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Abstract

Understanding the mode-locked response of excitable systems to periodic forc-

ing has important applications in neuroscience. For example it is known that spa-

tially extended place cells in the hippocampus are driven by the theta rhythm to

generate a code conveying information about spatial location. Thus it is important

to explore the role of neuronal dendrites in generating the response to periodic

current injection. In this paper we pursue this using a compartmental model, with

linear dynamics for each compartment, coupled to an active soma model that gen-

erates action potentials. By working with the piece-wise linear McKean model

for the soma we show how the response of the whole neuron model (soma and

dendrites) can be written in closed form. We exploit this to construct a strobo-

scopic map describing the response of the spatially extended model to periodic

forcing. A linear stability analysis of this map, together with a careful treatment

of the non-differentiability of the soma model, allows us to construct the Arnol’d

tongue structure for 1:q states (one action potential for q cycles of forcing). Impor-

tantly we show how the presence of quasi-active membrane in the dendrites can

influence the shape of tongues. Direct numerical simulations confirm our theory

and further indicate that resonant dendritic membrane can enlarge the windows

in parameter space for chaotic behavior. These simulations also show that the spa-

tially extended neuron model responds differently to global as opposed to point

forcing. In the former case spatio-temporal patterns of activity within an Arnol’d

tongue are standing waves, whilst in the latter they are traveling waves.
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1 Introduction

Neurodynamical models based on spiking neurons are playing an increasing role in

the interpretation of neurophysiological data. Neurons uses a variety of coding mech-

anisms to represent stimuli. The most prominent of these being spike and rate based

[Dayan and Abbott, 2001]. Importantly the precise timing of action potential firing

events that can be generated by biological neurons is thought to underlie several dif-

ferent forms of sensory processing [Rieke et al., 1997, Hunter et al., 1998]. The role of

precisely timed spikes has also been shown to have importance in higher brain regions

such as cortex and neo-cortex

[Azouz and Gray, 2000, Fellous et al., 2001, Mainen and Sejnowski, 1995]. To probe the

nature of the neural spike code it is natural to consider experiments whereby a single

neuron is forced with a periodic signal. In the case of the squid giant axon

[Aihara et al., 1986, Kaplan et al., 1996], spinal interneurons [Beierholm et al., 2001] and

cortical pyramidal cells [Brumberg and Gutkin, 2007] this has been shown to lead to so-

called mode-locked responses. Briefly these characterize responses describing p peri-

ods of oscillation per q periods of the forcing. One area in particular where neural spike

timing on a millisecond time scale and mode-locking have been linked is in the study

of mechanoreceptor responses to periodic vibrations [Freeman and Johnson, 1982]. In

some instances this periodic forcing can be thought of as emulating real sensory input

or input from other brain regions. An example of the latter would be hippocampal cells

driven by the theta rhythm [Huhn et al., 2005, Lengyel et al., 2003]. A detailed math-

ematical framework for understanding mode-locking in point oscillator models now

exists, (see [Glass and Mackey, 1988, Pikovsky et al., 2001] for an overview), although

the extension to spatially extended systems is still in its infancy [Lin et al., 1999]. The

techniques for understanding mode-locking in point oscillators have now been ap-

plied to several neuron models [Nagumo and Sato, 1972, Yoshino et al., 1999] includ-

ing variants of the popular integrate-and-fire (IF) model such as the leaky IF model

[Keener et al., 1981, Coombes and Bressloff, 1999], the IF-or-burst model

[Coombes et al., 2001] and the “ghostburster” model [Laing and Coombes, 2005]. These

particular IF models do not attempt to mimic the shape of the action potential (AP) in

a real neuron. The study of mode-locking in a conductance based Hodgkin-Huxley

model [Aihara et al., 1984], capable of generating a realistic AP shape, is challenging

due to the complexity of the underlying single neuron model. Indeed mathematical
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progress is typically only possible with the use of a numerically constructed Poincaré

map, as in the work of [Lee and Kim, 2006]. The simpler FitzHugh-Nagumo (FHN)

model suffers from a similar lack of analytical tractability

[Sato and Doi, 1992, Doi and Sato, 1995]. However, the McKean model [McKean, 1970]

provides a useful piece-wise linear (PWL) caricature of the FHN model that has al-

lowed for some analysis, at least in the singular limit [Coombes and Osbaldestin, 2000].

Although PWL models that can mimic the shape of an AP, such as the McKean model,

are natural models of the neuronal cell body (soma) they do not provide any repre-

sentation of the dendritic tree. These branched structures can occupy up to 90% of

the volume of the cell and as such can have a significant affect on the response of

the cell [Stuart et al., 2008]. Compartmental modeling, utilizing a system of coupled

ordinary differential equations, is a powerful framework for describing the electrical

properties of realistic dendritic trees [Rall, 1964]. Here we combine PWL models of

excitable media with compartmental modeling to develop a more realistic description

of the spatially extended neuron. Importantly we show how to construct mode-locked

responses of this model cell in closed form, without the need to work in the singular

limit. We use this machinery to unravel the response of a spiking neuron to input that

is either at a point on the dendritic tree or applied globally.

In Sec. 2 we describe the McKean model and a simple dendritic tree in the form

of a finite number of nearest-neighbor coupled compartments. In the case of a pas-

sive compartment (for an RC circuit) there is only one linear ODE for each compart-

ment, whilst for the more general case describing so-called quasi-active membrane

[Koch, 1984] (for an LRC circuit) there are at least two. Since the McKean model is

PWL and the dendritic model is linear the combined soma-dendrite model is PWL.

The general solution to arbitrary spatio-temporal forcing is given in closed form using

matrix Green’s functions. Next in Sec. 3 we focus on the case of period temporal forc-

ing, which is either global (applied to all compartments) or local (applied to a single

compartment). Mode-locked solutions are constructed in terms of the solution to a set

of coupled nonlinear algebraic equations. These are obtained by matching solutions to

the PWL soma-dendrite model at points where the somatic voltage crosses one of two

thresholds, as well as from enforcing periodicity. To probe the spatio-temporal behav-

ior of mode-locked states throughout the dendritic tree we use a Fourier technique to

plot the spatial phase of the pattern. These phase-plots have very different topologies

for standing and traveling waves, and easily allow one to visualy identify which of the
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two cases is manifested. The stability of mode-locked solutions is determined in Sec. 4.

Borders in parameter space defining bifurcations are defined in terms of both the in-

stabilities of a stroboscopic map and grazing bifurcations of the somatic voltage with

one of the two thresholds. Knowledge of these instabilities allows us to calculate the

Arnol’d tongue structure for the model. This is compared with direct numerical simu-

lations and shown to be in excellent agreement. Finally in Sec. 5 we discuss extensions

of the work in this paper.

2 The Model

In previous work it has been shown that there is a planar PWL model that can provide

a quantitative fit to the Hodgkin-Huxley model [Chik et al., 2004]. For clarity of exposi-

tion we will focus on a special case – the McKean model – that is easily re-parametrised

along the lines of Chik et al. if desired. Indeed, the McKean model [McKean, 1970] is

itself a PWL caricature of the planar FHN model [Fitzhugh, 1961] of a neuron. The

FHN model is written in the form

cv̇ = f (v)−w + J, (1)

ẇ = v− γw, (2)

where v is the somatic voltage, w is a recovery variable, and J is an injected current.

Here c represents the capacitance of the membrane and γ > 0. The FHN model has

a cubic voltage nullcline and a linear nullcline for its recovery variable. To obtain the

McKean model the cubic nullcline of the FHN model is simplified by the replacement

of the cubic function f with

f (v) =


−v, v < a/2;

v− a, a/2 < v < (1 + a)/2;

1− v, v > (1 + a)/2.

(3)

The simplicity of the McKean model means that periodic solutions describing APs can

be written in closed form [Tonnelier, 2002, Coombes, 2008]. In Fig. 1 we plot the phase

plane of the McKean model and a typical periodic orbit.

It is well known that the electrical properties of a dendritic tree allow for the dif-

fusive spread of current from the point of injection. The passive nature of this com-

munication has led to the development of the cable equation (a second-order linear
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partial differential equation) for the dendrite. An alternative approach is to view the

tree as a graph of connected electrical compartments [Rall, 1964]. The resulting system

of coupled linear ODEs is often regarded as a finite difference approximation of the

cable equation, in which the dendritic system is divided into sufficiently small regions

such that spatial variations of the electrical and physical properties within a region

are negligible. Interestingly, many neurons exhibit resonances, arising from nonlin-

ear ionic conductances, whereby subthreshold oscillatory behavior is amplified for in-

puts at preferential frequencies. Such resonant dynamics has been shown for many

types of neurons [Hutcheon and Yarom, 2000], for example in rat sensimotor cortex

[Hutcheon et al., 1996] and CA1 pyramidal cells where subthreshold oscillations have

been connected to associative memory processes [Graham, 2004]. The linearisation

of active currents about rest, can often account for the observed resonant dynamics

[Koch, 1984, Coombes et al., 2007]. In the terminology of electrical engineering the re-

sulting linear system has a membrane impedance that displays resonant-like behavior

due to the additional presence of inductances. This extends the more usual ‘RC’ circuit

description of passive membrane to the so-called quasi-active or ‘LRC’ case. For a com-

partmental chain with quasi-active membrane we follow [Bressloff and Coombes, 1997,

Bressloff, 1999] and write

C
dVi

dt
= −gVi + g̃ ∑

j∈nn
(Vj −Vi)− Ii + Iinj,i(t), (4)

L
dIi

dt
= −rIi + Vi, i = 1, . . . , N. (5)

These equations represent a set of N identical ’LRC’ circuits coupled by nearest-neighbor

(nn) interactions only. In the voltage equation (4) C represents capacitance, g leakage

conductance or reciprocal resistance R = 1/g, g̃ the coupling conductance between

neighboring compartments, Iinj,i the injected current to the ith compartment, and Ii the

current arising from quasi-active membrane. This current obeys the linear equation

(5), where L is an inductance and r a resistance. All the electrical parameters (L, R, C, r)

of a single compartment, depicted in Fig. 2, can be derived from biophysical models of

Hodgkin-Huxley type, as described in [Koch, 1984]. Note that to obtain a purely pas-

sive ’RC’ model we simply take the limit r →∞ so that no current can flow through

the inductive branch of the compartmental circuit.

To build a model that combines the McKean soma model with the compartmental

tree model we simply add a coupling term ĝ(V1 − v) to the right hand side of (1), and a
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term ĝ(v−V1) to the right hand side of (4) for i = 1. Here ĝ is the coupling conductance

between the soma and the dendrite. The 2N + 2 ODEs defining the soma-dendrite

model are PWL. A schematic of this soma-dendrite model is shown in Fig. 3. Defining

two voltage thresholds v1
th and v2

th by (v1
th, v2

th) = (a/2, (1 + a)/2), then in any region of

phase space away from the borders where v = v1,2
th the dynamics is described simply

by 2N + 2 linear ODEs, which we may write as

ż = Az + b(t), z =
[
V1 . . . VN I1 . . . IN v w

]T
. (6)

The (2N + 2)× (2N + 2) matrix A has the block form

A =



H1 H2

H3 H4

ĝ 0

0 0
...

...
0 0

ĝ 0 . . . 0
0 0 . . . 0

M


. (7)

Here the N × N matrices Hi, i = 1, . . . ,4, are given explicitly by

H1 =



−(g + ĝ + 2g̃)/C g̃/C 0 0 . . . 0

g̃/C −(g + 2g̃)/C g̃/C 0 . . . 0

. . . . . . . . .
. . . . . . 0

0 . . . 0 g̃/C −(g + 2g̃)/C g̃/C

0 0 . . . 0 g̃/C −(g + 2g̃)/C


, (8)

H2 =−IN/C, H3 = IN/L and H4 =−rIN/L, where IN is the N× N identity matrix. The

2× 2 matrix M takes the value M1 when v1
th < v < v2

th and M2 otherwise, where

M1 =

[
(1− ĝ)/C −1/C

1 −γ

]
, M2 =

[
−(1 + ĝ)/C −1/C

1 −γ

]
. (9)

The (2N + 2)× 1 vector b(t) is given by α + β(t), where

α =
[
0 0 . . . f

]T
, β(t) =

[
Iinj,1(t) . . . Iinj,N(t) 0 . . .0 Iinj,2N+1(t) 0

]T
, (10)

and f is a 1× 2 vector that takes the value f1 for v < v1
th, f2 for v1

th < v < v2
th and f3 for

v > v2
th:

f1 =
[

J/c 0
]
, f2 =

[
(J − a)/c 0

]
, f3 =

[
(J + 1)/c 0

]
. (11)
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Note that the term Iinj,2N+1(t) in β(t) is introduced to allow for the possibility of time-

dependent drive to the somatic compartment. With these definitions the general solu-

tion of (6) can be written by matching solutions of the form

z(t) = G(t)z(0) + K(t)α + κ(t), (12)

G(t) = eAt, K(t) =
Z t

0
G(s) ds, κ(t) =

Z t

0
G(s)β(t− s) ds,

according to the rules for choosing M and f , namely according to where the somatic

voltage v is in comparison to the two thresholds v1,2
th .

3 Mode-locked Solutions

The phenomenon of mode-locking is well documented in the literature on the peri-

odic forcing of nonlinear oscillators. It is most commonly studied in the context of the

standard circle map (see for example [Boyland, 1986]). This map is known to support

regions of parameter space where the rotation number (average rotation per map it-

erate) takes the value p/q, where p, q ∈ Z+. These regions are referred to as Arnol’d

tongues. In a neural context mode-locked solutions are simply identically recurring

firing patterns for which a neuron fires p APs for every q cycles of a periodic injected

current. As discussed in Sec. 1, much (if not all) of the modeling work to date in this

area has focused on point models, with most analytical progress being made for vari-

ants of the IF model (that typically do not have a realistic representation of the AP

shape). However, the challenge of understanding mode-locking in spatially extended

neuronal models that are also capable of generating realistic AP shapes is readily pur-

sued for the model of Sec. 2. The key feature of this model that allows for explicit

mathematical progress is its PWL nature. Consider again for the moment the peri-

odic orbit of the original McKean model shown in Fig. 1, obtained for constant, rather

than periodic, current injection. This periodic orbit is naturally divided into four parts,

which we label by µ = 1, . . . ,4. The orbit crosses each of the two thresholds v1,2
th only

twice. For the periodic forcing of our soma-dendrite model it is also natural to ex-

pect solutions that can be described with this form of labeling. For clarity we shall

focus only on the case that a periodic orbit with somatic voltage component like that

of Fig. 1 is generated for q cycles of periodic forcing. Thus we study a form of 1:q

mode-locked state, though stress here that the ideas we present generalize to cover
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other more complicated p:q solutions. On each part of the periodic solution we can

construct the solution zµ(t) = Gµ(t)zµ(0) + Kµ(t)βµ + κµ(t), where Aµ and bµ on each

part of the phase space are determined according to the rules for choosing M from

{M1, M2} and f from { f1, f2, f3}. For example, in region µ = 4 where v < v1
th we would

choose (M, f ) = (M2, f1). The periodic orbit is naturally parametrised in terms of initial

data z1(0) = z∗, with all components of this vector as yet undetermined apart from the

somatic voltage which is set to v1
th. In this case

zµ+1(0) = Gµ(Tµ)zµ(0) + Kµ(Tµ)bµ + κµ(Tµ), µ = 1,2,3. (13)

The ‘times-of-flight’ Tµ are determined by solving the threshold crossing conditions

at the soma: v1(T1) = v2
th, v2(T2) = v2

th, v3(T3) = v1
th, and v4(T4) = v1

th. A periodic so-

lution can then be found by solving z4(T4) = z1(0), thus yielding z∗ and the period

T = ∑4
µ=1 Tµ. The final condition that needs to be enforced to determine a 1:q mode-

locked solution is T = 2πq/ω. Hence a 1:q mode-locked state is determined by the

simultaneous solution of 2N + 6 simultaneous nonlinear algebraic equations: 2N + 1

periodicity constraints, 4 threshold crossing conditions, and one period constraint. The

practical application of this procedure requires the calculation of κµ(t) for a given form

of periodic current injection. For the remainder of this paper we shall work with the

choice Iinj,i(t) = Ai sin(ωt + φ). Here φ ∈ [0,2π) is introduced as a convenience to de-

fine the phase of the mode-locked state with respect to the origin of time (which we

fix with v1(0) = v1
th). The matrices Gµ(t), Kµ(t) and κµ(t) are then easily constructed

along the lines in [Coombes, 2008], though we do not bother with their presentation

here. The resulting system of equations is then solved numerically in Matlab using

fsolve(), for the elements of z∗ (excluding that of v which is fixed at v1
th), T1, . . . , T4

and φ. These 2N + 6 parameters then completely determine the shape of the orbit

according to zµ(t) = Gµ(t)zµ(0) + Kµ(t)βµ + κµ(t) and (13).

Since the soma-dendrite model is spatially extended it is natural to ask how the

periodic behavior in each compartment varies across the chain. Indeed for global forc-

ing (comprising an identical signal on each compartment) one might envisage a high

degree of similarity between the dynamics of compartments (especially for compart-

ments in the middle of a long chain where boundary effects are not strong). This

similarity could be quantified by using an appropriate synchrony measure. How-

ever, of more interest is the spatial distribution of phases across the network. Indeed

point forcing (of a single compartment) would lend itself more to the generation of a
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phase gradient. Thus a more natural measure to consider is one that distinguishes be-

tween standing and traveling waves. One such measure has already been introduced

in [Marts et al., 2007] for the periodically forced planar Belousov-Zhabotinsky reaction,

and we adopt this here. Defining the Fourier transform of the voltage in the dendritic

compartments by Vj(Ω) ( j = 1, . . . , N, with spectral parameter Ω) then we sample this

signal at the frequency of forcing to obtain the filtered signal Ψ jeiωt + cc with complex

amplitude Ψ j = Vj(ω). A plot of the pair (Re Ψ j, Im Ψ j) defines a phase-plot that can be

visually inspected to determine whether the pattern in the dendritic tree is more like a

standing or traveling wave. To understand this last statement it is informative to con-

sider a standing wave of the form cos(k j)eiωt for some real wave-number k and j ∈ Z.

In this case the amplitude is wholly real and the phase-plot is simply a set of points

on the real line covering the interval [−1,1]. For a traveling wave ei(ωt−k j) of constant

amplitude the phase-plot is a set of points on the unit circle, and for one with a decay-

ing amplitude (around some fixed value of j) points line up on a spiral. Thus if the

phase plot is a set of points that lies near a line passing through the origin we shall call

it a standing wave. If the points are closer to the unit circle we shall call it a traveling

wave of uniform amplitude, whilst if they line up on a spiral we have a traveling wave

with a decaying amplitude (which will be largest at the point of stimulation). A plot of

a 1:3 mode-locked solution constructed according to the prescription above, for both

global and point forcing is shown in Fig. 4. In the same plot we show the correspond-

ing phase-plot, which nicely illustrates that global forcing favors standing waves and

local forcing favors traveling waves.

4 Arnol’d Tongues

With an increase of the coupling amplitude from zero Arnol’d tongues in the standard

circle map typically open as a wedge, centered at points in parameter space where

the natural frequency of the oscillator is rational. In between tongues quasi-periodic

behavior, emanating from irrational points on the amplitude/frequency axis, are ob-

served. The tongue borders are defined in terms of instabilities of solutions with ra-

tional rotation number, and are thus defined in terms of either saddle-node or period-

doubling bifurcations. Since the map in this case is given it is straightforward to cal-

culate the tongue structure in a two-dimensional parameter plane. In the more general
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setting of a periodically forced oscillator one is first required to integrate the differ-

ential equation model for the flow to find each iterate. The computational challenges

associated with this task are exhaustively analyzed in the recent article by Schilder and

Peckham [Schilder and Peckham, 2007]. For the case considered here we first consider

a stroboscopic map which takes the form

z(t) 7→ z
(

t +
2πq
ω

)
. (14)

The stability properties of a 1:q mode-locked solution then follow from an analysis of

fixed points of this map. The linearisation of this map around a 1:q state yields the

Jacobian Γ, defined by

Γ = G4(T4)G3(T3)G2(T2)G1(T1). (15)

If all the eigenvalues of Γ have modulus less than unity, then the 1:q solution is asymp-

totically stable. We are thus led to the construction of the Arnol’d tongue structure

in terms of i) a saddle-node bifurcation, where det(Γ − I2N+2) = 0, ii) a period dou-

bling bifurcation where det(Γ + I2N+2) = 0, and iii) a Neimark-Sacker bifurcation where

det(Γ) = 1 [Wiggins, 1990].

However this only accounts for instabilities of the stroboscopic map, and not those

arising from the underlying flow. Since 1:q solutions have been defined in such a way

that the somatic voltage crosses each of the two thresholds only twice then such solu-

tions can be lost in grazing bifurcations, where a solution tangentially intersects with

v1,2
th . This can happen in two different ways, and we are lead to two distinct types of

grazing bifurcation, which we shall refer to as Type I and Type II. The condition for a

Type I grazing bifurcation can be written dv/dt|t=Tµ = 0. The condition for a Type II

graze takes the form v(T∗) = v1,2
th and dv/dt|t=T∗ = 0, for some time 0 < T∗ < Tµ. An

example of an orbit at a Type II grazing bifurcation is shown in Fig. 5.

To define a tongue border in parameter space we must append the bifurcation con-

ditions described above to the 2N + 6 equations defining a 1:q state. For a border

defined by an instability of the stroboscopic map or a Type I graze this means append-

ing only one extra equation – thus if we leave one of the soma-dendrite parameters as

free it can be used to solve this extra equation. For a Type II grazing bifurcation we

must append two equations – one determining the grazing time T∗ and the other again

fixing the position of the bifurcation in a parameter of the soma-dendrite model. In

Fig. 6 we show a plot of the tongue structure obtained using the approach above for
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both a passive and quasi-active compartment model. In both examples it can be seen

that the 1:q solutions occupy a significant fraction of the amplitude/frequency param-

eter space. For both global and point forcing (with the same amplitude and frequency)

the tongue structures are broadly similar – though solutions within tongues do differ

as described earlier, with standing waves preferred for global forcing and traveling

waves for local forcing. Note that in the resonant case the tongues can appear to close

over with increasing amplitude of forcing. However, this is due to a grazing bifurca-

tion, which does not necessarily lead to a change in the number of APs generated in

a cycle, and rather can just change the number of times that a threshold v1,2
th is crossed

during an orbit.

As a confirmation of our tongue construction we performed brute force numerical

simulations of the full soma-dendrite dynamical system in Matlab. As a measure of

whether we are in a mode-locked state or not we look at the variability of the period

of the system. This is done using a Poincaré section at v = v1
th. When the orbit crosses

the section in the direction from left to right in the phase-plane the ith crossing time is

recorded and stored as Ti. For a 1:q mode-locked state like that in Fig. 1 the instanta-

neous period Ti+1 − Ti is constant for all i. However for other solutions this is not the

case. This suggests using the following measure to pick out the 1:q solutions we have

studied analytically – namely we calculate the maximal variation of the instantaneous

period, defined as max(Ti+1−Ti)−min(Ti+1−Ti), for which a 1:q state would give zero.

A plot of this measure is shown in the left part of Figs. 7 and 8. Here, a warm color does

not necessarily indicate chaotic behavior, as it could equally well signify an aperiodic

solution, a p:q mode-locked solution or even a 1:q solution that does not cross each of

the two thresholds exactly twice.

To probe further whether the dynamics between tongues is aperiodic or chaotic

we also calculated the Lyapunov exponents of the system using MATDS (a MATLAB

package for the study of dynamical systems) [Govorukhin, 2004], which implements

the algorithm in [Wolf et al., 1985]. As can be seen from the overlay of our original 1:q

tongue plot with direct simulations, as shown in Figs. 7 and 8, there is excellent agree-

ment between theory and numerical experiments. As expected higher order 2 : q + q′

orbits are found sandwiched between 1 : q and 1 : q′ orbits and indeed the usual or-

dering of p:q tongues in circle maps seems to occur (organized according to a Farey

sequence in p/q). We also find that the quasi-active dendrite generally has larger Lya-

punov exponents than the passive dendrite, and more easily lends itself to parameter
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values that support chaotic motion.

5 Discussion

In this paper we have introduced an analytically tractable model of a spatially ex-

tended single neuron by coupling an active PWL soma model to a compartmental

dendritic tree. Importantly this model inherits the ability of the McKean model to

generate realistic AP shapes and further acknowledges the known role of dendrites

in shaping neuronal output [Mainen and Sejnowski, 1996]. Only the soma is an in-

trinsic oscillator, the dendritic compartments being described by non-oscillatory dy-

namics that can be either passive or resonant. It is worth emphasising here that the

quasi-active description of dendritic membrane that we have described is known to

be important for fitting real neuronal data, such as that recorded from CA1 hippocam-

pal cells [Coombes et al., 2007]. By focusing on the response to periodic forcing we

have shown that this minimal model can be directly analyzed to understand emergent

behavior and in particular the standing and traveling waves that correspond to mode-

locked states. The predicted Arnol’d tongue structure is in excellent agreement with

direct numerical simulations. As the understanding of coupled neural networks has

advanced with models of synaptically and gap-junction coupled point neuron mod-

els we now advocate an extension of this axo-somatic programme to networks with

axo-dendritic interactions. The model we have introduced here is an obvious candi-

date for the basic building block of a theoretical programme. It can already be ex-

tended in two important biological ways whilst preserving its mathematically min-

imal character. Firstly, the McKean model can be replaced by any PWL caricature

of an excitable membrane, of which there are several (see [Coombes, 2008] for a re-

cent discussion). Secondly, arbitrary branched structures can be treated, according

to the rules described in [Bressloff et al., 1996]. A programme along the above lines

is currently being developed and will be reported upon elsewhere. Moreover the

framework we have presented her is ideally suited to construct phase response curves

[Ermentrout and Kopell, 1990] for spatially extended systems – a problem of particu-

lar interest to the experimental neuroscience community who routinely stimulate and

record from different sites on the neuron.
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Figure 1: The phase plane for the McKean model has a nullcline with a piece-wise lin-

ear cubic shape (dashed green line) corresponding to v̇ = 0 and a linear one associated

with ẇ = 0 (dotted blue line). Parameters are c = 0.1, J = 0.5,γ = 0.5 and a = 0.25. The

red line corresponds to a stable periodic orbit.
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Figure 2: An electrical diagram defining an ‘LRC’ circuit. Here R represents the cell

membrane resistance and C its membrane capacitance. The electrical resistance r and

the inductance L can be derived from a biophysical conductance based models with

active currents, or fitted directly to subthreshold voltage data from experiments.
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Figure 3: A schematic of the soma-dendrite model. An active PWL McKean soma

model with voltage v is coupled to a chain of N ‘LRC’ compartments, each with voltage

Vi and i = 1, . . . , N. The conductance that couples the soma to the first compartment

is denoted by ĝ, and the coupling between compartments is denoted by g̃. The ‘LRC’

circuit is defined by the diagram in Fig. 2.
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Figure 4: Top left: A plot of (v, w) for a 1:3 orbit in the soma-dendrite model with

N = 100 compartments and sinusoidal point forcing at i = 50 with Ai = 0.1 and ω =
5.5. The parameters of the McKean model are c = 0.1, J = 0.5, γ = 0.5 and a = 0.25.

The dendritic chain is passive, L = 0 and r →∞, and the other parameters are g =
100, ĝ = 0.5, g̃ = 5 and C = 1. Top right: the same with global forcing. Bottom left:

the corresponding phase-plot showing a traveling wave with a decaying amplitude

around the point of stimulation. Bottom right: the corresponding phase-plot showing

a standing wave.
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Figure 5: Left: A 1:2 orbit with a Type II grazing point at v = v1
th. Here, N = 10 and

other parameters are as in Fig. 4. The sinusoidal drive is applied directly to the soma

with amplitude 0.1 and frequency 3.55. Right: The solid line shows the trace of the

somatic voltage plotted against time. The dashed line show sin(ωt).
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Figure 6: Arnol’d tongues for 1:q mode-locked states in the soma-dendrite model of

Fig. 4 with sinusoidal point forcing at i = 2 for N = 10. Left: A passive dendrite with

L = 0 and r →∞. Right: A quasi-active dendrite with L = 100 and r = 1. Solid (dotted)

lines denote saddle-node (period-doubling) bifurcations of the stroboscopic map and

dashed lines denote grazing bifurcations of the underlying flow. Note that in the res-

onant case (right) the 1:q tongues (which cross each of the two thresholds only twice)

can close over with increasing amplitude of forcing.
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Figure 7: Direct numerical simulations confirm the predicted Arnol’d tongue structure

for the passive dendrite model of Fig. 6 left. Left: The maximal variation of the instan-

taneous period is color coded so that dark blue shows 1:q mode locking (that crosses

each of the two thresholds exactly twice). Overlaid lines show the analytical tongue

borders. Right: A color coded plot of the maximum Lyapunov exponent.
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Figure 8: Left: Direct numerical simulations confirm the predicted Arnol’d tongue

structure for the quasi-active dendrite model of Fig. 6 right. Right: In contrast to a

passive dendrite model there are larger windows in parameter space capable of sup-

porting chaotic behavior.
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