
Dynamics of DNA Replication in Yeast

Renata Retkute and Conrad A. Nieduszynski

Centre for Genetics and Genomics, University of Nottingham, Nottingham NG7 2UH, United Kingdom

Alessandro de Moura

Institute of Complex Systems and Mathematical Biology, University of Aberdeen, Aberdeen, AB24 3UE United Kingdom
(Received 15 December 2010; published 4 August 2011)

We present a mathematical model for the spatial dynamics of DNA replication. Using this model we

determine the probability distribution for the time at which each chromosomal position is replicated. From

this we show, contrary to previous reports, that mean replication time curves cannot be used to directly

determine origin parameters. We demonstrate that the stochastic nature of replication dynamics leaves a

clear signature in experimentally measured population average data, and we show that the width of the

activation time probability distribution can be inferred from this data. Our results compare favorably with

experimental measurements in Saccharomyces cerevisae.
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DNA replication starts at specific locations in the chro-
mosome called replication origins. Most bacterial genomes
are replicated from a single origin, but the much greater
size of eukaryotic genomes requires multiple origins per
chromosome to ensure that the replication process does
not take too long. Genome replication has been compre-
hensively studied in the model organism S. cerevisiae
(brewers’ yeast). Origin locations in S. cerevisiae are de-
termined by specific DNA sequences and are thus fixed in
every yeast cell [1]. The positions of origins in yeast have
been comprehensively catalogued [2]. However, a given
origin may not be active during replication, because origins
must be licensed before the start of S phase (the part of the
cell cycle where DNA replication takes place). Licensing
consists of a series of specific protein complexes binding
at origin locations, culminating in the loading of pairs of
Mcm2-7 molecules. If in a given cell licensing of a certain
origin is not completed by the time S phase starts, the
origin is unable to function [3].

High-throughput methods have allowed the measure-
ment of replication times as a function of chromosomal
position for the whole genome [4]. These experiments
yield average replication times over large cell populations
(typically >107 cells) and therefore can mask the cell-to-
cell variability present in the system [5]; to date single
cell and single molecule studies are not able to measure
the kinetics of whole genome replication [5,6]. The low
abundance of the molecules involved in triggering origin
activation strongly suggests that origins have stochastic
activation times [7]. This is often ignored in the biological

literature, where there is a pervasive notion of a
‘‘replication program,’’ in which origins are considered
to be programmed to fire following a precisely controlled
order. This idea has frequently led to erroneous interpre-
tations of replication time profiles (reviewed in [8]).
There has been much interest recently in mathematical

modeling of DNA replication. Two different modeling
approaches have been used: simulations to capture the
replication dynamics at a single cell level [9–12], and
probabilistic models that characterize the dynamics of
replication at a population level [13,14]. Some models
of DNA replication [14,15] are closely related to
Kolmogorov’s classical model of nucleation processes
[16]. Our model can be regarded as an inhomogeneous
model of nucleation with quenched disorder, where nu-
cleation starts at specific sites. Inhomogeneous models of
nucleation have been studied in the context of statistical
physics and have relevance to surface science and other
areas [17,18].
Reference [14] is particularly relevant for this work

because it proposes that origins fire stochastically in
time, and goes on to show that this can lead to reproducible
replication dynamics population wide, without the need
to invoke a ‘‘replication program.’’ Although valuable in-
sights have been gained from previous works, they ignore
the possibility that origins can fail to license, and we will
show that this has a crucial effect on the system’s dynam-
ics. In addition, most of the existing models are numerical.
In this work, we introduce an analytical model of eukary-
otic DNA replication which fully takes into account the
stochastic nature of both origin activation and the licensing
process. Using a simple two-origin chromosome, we illus-
trate how replication time curves from measurements
are influenced by the stochasticity of origin activation as
well as by the possibility that licensing fails, reinforcing
results we obtained previously by direct simulations [8].
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We establish that the shape of the average replication time
profile has a signature of the stochasticity of the replication
process, even though it is a quantity defined by a popula-
tion average. We derive an analytical expression relating
the replication time in the regions between two origins to
the standard deviation�t of the activation time distribution
of the origins. This is a valuable result, since few single cell
experiments have been able to give direct information
about the stochastic properties of the replication dynamics.
Our results allow �t to be obtained from widely available
population-wide measurements. We apply this result to
measured replication time data, and estimate �t from the
data, obtaining a result in agreement with current estimates
in the literature.

In our model we consider a chromosome with N origins,
where each origin i is defined by the following: its chro-
mosomal position xi; the probability qi that the origin
achieves licensing (in a given cell within a population)
and is thus capable of activating; and the activation time
probability distribution piðtÞ, which is the probability
density of origin i activating and starting bidirectional
replication forks at time t. Since an origin may not be
competent in every cell within the population, in general
qi < 1, and pi satisfies

Rþ1
�1 piðtÞdt ¼ qi. The fundamental

quantity from which all statistical properties of this system
can be calculated is the probability density Pðx; tÞ, defined
such that Pðx; tÞdt is the probability that chromosomal
position x is replicated between times t and tþ dt. If
only origin i were present, P would be given by Pðx; tÞ ¼
piðt� jx� xij=vÞ, where v is the fork velocity, which we
assume to be a constant.

In the presence of all N origins, the calculation of Pðx; tÞ
is complicated by the fact that position x can be replicated
by forks originated from any of the origins. Let us assume
that position x is replicated between times t and tþ dt by a
fork from origin i. This requires that (i) origin i activated at
time t� jx� xij=v, so that the fork arrives at x at time t;
and (ii) all other origins j � i have either not activated or
they have activated but their forks would arrive at x later
than t. The probability density for event (i) is piðx; tÞ ¼
piðt� jx� xij=vÞ, and the probability for event (ii) is
Qiðx; tÞ ¼ Q

j�iMjðx; tÞ, where Mi is the probability that

a fork from origin i arrives later than t, or fails to activate:
Miðx; tÞ ¼ si þ

Rþ1
t piðx; yÞdy, where si ¼ 1� qi is the

probability of origin i not being competent. Therefore,
the probability density Piðx; tÞ that position x is replicated
by origin i at time t is

Piðx; tÞ ¼ piðx; tÞQiðx; tÞ: (1)

Finally, the probability density that position x is replicated
at time t, irrespective of which origin the fork started
from, is

Pðx; tÞ ¼ XN

i¼1

Piðx; tÞ: (2)

One of the most important quantities for comparison
with experimental data is the average replication time
TðxÞ at position x, which is given in terms of P as

TðxÞ ¼ 1

1� s1s2 � � � sN
Z þ1

�1
tPðx; tÞdt; (3)

where 1� s1s2 � � � sN ¼ Rþ1
�1 Pðx; tÞdt is the probability

that at least one of the origins will activate. The average
replication time across whole chromosomes [TðxÞ curves]
has been measured in a number of organisms. However,
caution is required when interpreting TðxÞ curves. In some
of the biological literature, TðxÞ curves are used to directly
infer origin parameters [4]. For example, it is widely
accepted that the values of T at xi are the average activation
times of origins. However, Eq. (3) shows that TðxÞ is
determined collectively by all origins [8]. This suggests
that simple interpretations of TðxÞ are not justifiable.
We want to use the general theory presented above to

study replication dynamics in a simple setting. From now
on we focus on the case of a hypothetical linear chromo-
some with just two origins. We define the chromosomal
coordinates so that one of the origins has position x1 ¼ 0;
the other origin has position x2 ¼ D. We assume for sim-
plicity that each origin can activate within a time window
�t with uniform probability; we will argue later that our
conclusions are largely independent of the precise shape of
the probability distribution. We select origin activation
times so that the average activation time of the first origin
is 0. The other origin has an average activation time �, and
we assume without loss of generality that � � 0. Thus the
activation time distributions are

piðtÞ ¼ qi
�t

; if t 2
�
tavi � �t

2
; tavi þ �t

2

�
; (4)

where i ¼ 1, 2, tav1 ¼ 0, and tav2 ¼ �. p1 and p2 are set to
zero outside the stated intervals.
Using Eqs. (3) and (4), we can write analytical expres-

sions for the probability density Pðx; tÞ and the average
replication time TðxÞ. From Eq. (4) and (2), Pðx; tÞ vanishes
outside the intervals I1 and I2 given by

Ii ¼
�jxi � xj

v
þ tavi ��t

2
;
jxi � xj

v
þ tavi þ�t

2

�
; (5)

where x1 ¼ 0 and x2 ¼ D. In total there are five scenar-
ios (depending on the relative values of �, �t, D, and v)
that differ in the dynamics of how the chromosome is
replicated. From here on we will consider just the case
where the condition �þ�t < D=v is satisfied, since this
is the case for many pairs of origins in real chromo-
somes. This means that the variations in the activation
time �t are small enough that a fork from one origin can
only replicate the other origin if that origin is not
competent. The expression for TðxÞ is then
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TðxÞ ¼

8>>>>>>>>>>><
>>>>>>>>>>>:

ðDq2s1
v � q2s1x

v þq2s1�þ q1jxj
v Þ=ð1� s1s2Þ; if x<Dþvð���tÞ

2 ;
ðD�2xþv�Þfq1½Dþvð���tÞ�þq2s1½Dþvð�þ�tÞ�g

2�tv2ð1�s1s2Þ þ2ðD��tv�2xþv�Þðq1q2½D2þ�t2v2þðv��2xÞ2�
12�t2v3ð1�s1s2Þ

þ�tvf4q1q2xþ½�3q1þðq1�3Þq2�v�g
12�t2v3ð1�s1s2Þ þDf�t½�3q1þðq1�3Þq2�vþ2q1q2ðv��2xÞg

12�t2v3ð1�s1s2Þ Þ; if Dþvð���tÞ
2 � x<Dþv�

2 ;
ðD�2xþv�Þf�q2½Dþvð���tÞ��q1s2½Dþvð�þ�tÞ�g

2�tv2ð1�s1s2Þ �2½D�2xþvð�þ�tÞ�ðq1q2½D2þ�t2v2þðv��2xÞ2�
12�t2v3ð1�s1s2Þ

þ�tv½�4q1q2xþð�3q1�3q2þ5q1q2Þv��
12�t2v3ð1�s1s2Þ þD½�tð�3q1�3q2þ5q1q2Þvþ2q1q2ð�2xþv�Þ�

12�t2v3ð1�s1s2Þ Þ; if Dþv�
2 � x� Dþvð�þ�tÞ

2 ;

ðq1s2xv þq2�þ q2jD�xj
v Þ=ð1� s1s2Þ; if x>Dþvð�þ�tÞ

2 :

(6)

A plot of TðxÞ for different values of q1 is shown in
Fig. 1. We see that TðxÞ has discontinuous derivatives at the
origin locations, because the forks originate there. At the
origins, the mean replication times are

Tðx1Þ ¼ Tð0Þ ¼ q2s1ðD=vþ �Þ=ð1� s1s2Þ;
Tðx2Þ ¼ TðDÞ ¼ ðq1s2D=vþ q2�Þ=ð1� s1s2Þ:

(7)

It is commonly assumed in the replication literature that
TðxÞ has a minimum at an origin, and that the value of this
minimum directly gives the average activation time for the
origin. However, Eq. (7) shows that this is not the case and,
in fact, TðxiÞ � tavi : the mean replication time at an origin
location is equal to or greater than the origin’s average
activation time. Only when an origin has qi ¼ 1 can
TðxiÞ ¼ tavi , because if an origin fails to activate in a given
cell, the DNA at the origin location will not be replicated
until a fork from another origin arrives. This means that Ti

is higher for origins that are more likely to fail, as seen
directly in Fig. 1. Another important conclusion from
Eq. (7) is that even when both origins have the same
average activation time (� ¼ 0), generally we have
Tðx1Þ � Tðx2Þ. This is again due to the possibility of
origins not activating. Therefore, the origin with the lower
minimum of TðxÞ does not necessarily activate earlier
than the other origin: minima of TðxÞ cannot be used to
draw conclusions on the relative activation times of the
corresponding origins, as previously assumed [4,10].
Equations (1)–(6) show that in general TðxÞ at any point
depends collectively on the parameters of all origins.
However, if an origin is highly competent, early activating,
and isolated from other origins, TðxÞ at that origin’s posi-
tion will be close to the origin’s average activation time.

Equation (6) challenges the assumption that origins are
located at minima of TðxÞ. From Eq. (6) the expression for
the slope of T near the first origin (for x > 0):

T0ðxÞ ¼ q1 � q2s1
vð1� s1s2Þ : (8)

This expression shows that the slope is a function of the
competencies qi of both origins as well as the fork velocity
v. For the origin at x ¼ 0 to be a minimum of TðxÞ, we
must have T0 > 0 for x > 0, from which we get the condi-
tion q1 >

q2
1þq2

. This shows that if an origin has low com-

petence compared to its neighbor, it may not be a minimum
of TðxÞ, which can be seen in Fig. 1. This phenomenon
has been observed in experimental data [4]. Note that if
q1 > 1=2, this condition is always satisfied and a minimum
is guaranteed for this two-origin system. In addition,
Eq. (8) shows that the fork velocity is not given by the slope
of TðxÞ, an assumption widely used in the literature [4].
Figure 1 shows that TðxÞ has sharp corners at origin

locations. The reason for this is that in every cell the forks
always start at the same locations (the origins), which
causes a discontinuous change in the proportion of left-
propagating compared to right-propagating replication
forks, which in turn causes the discontinuity in the deriva-
tive of TðxÞ at the origins. In contrast, Fig. 1 shows that the
local maximum of TðxÞ between two origins is a smooth
curve. The reason is that in different cells in a population
forks meet each other and terminate at different locations
on the DNA, because of the stochastic variations in acti-
vation times. This reasoning suggests that the shape of the
maxima of T could be used to infer information about the
width�t of the activation time distribution. We expect that
sharp maxima should correspond to forks meeting within a
narrow timewindow, and consequently a small value of�t;
conversely, a broad maximum corresponds to a high �t.
This can be seen in Fig. 2, where TðxÞ is plotted for various

ORI1 ORI2

x

T (x)

q1 0.9

q1 0.7

q1 0.5

q1 0.3

FIG. 1 (color online). Replication time curves for differing
values of competence q1. Parameters values: q2 ¼ 0:7, � ¼ 1,
�t ¼ 4, D ¼ 10, v ¼ 1.

ORI1 ORI2D v 2

x

T x

t 8

t 4

t 2

t 1

FIG. 2 (color online). Replication time curves for different
widths of the activation time window.
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values of �t. In order to investigate this more quantita-
tively, we use the modulus of the second derivative of TðxÞ
at the maxima to measure how broad the maxima is—low
values of jT00j correspond to broad peaks. We now use
Eq. (6) to find the relationship between jT00j and the origin
parameters. At the maximum of TðxÞ, we find

jT00j ¼
4q1q2

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1� j 1

q2
� 1

q1
j

q

v2�tð1� s1s2Þ
: (9)

Thus jT00j is inversely proportional to �t. Notice also
that jT00j does not depend on �, which means it is indepen-
dent of the origins’ average activation times. This expres-
sion can be used to calculate �t from an experimental
replication time profile TðxÞ, if the origin competencies
and the fork velocity are known. This is a very useful result
because it allows the determination of a quantity character-
izing stochastic properties of the system �t from TðxÞ,
which is defined by a population average. This is valuable
because experiments to directly measure�t are technically
difficult, and there are few results available [5,6]. We note
that this does not require assuming that all cells in the
population are synchronized, since in each individual cell
in an asynchronous population, the statistics of the relative
activation times of origins remain unaltered [8].

Equation (9) was obtained using a simple uniform dis-
tribution for piðtÞ. However, we expect it to be a good
approximation for any single-peaked distribution function
piðtÞ, since Eq. (9) only involves the second moment (the
variance) of the distribution, and the replication dynamics
are mostly determined by the average activation time and
the width of the activation distribution—the first and sec-
ond moments of piðtÞ. To test this assumption we used
Eqs. (1)–(6) to numerically compute TðxÞ for pairs of
origins with either a Gaussian or a skewed distribution
that lead to sigmoidal cumulative distributions [14].
Choosing parameters such that all these distributions
have the same mean and variance, we find that in all cases
T00 never differs between distributions by more than 10%.

Despite the fact that we have been considering a hypo-
thetical two-origin chromosome, we expect Eq. (6) to be a
good approximation for chromosomes with many origins
when two neighboring origins are relatively isolated from

other origins. To test this, we looked at experimental data
[4] for S. cerevisiae chromosome X, specifically the region
containing origins ARS1012/13 andARS1014 (Fig. 3). The
smoothness of the curve—ignoring the fluctuations caused
by experimental noise—is direct evidence for stochastic
origin activation, in agreement with other results [5,6]. We
fitted a parabola through the data points and from this
determined the value of jT00j. Using Eq. (9) we estimate
the value of�t as 10.8 min [19]. This value is in agreement
with the limited number of single cell measurements that
have been made at other S. cerevisiae origins [6].
We thank M. Hawkins for valuable discussions. This

work has been supported through the Biotechnology and
Biological Sciences Research Council (Grants No. BB/
E023754/1, No. BB/G001596/1, and No. BB-G010722).

[1] C. A. Nieduszynski, Y. Knox, and A.D. Donaldson, Genes
Dev. 20, 1874 (2006).

[2] C. A. Nieduszynski, S. A. P. Hiraga, C. J. Benham, and
A.D. Donaldson, Nucleic Acids Res. 35, D40 (2007).

[3] J. J. Blow and P. J. Gillespie, Nat. Rev. Cancer 8, 799
(2008).

[4] M.K. Raghuraman, E. A. Winzeler, D. Collingwood, S.
Hunt, L. Wodicka, A. Conway, D. J. Lockhart, R.W.
Davis, B. J. Brewer, and W. L. Fangman, Science 294,
115 (2001).

[5] S. Tuduri, H. Tourriere, and P. Pasero, Chrom. Res. 18, 91
(2010).

[6] E. Kitamura, J. J. Blow, and T.U. Tanaka, Cell 125, 1297
(2006).

[7] K. L. Friedman, B. J. Brewer, and W.L. Fangman, Genes
Cells 2, 667 (1997).

[8] A. P. S. de Moura, R. Retkute, M. Hawkins, and C.A.
Nieduszynski, Nucleic Acids Res. 38, 5623 (2010).

[9] J. Lygeros, K. Koutroumpas, S. Dimopoulos, I. Legouras,
P. Kouretas, C. Heichinger, P. Nurse, and Z. Lygerou,
Proc. Natl. Acad. Sci. U.S.A. 105, 12 295 (2008).

[10] T. Spiesser, E. Klipp, and M. Barberis, Mol. Genet.
Genomics 282, 25 (2009).
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FIG. 3. Replication time curves [4] for S. cerevisiae chromo-
some X with a fitted parabola [375–420 kilobase pairs (kb)].
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