = 1.4 the homogeneous unpolarised steady state is unstable and period two patterns

or polarisation can arise; for c = 0.5 the homogeneous unpolarised steady state is stable.

In the first row of Figure 9 we see that the period two patterning wave which is initiated at the edges

of the clone spreads in both directions for c = 1.4, but does not pattern the clone for c = 0.5. In this

case the cells in the clone are unpolarised. The second row of Figure 9 shows that going from odd

numbers of cells in the clone to even numbers only the result for c = 1.4 changes essentially. Here,

again we see the peak arising in the clone, because the number of cells in the clone is not compatible

with the period of the pattern. Increasing the feedback strength above c = 1.5 yields similar results

to those for c = 1.4. We omit the results for changing the diffusion parameter and the strength of the

initial global cue in the wild-type cells, but they give the same dependence as shown in Figure 8 for

the clone with a different amount of activity than in the surrounding cells.

In all cases a wave of period two pattern is initiated at the clone boundaries and spreads out into

the surrounding cells with the range depending on the parameter values. The cells within the range of

the effect of the clone thus do not have an intracellular difference of activity, i.e., no polarity. This is

different to the phenomenon of domineering nonautonomy, which is seen in experiments. Depending

on which protein is lacking in the clone, polarity can be disrupted in such a way that the hairs in a
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initial conditions c = 1.4 in the clone c = 0.5 in the clone
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Figure 9: First column: initial conditions with odd and even numbered clones with different feedback
strength, surrounded by cells with feedback c = 1.5. All cells have a weak initial bias – the difference
between left and right is 0.05. Second and third columns: corresponding final states for system (1)
for c = 1.4 and c = 0.5 in the clone and d = 0.02.

few cells behind the clone point in the opposite direction to the rest of the wild-type cells. Therefore,

the experimental results show that the cells within the range of the effect of the clone have a polarity.

3 Conservative model

The second approach we consider is based on employing a conservative model. It describes the dynamic

redistribution of conserved PCP activities within the membrane of each cell. We again consider a row

lj+1lj rjrj−1
Diffusion

influence of 
adjacent cell

influence of 
adjacent cell

Figure 10: Schematic representation of the mechanism of the conservative model. A conserved PCP
activity within each cell is redistributed in response to juxtacrine intercellular signalling and intracel-
lular diffusion.

of two-sided cells with rj representing a generic PCP activity on the right side and lj on the left side

of cell j. These values may represent amounts of certain proteins. Additionally, the total amount of

activity in each cell is conserved, thus lj + rj = Q for all j. In contrast to the feedback and diffusion
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model, the amount of activity in a cell is not raised and lowered but redistributed within the cell,

depending on the amount of activity in the adjacent sides of the neighbouring cell. The model is

encoded by the following equations

l̇j = g(lj+1)rj − g(rj−1)lj + d(rj − lj),

ṙj = g(rj−1)lj − g(lj+1)rj + d(lj − rj),
(6)

where g is an increasing positive function, representing the influence of the adjacent cells on the

movement, and d ≥ 0 denotes the diffusion. Hence, if we look at a cell side and there is a large

amount of activity in the adjacent side of the neighbouring cell then a large proportion of the PCP

activity on the present cell side gets moved away from it. Similarly, if there is only a small amount

of activity in the adjacent side of the neighbouring cell only a small proportion of the amount on the

current side gets moved. Therefore cell sides with large amounts of activity in them repel activity in

the adjacent side of the neighbouring cell and small amounts attract activity to the adjacent side in

the neighbouring cell. The amount of activity at a cell side depends on the adjacent cell sides of both

neighbours, because they determine how much gets moved toward this cell side and how much gets

moved away from it.

We again apply a steady state analysis followed by numerical simulations. For the steady state analysis

we assume an infinite row of cells.

3.1 Existence of steady states

Substitution of rj = Q− lj into (6) and setting Lj := lj
Q yields

L̇j = g(Lj+1)(1− Lj)− g(1− Lj−1)Lj + d(1− 2Lj). (7)

Our rescaling implies 0 ≤ Lj ≤ 1. The homogeneous unpolarised steady state is Lj = 1
2 for all j,

which always exists. A homogeneous polarised steady state L 6= 1
2 exists if

d =
g(1− L)L− g(L)(1− L)

1− 2L
. (8)

Defining d(L) := g(1−L)L−g(L)(1−L)
1−2L , this function has a singularity at L = 1

2 . Furthermore, we get

d(0) = d(1) = −g(0). Since g is a positive function and d has to be nonnegative the completely

polarised homogeneous steady states L = 1 or L = 0 exist only if g(0) = 0.

Following the same arguments, reformulating (8) yields that a steady state L with 0 < L < 1
2 exists

only if
g(1− L)

g(L)
>

1− L

L
for 0 < L <

1
2

(9)

and a steady state with 1
2 < L < 1 only if

g(1− L)
g(L)

<
1− L

L
for

1
2

< L < 1. (10)
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Figures 11 and 12 show plots for g(L), g(1−L)
g(L) , 1−L

L and d(L) for g1(L) = L3

0.23+L3 and g2(L) = L3

0.63+L3 .

For g1 only certain values of L are steady states for some d > 0 as shown in Figure 11(b)-(d), whereas

Figures 12(b) and (c) show that for g2, every 0 < L < 1 with L 6= 1
2 is a steady state for some positive

d. Comparing g1 and g2 we notice that the parameter in the denominator determines which case will

occur.
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Figure 11: Illustration of the existence of polarised steady states of system (6) for g1(L) = L3

0.23+L3 ;

only values of L close to 0 and close to 1 are polarised steady states; (a) plot of g1, (b) plot of g1(1−L)
g1(L)

and 1−L
L (larger scale), (c) plot of g1(1−L)

g1(L) and 1−L
L (zoomed in), (d) plot of d(L), showing that it is

only positive for values of L close to 0 and close to 1; the circle at L = 0.5 indicates the singularity.
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Figure 12: Illustration of the existence of polarised steady states of system (6) for g2(L) = L3

0.63+L3 . All

0 < L < 1 with L 6= 1
2 are polarised steady states; (a) Plot of g2(L), (b) Plot of g2(1−L)

g2(L) and 1−L
L . The

two curves intersect only once, hence, conditions (9) and (10) are fulfilled and the polarised steady
state exists always. (c) Plot of d(L), it is positive for all L which we consider. The circle at L = 0.5
indicates the singularity.

Unpolarised period two patterns cannot arise because the initial amount of activity is the same in

each cell and is conserved within a cell. In Section 3.2 we show that polarised period two patterns do

not exist either.

3.2 Stability analysis

Linearising (7) about a steady state L and assuming Lj = L + l̃j yields

˙̃
lj = g(L + l̃j+1)(1− L− l̃j)− g(1− L− l̃j−1)(L + l̃j) + d(1− 2L− 2l̃j)

≈ −g(L)l̃j + g′(L)l̃j+1(1− L)− g(1− L)l̃j + g′(1− L)l̃j−1L− 2dl̃j .
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Suppose l̃j = L0e
ikj+λt; dividing by eikj+λt we get

λL0 = (−g(L) + g′(L)eik(1− L)− g(1− L) + g′(1− L)e−ikL− 2d)L0, (11)

which yields the dispersion relation λ(k) = −g(L) + g′(L)eik(1−L)− g(1−L) + g′(1−L)e−ikL− 2d.

Figure 13 shows λ(k) for the homogeneous unpolarised steady state with g(x) = 2x5

0.65+x5 and different

values of d.
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Figure 13: Dispersion relation of the homogeneous unpolarised steady state (L = 0.5) of (7) for
g = 2x5

0.65+x5 and different values of d. For d ≤ 0.5 the system is unstable to homogeneous perturbations
for certain k, and the system polarises. For d ≥ 1.5 the system is stable to homogeneous perturbations,
so all cells remain unpolarised.

Because of (11) the homogeneous unpolarised steady state L = 1
2 is stable if −g(1

2)+ 1
2g′(1

2) cos k <

d for all k, i.e., if

−g

(
1
2

)
+

1
2
g′

(
1
2

)
< d, (12)

since g′(x) > 0 for all x. Setting h(L) := g(L)(1 − L) − g(1 − L)L + d(1 − 2L), the right hand side

of (7) at a homogeneous steady state, (12) can be written as h′(1
2) < 0. The homogeneous polarised

steady state L 6= 1
2 is stable if

−g(L) + g′(L) cos k(1− L)− g(1− L) + g′(1− L)L cos k

2
< d for all k, (13)

since g is real. The left hand side of (13) is maximal for cos k = 1. Thus, if (13) holds for k = 0 it

holds for any k. This stability condition can be written as h′(L) < 0. Thus, the system cannot be

simultaneously stable to homogeneous perturbations and unstable to inhomogeneous perturbations.

Furthermore, the fastest growing mode is k = 0. Therefore, even polarised period two patterns, for

which the total amount of activity in each cell would be conserved, cannot arise.

In summary, defining h(L) := g(L)(1 − L) − g(1 − L)L + d(1 − 2L) yields h(0) ≥ 0, h(1) ≤ 0,

h(0) = −h(1), h(1
2) = 0 and h′(0) = h′(1). Hence, the graph of h is rotationally symmetric about

(1
2 , 0). The stability analysis reveals that a homogeneous steady state L is stable if h′(L) < 0. De-

pending on the forms of the function f and on the value of d, the function h has different forms, as
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illustrated in Figure 14. In Figure 14(a) there is a stable pair of homogeneous polarised steady states

and the homogeneous unpolarised steady state is unstable. Figure 14(b) and (c) show two cases in

which only the homogeneous unpolarised steady state exists and is stable. We call these first three

cases monostable. The last case, in Figure 14(d), we refer to as a bistable case because a pair of

homogeneous polarised steady states as well as the homogeneous unpolarised steady state are stable.

Furthermore, there exists a second pair of homogeneous polarised steady states, which are unstable.
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Figure 14: Graphs of h(L) for different forms of g and vallues of d. (a) Monostable case, g(x) = 2x5

0.65+x5

and d = 0; (b) monostable case, g(x) = 2x5

0.65+x5 and d = 1.5; (c) monostable case, g(x) = x
0.05+x and

d = 0.2; (d) bistable case, g(x) = 2x6

0.46+x6 and d = 0.8.
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Figure 15: Bifurcation diagrams for (a) g(x) = 2x5

0.65+x5 and (b) g(x) = 2x6

0.46+x6 ; increasing d above a
threshold disrupts polarity.

Figure 15 shows the bifurcation diagrams for g(x) = 2x5

0.65+x5 and g(x) = 2x6

0.46+x6 . The diagram for

our third choice of g was omitted because in this case the homogeneous unpolarised steady state is the

only stable steady state for any d. In the two cases in Figure 15, increasing the diffusion parameter

d above a certain threshold, depending on g, disrupts polarity and results in only the homogeneous

unpolarised steady state being stable. However, for values of d below these thresholds the behaviour

of the system depends on the function g. In the first case, depicted in Figure 15(a), the polarity gets

weaker if we increase d from zero until the two branches for the two homogeneous polarised steady

states merge with the branch for the homogeneous unpolarised steady state. On the contrary, in the

second case the branches for polarised steady states do not merge but the states disappear in a pair

of saddle-node bifurcations if d is increased above about 0.9.
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3.3 Travelling wave solutions

If g′(1
2) > 2 (g(1

2) + d), system (7) has an unstable unpolarised steady state L = 1
2 and a stable

polarised steady state L∗ > 1
2 . Thus, we expect waves taking Lj = 1

2 to Lj = L∗ similar to the

travelling wave solutions of Fisher’s equation [9], but in a discrete system like the ones studied by

Elmer and Van Vleck [5], Keener [6] and Owen [10]. Introduction of the travelling wave coordinate

s = j − ct with Lj(t) = f(j − ct) = f(s) yields

−c
d f

d s
= g(f(s + 1))(1− f(s))− g(1− f(s− 1))f(s) + d(1− 2f(s))

with

0 ≤ f ≤ 1, lim
s→−∞

f(s) = L∗ and lim
s→+∞

=
1
2
.

Linearising about a steady state F with f(s) = F + f̃(s), we get

−c
˙̃
f(s) ≈ −g(F )f̃(s) + g′(F )f̃(s + 1)(1− F )− g(1− F )f̃(s) + g′(1− F )f̃(s− 1)F − 2df̃(s).

Assuming f̃(s) = F0e
λs and dividing by F0e

λs yields

−cλ = −g(F )− g(1− F ) + g′(F )eλ(1− F ) + g′(1− F )e−λF − 2d. (14)

Provided the initial amount Lj(0) ∈ [12 , L∗), the activity on the left side of the cell will never decrease

below 1
2 . We will show this by contradiction. Let Lj(0) ≥ 1

2 for all j and assume j = k is the first

point at which Lj crosses through 1
2 at time t = t∗. Hence, we would have Lk(t∗) = 1

2 , Lk+1(t∗) ≥ 1
2 ,

Lk−1(t∗) ≥ 1
2 and L̇k(t∗) ≤ 0. However, substituting Lk = 1

2 into (7) yields

L̇k =
1
2
(g(Lk+1)− g(1− Lk−1)) ≥ 0,

with equality only if Lk+1 = Lk−1 = 1
2 , since g is increasing. This is a contradiction; thus, there are no

spatially oscillatory solutions of system (7) given the above initial conditions. Thus, the wave speed

c is determined by the condition that there have to be real roots of equation (14). Assuming F = 1
2 ,

i.e., looking ahead of the wave, (14) yields

−cλ = −2
(

g

(
1
2

)
+ d

)
+ g′

(
1
2

)
cosh(λ), (15)

with the two cases

−2
(

g

(
1
2

)
+ d

)
+ g′

(
1
2

)
< 0 (L = 1

2 is stable): two real roots for all c,

−2
(

g

(
1
2

)
+ d

)
+ g′

(
1
2

)
> 0 (L = 1

2 is unstable): real roots only if c ≥ cmin.
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Figure 16 shows the plots of the two sides of (15) for g(x) = 2x5

0.65+x5 and d = 1.9 as an example of

the first case and for the same g and d = 0 as an example of the second case (see also Figure 15(a)).

We can see that the right hand side of (15) is minimal at zero. In the first case in Figure 16(a) the

value at this minimum is less than zero, whereas in the second case it is greater than zero (see Figure

16(b)). Since all graphs for the left hand side of (15) go through the origin we get two real roots for

all c in Figure 16(a) and only real roots for c above a certain minimum value in Figure 16(b). For our

choice of g and d this minimum value lies between 5 and 6.
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Figure 16: Graphs of the two sides of equation (15) for g(x) = 2x5

0.65+x5 and different d to determine
the possible wave speeds c of the travelling wave solution of system (7) (solid line c = 6, dashed line
c = 5); (a) d = 1.9, there are two real roots for all c, i.e. any c is a wave speed; (b) d = 0, we only get
real roots if c ≥ cmin, i.e. a minimum wave speed cmin exists, in this case 5 < cmin < 6.

As a next step we assume that initially we have a single polarised cell (Lp, Rp) in the middle of

a row of unpolarised cells. For suitable choices of g and d, a polarising wave is initiated by cell p

and spreads out in both directions into the unpolarised regions. We want to analyse the speed of this

wave. To simplify matters we assume d = 0 and (Lp, Rp) either (L∗, 0) or (0, L∗) for L∗ > 1
2 . Let

Lp = L∗ in the initial conditions.

RpLpLp−1 Rp−1 Lp+1Rp+1

. . . . . .

0

1

2

L
∗

Figure 17: Initial conditions, which we assume to show that the speed of a travelling wave solution of
system (7) may depend on its direction.
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By substituting in (7) we get

L̇p+1 =
1
2

(
g

(
1
2

)
− g(1− L∗)

)
≥ 0,

L̇p−1 =
1
2

(
g(L∗)− g

(
1
2

))
≥ 0,

since g is increasing. Therefore, if g(1
2) − g(0) < g(L∗) − g(1

2), the wave initially moves faster to the

left (decreasing indices). By symmetry we conclude if Lp < 1
2 initially and g(1

2)− g(0) < g(L∗)− g(1
2),

the early wave moves faster to the right (increasing indices). This analysis suggests that the speed of

the wave may depend on its direction.

3.4 Numerical Simulations

We simulated the model (6) for a row of 100 cells using the Matlab ODE solver ode45. The boundary

conditions were l0 = l1 and l101 = l100, which are compatible with the boundary conditions we chose for

the analysis of the homogeneous steady states. Moreover, we will see in Figure 19 that the boundary

conditions do not have an effect on the travelling wave solution as soon as the wave front has moved

away from the boundary. Figures 18 and 19 show the final states for two different initial conditions.

In Figure 18(a) there is an imbalance in each cell for the whole row. The simulations were performed

using g(x) = 2x5

0.65+x5 , a function for which we analysed the properties of system (6) in Section 3.2.

Consistent with our analysis we get the completely polarised steady state for d = 0 (see Figure 18(b)),

which gets weaker as we increase d (see Figure 18(c)) and disappears once d is greater than a certain

threshold (see Figure 18(d)). These results match the corresponding bifurcation diagram in Figure

15(a). The direction of polarisation of the homogeneous polarised steady state depends only on the

direction of the initial conditions. For g(x) = 2x6

0.46+x6 and d = 0.5, a bistable case (see Figure 15(b)),

we need sufficiently strongly polarised initial conditions to get polarisation, otherwise the homogeneous

unpolarised steady state occurs (result not shown). This is not surprising as we know from the analysis

that both states are stable for this choice of g and d.
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Figure 18: Final states for system (6) with g(x) = 2x5

0.65+x5 and different values of d; (a) initial condition,
Lj = 0.49 for all j; (b) result for d = 0, strong polarity; (c) result for d = 1, weaker polarity; (d) result
for d = 1.9, unpolarised steady state.
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Figure 19: Wave propagation. (a) Initial condition; (b)–(e) the state of system (6) at different points
in time for g(x) = 2x5

0.65+x5 and d = 0.

With the initial condition depicted in Figure 19(a) only the first cell of the row is polarised while

the rest remain unpolarised. For small values of d this results in the propagation of a wave that

propagates with a speed that depends on g. The wave for g(x) = 2x5

0.65+x5 and d = 0 is shown in Figure

19. Weakening the polarity in the first cell of the initial condition does not change the result.

The analysis in Section 3.3 shows that, for our chosen g(x) = 2x5

0.65+x5 and d = 0, there exists a

minimum wave speed which is 5.15. The wave speed calculated from the simulations is 5.09, which

matches the theoretical value reasonably well. A difference of the wave speed for different directions

could not be detected. We have conducted the same calculations and simulations for other choices of

g. The results are summarised in Table 1, which shows the theoretical value for the minimum wave

speed and the numerical values for both directions of the wave.

Wavespeed
Function g, Theoretical Numerical value
Diffusion d minimum value First cell init. (0,1) First cell init. (1,0)

g(x) = x3

0.63+x3 , d = 0 1.4 1.4 1.4
g(x) = 3x4

0.74+x4 , d = 0 4.83 4.8 4.8
g(x) = 2x6

0.46+x6 , d = 0 2.52 2.4 5.2
g(x) = 4x3

0.53+x3 , d = 0.5 3.51 3.4 4.3

Table 1: Theoretical and numerical results of wave speed calculations for different choices of g and d
and different initial conditions.

The theoretical value of the minimum wave speed and the minimum of the numerical values of the

wave speed agree well. In the first two cases the wave speed does not depend on the direction, whereas
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in the third and fourth case we get a significant difference. For the two latter cases the wave is faster

if the first cell in the initial conditions is polarised to the left, i.e., (L1, R1) = (1, 0). This matches our

analysis since for both g the inequality g(0.5)− g(0) > g(1)− g(0.5) holds.
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Figure 20: Analysis of the travelling wave solution of system (6) for g(x) = 2x6

0.46+x6 . (a) Initial
condition which gives wave reversal; (b) Graph of wave speed for initial condition in (a); (c) Initial
condition which does not give propagation failure; (d) Graph of wave speed for initial condition (c).

We analysed the travelling wave solution for g(x) = 2x6

0.46+x6 in more detail. In the corresponding

bifurcation diagram (see Figure 15(b)) we can see that there is an interval [d1, d2] for which system

(6) is bistable. Starting with the initial condition shown in Figure 20(a) we found out that for d < d1

the wave front moves to the right into the unpolarised region and for d > d1 it moves to the left into

the polarised region. Hence, we expect propagation failure at d1. This is supported by the graph

in Figure 20(b). We plotted the wave speed against the diffusion parameter d for system (6) with

g(x) = 2x6

0.46+x6 . As we can see the wave speed is positive up to a d close to 0.4 and then becomes

negative. If we choose the initial condition in Figure 20(c) we do not get propagation failure (see

Figure 20(d)). We obtained similar results for other choices of g for which system (6) is bistable for

some d.

Behaviour for irregularities in the initial conditions

To analyse the behaviour of the model when the initial conditions contain irregularities we distinguish

between polarisation because of a global weak initial polarity as in Figure 18 and polarisation via a

wave as in Figure 19. In the case of the global weak initial polarity we have introduced a couple of

cells that are weakly polarised in the wrong direction (see Figure 21 (a)). We choose g(x) = 2x5

0.65+x5 ,

the function used to generate Figures 18 and 19. In Figure 21 we see that each cell in the row initiates

a wave and the meeting of the wave fronts determines whether an irregularity is corrected. For our

choice of parameter values and initial conditions we get correct polarity over the whole row.

To analyse the potential of the wave to overcome anomalies in the initial conditions we included

one cell that points in the wrong direction (see Figure 22(a)). We chose g(x) = 2x6

1.56+x6 and d = 0. Two

waves are initiated and the one propagating polarity to the right finally overcomes the one initiated
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Figure 21: Irregularities in the global initial polarity. (a) Initial condition; (b)–(e) state of the system
(6) at different points in time for g(x) = 2x5

0.65+x5 and d = 0.
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Figure 22: Waves can correct single cells. (a) Initial condition–one cell is initially polarised in the
wrong direction; (b)–(d) state of the system (6) at different points in time for g(x) = 2x6

1.56+x6 and
d = 0.
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by the irregular cell. Hence, waves can overcome single cells that initially point the wrong way.

Most of the dynamics in a row of cells can be explained by the interactions of only two cells. These

are summarised in the phase plane in Figure 23, for which we chose the same g and d as in Fig-

ure 22. There are four steady states (two stable and two unstable) indicated by crosses. Note that

(L1, L2) = (0, 1) is not a steady state. If we imagine the diagonal from (0, 1) to (1, 0), for every initial

condition above this diagonal the system will tend to (1, 1) and from anywhere below the diagonal it

will tend to (0, 0). For example, if we start at about (0.35, 0.65), corresponding to cells 5 and 6 in

Figure 22(b) the phase plane predicts these two cells will tend to the steady state (L5, L6) = (0, 0).

An example of this behaviour is shown in Figure 22(c).
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Figure 23: Phase plane for the two cell model with g(x) = 2x6

1.56+x6 and d = 0. There are four steady
states, indicated by crosses, two of which are stable. Initial conditions above the diagonal from (0,1)
to (1,0) yield the steady state (1,1) and initial conditions below the diagonal give rise to (0,0).

The analysis reveals that whether or not a wrongly polarised cell can be corrected by a polarising

wave depends on the initial distance between this anomaly and the wave front and the strength of the

anomaly. In addition we have to take into account that the wave has a different speed depending on

its direction. In Figure 22 the wave to the right initiated by cell 1 is faster than the wave in the same

direction initiated by cell 8. Therefore it is possible to achieve correct polarity.

Analysis of clones

Similar to Section 2.3 we include clones in the row of cells and investigate their effects on the sur-

rounding cells. Figure 24 shows the results for a clone in which the cells have less activity than the

wild-type cells. As feedback function we have chosen g(x) = 2x6

0.46+x6 . The corresponding bifurcation

diagram for this choice of g in Figure 15(b) shows that system (6) exhibits two bifurcations at d1 ≈ 0.4

and d2 ≈ 0.9. The initial conditions are shown in the first column of Figure 24.

The difference between the two initial conditions is the strength of the initial global cue in the

surrounding wild-type cells. Columns two to four display the resulting final states for different values

of d. At both boundaries of the clone a patterning wave is initiated which propagates away from the
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initial conditions d = 0 d = 0.3 d = 1.3
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Figure 24: Final states of system (6) for a clone with low activity (shown in grey) and a weak initial
polarisation in the surrounding cells. In the first row the difference between left and right side is
initially 0.07; in the second row 0.19. Simulations performed using g = 2x6

0.46+x6 and different values of
d.

clone.

Domineering nonautonomy occurs in the direction of the initial global cue. As can be seen in Figure

24, its range depends both on the strength of the global cue in the surrounding cells and on the

diffusion parameter. Increasing d up to d2 increases the range of the effect of the clone. If d > d2,

the wave initiated at the clone boundaries spreads only a few cells into the surrounding region. The

rest of the wild-type cells are unpolarised. This is due to the fact that for this choice of g and d the

polarised state is no longer a steady state of system (6). In this case, the unpolarised state is the only

stable steady state (see also Figure 15(b)). Simulations using g(x) = 2x5

0.65+x5 gave similar results.

As a next step, we set the activity in the clone to be higher than in the surrounding cells. If we

choose g(x) = 2x5

0.65+x5 (see Figure 15(a) for corresponding bifurcation diagram), the disrupting effect

of the clone spreads in the direction opposite to the direction of the initial global cue in the wild-type

cells (see Figure 25(b)). As above, a weaker initial global cue yields a wider range of domineering

nonautonomy. Furthermore, increasing d up to the bifurcation point d3 increases the range of the effect

of the clone. For d > d3, the wave initiated by the clone spreads only three cells into the surrounding

region. The rest of the wild-type cells are unpolarised. This is because the unpolarised state is the

only stable steady state of system (6) for this choice of parameter values.

For g(x) = 2x6

0.46+x6 , the clone does not affect polarity in surrounding cells for small d as shown in

Figure 25(c). This is due to the difference in wave speed in different directions for this function (see

Table 1). Any possible disruptions get corrected by a fast wave coming from the opposite side of the

clone and moving through the clone. For d = 0.5, which is greater than d1, the unpolarised steady
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Figure 25: Final states of system (6) for a clone with high activity (shown in grey) and a weak initial
polarisation in the surrounding cells. (a) Initial condition in which the difference between left and
right side in the wild-type cells is 0.19. (b) Final states for g(x) = 2x5

0.65+x5 and different values of d.

(c) Final states for g(x) = 2x6

0.46+x6 and different values of d.

state spreads as a wave from the clone in the direction opposite to the direction of the initial global

cue. If we decrease the strength of the initial global cue in the wild-type cells, the polarisation of the

cells on the other side of the clone fails as well and we get a result similar to the one for d = 1.3, which

shows propagation failure on both sides of the clone.

Assigning a different feedback strength to cells in the clone to that in the surrounding cells only

yields an effect if for the chosen diffusion parameter d the stability of system (6) is different for the two

g. Let g1(x) = 2x6

0.46+x6 represent the feedback function in the wild-type cells and g2(x) = 2x5

0.65+x5 the

feedback in the clone. The clone only affects surrounding cells if d1 < d < d3. If d = 0.5, the polarised

state is the only stable steady state of system (6) for g2 and for g1 system (6) is bistable (see Figure

15). In this case a polarising wave is initiated in the clone and from there it spreads in the direction

opposite to the direction of the initial global cue (first row of Figure 26). Increasing the initial global

cue sufficiently will yield polarisation of the whole row because then for the chosen g1 system (6) tends
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Initial condition d = 0.5 d = 1.1
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Figure 26: Effects of a clone of cells with different strength of feedback than that in the surrounding
cells. First row: feedback in the wild-type cells is represented by g1(x) = 2x6

0.46+x6 , feedback in the clone

by g2(x) = 2x5

0.65+x5 ; second row: g2 represents the feedback in the wild-type cells and g1 the feedback
in the clone.

to the polarised steady state. If d = 1.1, for g1 system (6) is monostable and the stable steady state is

Lj = 1
2 for all j; for g2 the polarised steady state is still stable. We get a polarising wave initiated in

the clone, that only spreads a couple of cells into the surrounding cells. It spreads a little further in

the direction opposite to the direction of the initial global cue (see Figure 26, first row, last column).

If we choose g1 as the feedback function in the clone and g2 for the feedback in the surrounding cells

we get the polarised steady state in the whole row for d = 0.5. There is, however, a slight difference

in the amount of activity between the clone and the surrounding cells, in that the peaks in the clone

are slightly higher (see Figure 26, second row, second column). For d = 1.1 a polarising wave spreads

from both ends into the clone. Whether or not this wave can polarise the clone completely depends

on the size of the clone, as shown in Figure 27. In Figure 27(b) the wave from the right side spreads

further into the clone than from the left side because for our choice of g the wave is faster in that

direction. Changing the strength of the initial global cue does not alter how far the waves spread into

the clone (not shown).

4 Discussion

Based on the general consensus that the conserved second tier of PCP generation depends on a feedback

loop that amplifies an initial global cue, we have developed models based on two generic feedback

mechanisms that can generate polarity. To maximise the mathematical tractability of the models,

we have used simple systems of equations that encompass a wide range of more specific mechanistic
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Figure 27: The effect of a large clone of cells with different strength of feedback to that in the
surrounding cells; g2(x) = 2x5

0.65+x5 represents the feedback in the wild-type cells and g1(x) = 2x6

0.46+x6

the feedback in the clone. (a) Initial condition; (b) Final state for system (6) for d = 1.1.

models. We have employed a combination of linear stability analysis and numerical simulations to

investigate the patterns of cell polarity that each model can generate.

The feedback and diffusion model can generate both period two and polarised patterns. To achieve

polarisation, the intercellular feedback has to be sufficiently strong and the intracellular diffusion

sufficiently weak. Moreover, uniform initial conditions are needed. We have also shown that the

model can overcome small anomalies in the initial conditions. Analysis of clones of cells that have a

different amount of activity than the surrounding cells revealed that the range of the effect of these

clones depends on both the strength of the initial global cue in the surrounding wild-type cells and on

the value of diffusion parameter. These results also hold for clones in which the strength of the feedback

is different to that in the surrounding cells. The feedback and diffusion model is not conservative —

the PCP activity in a cell can be time-varying. However, if the activity in this model is interpreted

as representing non-conserved protein complexes, the overall amounts of the proteins that combine to

form complexes could be conserved in each cell. Furthermore, this type of conservative model can be

derived by elimination of variables in a conservative model. As an example of this, assume that a cell

is divided into three parts: a left, a right and a central compartment. Representing the activity in

each compartment in cell j by lj , rj and cj , respectively, a model corresponding to the system can be

written as:

l̇j = −lj + f(rj−1) + d(rj − lj),

ṙj = −rj + f(lj+1) + d(lj − rj),

ċj = lj + rj − f(rj−1)− f(lj+1),

for which u̇j + l̇j + ṙj = 0. Thus, although the model as a whole is conservative, the activities on the

left and right sides of a cell may not be conserved (if the central compartment is not considered in the

model).

As an alternative approach, we have proposed a conservative model that can generate polarisation of

a row of cells either as a result of a global weak initial polarisation of every cell or via a travelling
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wave emanating from a single cell or boundary. Both can be reasonable ways of spreading polarity

over a whole region of cells. In addition to investigating the stability of steady states in this model,

we also explored the factors that determine the behaviour of the travelling wave. We found that

in some cases the speed of the wave depends on its direction of travel. Furthermore, for certain

feedback functions and diffusion coefficients, wave reversal could be detected. We demonstrated that

this model has the potential to correct irregularities in the initial conditions for both a global initial

polarity cue and under conditions that result in a travelling wave. We also analysed the effects of

clones on the surrounding cells. For clones of cells having a different amount of PCP activity than that

in surrounding cells, the strength of the initial global cue in the wild-type cells and the strength of

the intracellular diffusion influenced the range of the effect of the clone. Especially for the clones with

different strength of feedback compared to the surrounding cells, the effect of the clone was dependent

on the stability behaviour of the model for the chosen parameters.

We have restricted our analysis of the two models to one spatial dimension. However, both can be

extended to fields of square or hexagonal cells. Taking the feedback and diffusion model as an example,

we can formulate the system of equations for a field of square cells as illustrated in Figure 28 as

l̇i,j = −li,j + f(ri,j−1) + d(ai,j + bi,j − 2li,j),

ṙi,j = −ri,j + f(li,j+1) + d(ai,j + bi,j − 2ri,j),

ȧi,j = −ai,j + f(bi−1,j) + d(li,j + ri,j − 2ai,j),

ḃi,j = −bi,j + f(ai+1,j) + d(li,j + ri,j − 2bi,j),

(16)

where f is a decreasing positive function, with f(0) finite and positive and d ≥ 0. In addition, the

analysis of the models can be extended to spatially-graded initial conditions. Since there is to date

no specific experimental evidence supporting a particular form for the polarity cues generated by the

first tier of the PCP mechanism, a weak initial polarity in each cell and an initial gradient are both

potentially reasonable forms of initial cues.
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Figure 28: Labelling of cells in a two-dimensional model (16).

In contrast to the existing models by Le Garrec et al. [8] and Amonlirdviman et al. [2], the models
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that we study here are not based on detailed assumptions about interactions of specific PCP core

proteins. Rather, they encode a more general picture of possible mechanisms driving the second tier

of the PCP mechanism. This approach raises several questions. In both our models, the strength

of intracellular diffusion is a key component, which affects the behaviour of the models. It would be

interesting to investigate experimentally whether changing intracellular movement affects the overall

pattern of planar polarity in a system such as the Drosophila wing. Furthermore, we refer to the

variables in our models as amounts of “activity”, leaving open the question of what they represent in

terms of specific molecular species. A concrete assignment of molecular identity to the activities in our

models depends on the answer to a key question: what is it that polarises cells? In wild-type tissue

of the Drosophila larval wing, the core PCP proteins become distributed asymmetrically in the mem-

brane of cells shortly before the hairs start to grow. However, recently reported experiments show that

Drosophila larval wings that are mutant for certain core proteins do not display asymmetric distribu-

tion of the core proteins, but nonetheless show normal hair development [15]. These results suggest

that mechanisms other than asymmetric localisation of the core PCP proteins may be polarising the

cells, such as asymmetric distribution of certain protein complexes or other intracellular components.

Comparing experimental findings with the different behaviour of our models under different parameter

combinations will also provide an opportunity to rule out parameter sets and give a better idea of the

underlying feedback mechanism.
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