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Ultra-slow fluctuations (0.01–0.1 Hz) are a feature of intrinsic brain activity of as yet unclear
origin. We propose a candidate mechanism based on retrograde endocannabinoid signaling in a
synaptically coupled network of excitatory neurons. This is known to cause depolarization-induced
suppression of excitation (DISE), which we model phenomenologically. We construct emergent
network oscillations in a globally coupled network and show that for strong synaptic coupling DISE
can lead to a synchronized population burst at the frequencies of resting brain rhythms.
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Endogenous cannabinoids (CBs) represent a fundamen-
tally new class of retrograde messenger [1], which are re-
leased postsynaptically and bind to presynaptic CB re-
ceptors. CB synthesis is stimulated when levels of cal-
cium rise inside the neuron or when certain G-protein-
coupled receptors are activated. One function of endoge-
nous CBs is to regulate neurotransmitter release via acti-
vation of presynaptic CB receptors, allowing neurones to
regulate, via feedback, their upstream neuronal inputs
[2]. This suppression of upstream presynaptic release
of GABA or glutamate is termed depolarization-induced
suppression of inhibition (DISI) or excitation (DISE) re-
spectively [3, 4]. Cannabinoid receptors are ubiquitous
within the brain and CB1, the most abundant CB recep-
tor, can be found in different areas such as the hippocam-
pus, neocortex, amygdala, basal ganglia and hypothala-
mus [1]. They have already been implicated in the tem-
poral coordination of cell assemblies and the modulation
of certain brain rhythms [1, 5]. The mammalian cortex is
known to show oscillatory electroencephalogram (EEG)
activity in a wide range of frequencies from approxi-
mately 0.05 Hz to 500 Hz [6]. Recently the ultra-slow
(0.01–0.1 Hz) fluctuations in functional magnetic reso-
nance imaging (fMRI) signals (which have corresponding
EEG correlates), as well as spatial patterns of their co-
herence, have gained the attention of the neuroscience
community. This is mainly due to their robust and re-
producible manifestation across subjects and their dis-
turbance in pathological states including depression and
Alzheimer’s disease [7]. So far, the mechanisms under-
lying such ultra-slow cortical rhythms, as observed in
fMRI or as a modulation of the fast oscillations in elec-
trophysiological signals [8], remain unknown. As regards
the former Ghosh et al. [9] have developed a model us-
ing anatomical connectivity data (linking brain modules)
that incorporates cortico-cortical communication delays
and noise. However, by focusing on a non-synaptic form
of coupling this work is more relevant to issues pertain-

ing to the spatial coherence of fMRI signals than it is
to probing physiologically based slow emergent rhythms.
In this article we introduce a synaptically coupled net-
work with a phenomenological form of retrograde second
messenger signaling that can support DISE. Importantly
we uncover a mechanism for the emergence of nested fast
and ultra-slow oscillations. When linked to other mod-
ules in a larger network the latter would be reflected as
an ultra-slow component of the macroscopic network dy-
namics and could therefore underlie those seen in the
resting brain state.

Our single neuron model of choice is the Morris-Lecar
(ML) neuron model [10]. This is a two dimensional con-
ductance based model, often used as an idealized fast-
spiking pyramidal neuron, written in the form

v̇ = f(v, w) + I + s(t), ẇ = g(v, w). (1)

Here v plays the role of a voltage variable, w that of a
gating variable, I is a fixed input and s(t) represents a
time varying synaptic input. Rather than list the details
of the functional forms for f(v, w) and g(v, w), which we
take from [11] (with time measured in ms), it is more
natural to show a plot of the phase-plane and nullclines
as in Fig. 1 for s = 0. The model can support either
one or three fixed points, dependent on the choice of I.
The bifurcation diagram inset in Fig. 1 shows that the
largest of the fixed points undergoes a sub-critical Hopf
instability. Beyond this bifurcation there is a window of
parameter space where a fixed point is bistable with a
periodic orbit.

Indexing each neuron in the network with i = 1, . . . , N
the synaptic drive to the i-th neuron is given by

si(t) = gs(vs − v(t))
N∑
j=1

Wij

∑
m∈Z

η(t− Tmj ), (2)

where Tmj is the m-th firing time of the j-th neuron, vs
the synaptic reversal potential and Wij the connection
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FIG. 1: (Color online). Phase-plane portrait for the Morris-
Lecar model with constant external drive I = 0.0761. The
voltage (gating) nullcline is in red (green). A large amplitude
stable limit cycle (blue) coexists with a stable fixed point at
v ∼ 0.04. A small amplitude unstable orbit also exists (light
blue) that can undergo a saddle-node of periodic orbits bifur-
cation with increasing I. The separatrix (pink, stable man-
ifold of saddle at v ∼ −0.2) delimits the basin of attraction
for the stable fixed point at v ∼ −0.3. The associated bifur-
cation diagram illustrating bistability of the large amplitude
limit cycle and the fixed point at v ∼ 0.04 is shown in the
inset. Here unstable orbits emerge in a Hopf bifurcation.

strength between neurons i and j with a global conduc-
tance scaling gs. The function η(t) captures the shape
of a conductance change in response to the arrival of an
action potential. Here we choose an alpha function and
write η(t) = α2te−αtH(t), where H is a Heaviside step
function. The firing times are specified in terms of a
threshold h according to

Tmi = inf{t | vi(t) > h, v̇i > 0, t > Tm−1
i }. (3)

We focus on the case of an excitatory globally coupled
network and set Wij = 1/N and vs > 0 with respect
to the resting state. To implement a phenomenological
model of DISE (or DISI if vs < 0) we first introduce a
spatio-temporal average level of depolarization ve(t):

ve(t) =
1
N

N∑
j=1

∫ ∞
0

K(t− s)vj(s)ds, (4)

where K(t) = 0 for t < 0. Since CBs are free to diffuse
through neural tissue they allow for volume signaling,
which we will consider as a form of global feedback. Their
production is directly linked to depolarization, which we
shall take to be the average tissue level as defined by
(4). Here we choose K(t) = λe−λtH(t), where λ−1 is an
indirect measure of the long time-scale for cannabinoid
dynamics, which is on the order of tens of seconds to
minutes [4]. As a minimal model of DISE we will imagine
that if the global CB level is sufficiently high then all
excitatory synapses are blocked. In this case the network
becomes uncoupled in the sense that excitatory synaptic

currents drop to zero. By noting that this is equivalent to
the suppression of firing events in (2), we may implement
this model of DISE by letting the firing threshold adjust
in response to ve(t) according to

h =

{
vth ve ≤ vth

e

∞ ve > vth
e

. (5)

The threshold vth
e controls whether the level of CB is

sufficient to trigger DISE. In essence the model (5) means
that synaptic interaction is curtailed if the mean level of
depolarization becomes too large.

To probe the effects of DISE on network dynamics we
first focus on the most symmetric states expected to exist
in a globally coupled system – namely synchronous and
asynchronous solutions [12]. In the synchronous state all
neurons have identical T -periodic trajectories with firing
times given by Tmi = mT for all i. In this case the
synaptic drive to every neuron takes the identical form
s(t) = gs(vs − v(t))P (t), where P (t) =

∑
m∈Z η(t−mT )

can be calculated as

P (t) =
α2e−αt

1− e−αT

[
t+

T e−αT

1− e−αT

]
, t ∈ [0, T ), (6)

with P (t) periodically extended outside [0, T ). Equa-
tion (1) may then be solved as a periodic boundary value
problem (PBVP) for the periodic orbit (v(t), w(t)) =
(v(t + T ), w(t + T )) with v(0) = vth. This describes the
synchronous orbit given that the corresponding mean de-
polarization does not trigger the DISE mechanism. This
PBVP can be solved numerically, say using xppaut[13].
Although solutions exist for small gs a weakly coupled os-
cillator description, using standard techniques reviewed
in [14], can be used to establish that such solutions are
unstable. For stronger coupling there is a further win-
dow of gs where solutions exist, and by comparison with
direct numerical simulations (implemented in Python us-
ing the Brian module [15]) are found to be stable. For
an asynchronous splay state the firing times are given
by Tmj = mT + jT/N . In the limit N → ∞ network
averages may be replaced by time averages due to:

lim
N→∞

1
N

N∑
j=1

F (jT/N) =
1
T

∫ T

0

F (t)dt, (7)

for any T -periodic function F (t) = F (t + T ). Hence a
splay state in which all neurons fire is given by vi(t) =
v(t + iT/N), where v(t) is a T -periodic solution of (1)
with s(t) = gs(vs−v(t))P0 and P0 =

∫ T
0
P (t)dt/T = 1/T .

Note that for the splay state ve(t) takes on the constant
value v0 =

∫ T
0
v(t)dt/T . For small gs the splay state

is found to have a similar period to that of the syn-
chronous solution, though once again a weak-coupling
analysis shows that this solution is unstable. Interest-
ingly a clustered solution can occur for a wide range of
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FIG. 2: (Color online). Fraction of firing neurons r as a func-
tion of the synaptic coupling strength gs. The inset shows the
bifurcation diagram (in maximum amplitude) for a splay state
with ve < vth

e as a function of the product rgs. Here the rest
state v is less than the threshold vth and the two branches
of splay solution coalesce in a saddle-node of periodics at
rgs = H. In the main figure the unlabeled dotted curved
line shows the solution branch for which ve = vth

e = 0.02.

gs. To see this consider two clusters of neurons, one in
a splay state and the other sitting at rest. This can be
described using the differential-algebraic system

v̇ = f(v, w) + I + r
gs
T

(vs − v), ẇ = g(v, w),

0 = f(v, w) + I + r
gs
T

(vs − v), 0 = g(v, w), (8)

where r is the fraction of firing neurons and (v(t +
iT/M), w(t+ iT/M)) with M = Nr, and (v, w) describe
neurons in the splay and resting cluster respectively. In
this case ve = rv0 + (1 − r)v. For ve < vth

e the param-
eter region of existence for such a solution is illustrated
in the inset of Fig. 2, where a pair of splay states (with
r 6= 1) only coexists with a rest state for rgs ∈ [L,H].
Here the splay state is annihilated in a saddle-node bi-
furcation at rgs = H, while at rgs = L the lower branch
solution seizes to cross the firing threshold. As gs is in-
creased it is possible that ve could grow until it reaches
vth
e and activate the DISE mechanism. The border in

the (r, gs) parameter plane where ve = vth
e for a cluster

state is shown in Fig. 2, and we see that it defines a crit-
ical curve marking the onset of DISE which we can write
in the form gs = gc(r). The line r = H/gs shows that
in the absence of DISE cluster states would exist for a
greater area of parameter space. For gs < gc(r) direct
numerical simulations do indeed show cluster states with
properties in excellent agreement with the solution of (8)
(with v(0) = vth) up to small fluctuations. An example
is shown in Fig. 3. For a given value of gs the fraction of
neurons r in the firing state is a function of initial data, as
expected. Importantly, after transients, the mean depo-
larization signal is flat (no oscillations) and the period of
oscillation of a firing neuron is of the same order of mag-
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FIG. 3: (Color online). A cluster state for N = 100, g = 0.03,
vth

e = 0.02, λ = 10−5. Top left: a plot of the average signal
ve(t), showing that after transients the emergent state lies
below the threshold to activate DISE (red line). Top right:
A raster plot of spike times, illustrating the drop-out of some
neurons and the emergence of a splay state with the fraction
of firing neurons r = 0.38. Bottom left: The average network
potential bv =

PN
i=1 vi/N oscillates around the predicted value

rv0 + (1 − r)v (magenta line) for r = 0.38. Bottom right:
Phase plane dynamics for the network (dropping transients)
showing that the network has split into two clusters (one with
a common periodic orbit shown in blue with a period T ∼ 6
and a rest state in purple). vth = 0.05 (green line), vth

e = 0.02
(red line).

nitude as a single isolated neuron. In the region where
gs > gc(r) and DISE precludes the existence of a cluster
state we expect more exotic non-periodic network states
to emerge. In illustration of this point we note that sta-
ble synchronous oscillations are possible with increasing
gs and that the average depolarization for these rhythms
is an increasing function of gs. Hence there is also a crit-
ical value of gs at which the DISE mechanism will also
preclude the existence of a periodic synchronous state.
In this parameter window a synchronous (or near syn-
chronous) solution can lead to a strong level of average
depolarization for which ve(t) > vth

e . This activates the
DISE mechanism, precluding further synaptic input and
subsequently leading to a drop in network firing activity
and hence a drop in ve(t). Once ve(t) drops sufficiently
to cross vth

e from above then excitatory synaptic currents
can once again drive the network leading to an increase in
ve(t) so that the process may repeat over. In this case the
emergent time scale of the network rhythm is set by the
duration of ve(t) above vth

e . Even for a synchronous solu-
tion this will depend on initial data, so that network os-
cillations would not generically be periodic. To quantify
the value of possible inter-spike intervals (ISIs) we focus
on synchronous rhythms with (v(0), w(0)) = (vth, w0) for
some given w0 and solve the BVP ve(0) = vth

e = ve(∆)
with s(t) = gs(vs − v(t))P (t). The growth of the ISI,
∆, as a function of gs is shown in Fig. 4, together with
results from direct simulations. The numerical spread of
ISIs for low gs can be ascribed to fast multi-spike bursts.
With higher gs a single spike response is more common



4

 0

 400

 800

 1200

 0.2  0.4  0.6  0.8  1gs

∆

 0

 4000

 8000

 12000

 16000

-0.06 -0.04 -0.02  0 ve
th

∆

FIG. 4: (Color online). The predicted synchronous popula-
tion ISI (in ms) as a function of gs, for w0 = 0.121 (green
line), fits the ISIs seen in direct numerical simulations with
N = 100 (red dots). Other parameters as in Fig. 3. The inset
shows the increase in ISI with decreasing vth

e for gs = 1.

and the period of the network state is accurately pre-
dicted by the theory. Note that the spike times consid-
ered here are only those that contribute to synaptic cur-
rents, while the neurons do in fact spike on a fast time
scale during the synaptically silent period. Hence, the
network as a whole shows nested oscillations with a slow
variation of synaptic currents superimposed on fast oscil-
lations of the instantaneous average network voltage (see
Fig. 5 bottom left). To understand how decreasing vth

e

can lead to a rapidly increasing ∆, as shown in the inset
of Fig. 4, it is useful to develop the correspondence of the
evolution of the network (fixed parameters) with that of
a single neuron with varying background drive I. Refer-
ring to the inset of Fig. 1 the network can leave point A,
corresponding to a synchronous firing state with average
voltage v2, when ve(t) drops below vth

e . The subsequent
large increase in synaptic drive causes a transition to the
right of the saddle-node of periodics, where firing is not
possible, and so synaptic currents fall which causes the
transition to point B. This unstable fixed point, with
voltage v1, generates orbits which spiral outward for a
time T1 = T1(gs) generating a signal with ve(t) > vth

e (so
that synaptic currents are suppressed). These transition
to full blown nonlinear oscillations, with average voltage
v2 and v̇e(t) < 0, and complete the path to point A so
that the process may repeat over. Making the conve-
nient (and obviously not accurate) assumption that v1,2
are constant then the BVP may be solved by hand for
λ = 0 to give ∆ = T1(gs)(v1 − v2)/(vth

e − v2), explaining
the dependence of ∆ on vth

e seen in Fig. 4.
Importantly, without any parameter fine-tuning, we

see the emergence of very large ISIs for large values of
gs, which are largely independent of the network size.
Moreover, in contrast to other network models of slow
oscillations (< 1 Hz) [16] we do not require a mixture of

excitation and inhibition, and as shown in the inset of
Fig. 4 with decreasing choices of vth

e can easily achieve
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FIG. 5: (Color online). A similar plot to Fig. 3 showing the
emergence of slow synchronized firing patterns in the strong
coupling regime with gs = 0.5. Other parameters as in Fig. 3.
Bottom right shows voltage traces of 5 neurons (arbitrary off-
set for better display). Any variability due to heterogeneous
initial conditions does not affect the emergence of ultra-slow
near-synchronous oscillations.

ISIs on the order of tens of seconds. Thus DISE in the
strong coupling regime is a candidate mechanism for the
generation of ultra-slow rhythms.
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