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Abstract 

Neuroemulation is the art and science of using a neural network model to replicate the 

external behaviour of some other model and it is an activity that is distinct from neural-

network-based simulation. Whilst is has become a recognised and established sub-

discipline in many fields of study, it remains poorly defined in the field of water resources 

and its many potential benefits have not been adequately recognised to date.  One 

reason for the lack of recognition of the field is the difficulty in identifying, collating and 

synthesising published neuro-emulation studies because simple database searching fails 

to identifying papers concerned with a field of study for which an agreed conceptual and 

terminological framework does not yet exist.  Therefore, in this paper we provide a first 

attempt at defining this framework for use in water resources.  We identify eight key 

benefits offered by neuro-emulation and exemplify these with relevant examples from 

the literature.  The concluding section highlights a number of strategic research 

directions, related to the identified potential of neuroemulators in water resources 

modelling.  

 
 

1.  INTRODUCTION 

 

Increasing awareness and adoption of emulators for performing water resources 

research, spurred on by associated developments in computer power and data-driven 

modelling, is causing a minor methodological revolution in the way things are modelled. 

The emulator is an auxiliary model which does not explicitly attempt to model the 

internal state conditions of a process-related physically-based model: an emulator only 

attempts to reproduce the latter’s external output(s). In a strict sense, model X is said to 

emulate another model, Y, if the external behaviour (response function) of X under 

similar conditions is approximately the same as that of Y, albeit that the mechanism 

which is being used to deliver a set of near-identical answers is different i.e. the same 

input produces the same output but not for the same reason. Emulation is distinct from 

simulation, which occurs at a higher level, and for which the aim is to develop internal 

mechanisms or procedures which represent real-world phenomena in some meaningful 

way.   

 

Emulation is said to deliver numerous advantages (Friedman & Pressman, 1988) which 

include enhanced modelling efficiency; enhanced model elegance and simplification; 

opportunities for improved model exploration and interpretation; model generalisation to 

other models of the same type; sensitivity analysis; model optimisation; answering 
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inverse questions and providing the researcher with a better understanding of the 

behaviour of both the system under study and the interrelationships among its variables.  

 

Emulators can be developed for a number of different reasons. However, since their 

overall goal is to imitate the operational output of another model, it is theoretically 

possible to develop and implement:  

 

 full emulation, using a complete set of original model inputs (i.e. identical drivers); 

or 

 partial emulation, using a subset of original model inputs: by omitting certain 

predictors, for example, if standard input drivers are not immediately available, or 

cannot be accessed, or for model reduction purposes; or 

 augmented emulation, using a mixed combination of original and additional model 

inputs, such as ‘tangential’ or ‘contextual’ variables’ i.e. information reflecting 

physical insight into a problem, or particulars relating to global properties of the 

original dataset e.g. parametric information describing some overall structural 

aspect or pertaining to certain specific features of a particular dataset 

 surrogated emulation, using a totally different set of model input drivers, to deliver 

identical and/or modified original model outputs.  

 

Emulators can also be developed to fulfil the role of independent standalone applications 

and/or used as an integrated component as part of some larger system. The 

fundamental issue at stake is that the emulator must be reproducing some aspect of the 

original model.  

 

Emulation commonly applies either a traditional/statistical black-box approach (e.g. 

Reichert et al., 2011) or, more recently uses neural network models (NN).  It has 

become an established element of modelling activities in many fields such as industrial 

processing (e.g. Swingler, 1996), where NN emulators are called 'neuroemulators'; the 

art and science of constructing a neuroemulator is termed 'neuroemulation'; and the 

established use of neuroemulator applications for modelling or controlling dynamic 

systems is widely acknowledged. Neuroemulation is also a recognised subset of neuro-

hydrid modelling: for a discussion on other types of neuro-hybrid solution, see Van den 

Boogaard & Kruisbrink (1996) and Abrahart et al. (submitted). However, in water 

resources, the establishment of neuro-emulation as an activity distinct from NN-based 

simulation has not been so forthcoming.  Indeed, hundreds of papers concerned with 

hydrological simulation using NNs can easily be identified using standard database 

searches (for example, Ahmad and Simonovic, 2005; Dawson et al., 2006; Wu et al., 

2009).  The same can not be said for neuro-emulation.  This is because the framework of 

a clear conceptual definition and terminology which distinguishes neuro-emulation from 

other NN modelling activities in water resources is as yet not adequately established.  

This makes it extremely difficult to disentangle neuro-emulation papers from those 

concerned primarily with simulation.  It is not so much that hydrological neuro-emulation 

is not being done, but that it is not being fully differentiated by those doing it, and this 

means that its specific benefits for water resource studies are not being adequately 

recognised.  Indeed, the challenge in establishing neuro-emulation as a distinct 

hydrological sub-discipline that is able to demonstrate its specific scientific and practical 

benefits to the water resource modeller requires three core steps to be undertaken: 

 

1.  The conceptual and terminological definition of the sub-discipline and its positioning 

within the context of broader water resources modelling activities so that it can be 

properly distinguished from them; 

 

2.  The identification of its benefits, as exemplified from existing studies in which 

emulation has been a central component; 
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3.  The highlighting of research directions for which hydrological emulation offers clear 

potential; thereby encouraging others to pursue it and providing forward traction for 

future studies to further develop the emerging sub-discipline. 

 

This paper addresses these three core steps by formalising the conceptual definition and 

terminology surrounding emulation, providing a classification of the benefits of neuro-

emulation in water resources as evidenced and exemplified from published literature, 

and suggesting a range of future research directions that offer potential benefits. 

 

 

1.1. Terminology 

 

 

The conceptual definition and terminology surrounding emulation is clearly of 

importance, but can often be confusing or ambiguous. Terms such as emulator, 

metamodel, compact model, response surface, surrogate or proxy are often applied in an 

interchangeable manner or, in certain cases, some penchant is expressed for one or 

other descriptor in a particular scientific discipline according to impulse or following an 

earlier precedent. The meta-model descriptor is of particular concern since it is 

frequently used to represent a diverse set of fundamentally different scientific entities, 

spread across various modelling domains. For example: 

 

 a categorisation of theoretical models according to their quantitative or formal 

properties (Slobodkin, 1958; cited in Chorley & Haggett, 1967). 

 a model of a numerical model (Blanning, 1975; cited in Broad et al., 2005) 

 a model of a physical laboratory model e.g. flume experiment (e.g. Kumar et al., 

2010). 

 a minimum information requirement lower-order model of the simplest structure, 

that satisfies the modelling needs of some driving interest, whilst still ensuring 

that the model parameters retain their physical significance (e.g. Quinn, 2004).  

 a higher-level abstraction or description of an individual model ─ highlighting 

certain specific properties of that original model e.g. the explicit framework of 

rules, logic and reasoning which underpin it.  

Consequently, a general tightening of meaning or so-called controlled vocabulary of 

nomenclature for hydrological modelling emulator science is required i.e. a list of terms 

which have been enumerated explicitly. All terms in a controlled vocabulary should have 

an unambiguous, non-redundant definition and, at a minimum, the following two rules 

should be enforced:  

1. If the same term is commonly used to mean different concepts in different 

contexts, its name should be explicitly qualified to resolve this ambiguity.  

2. If multiple terms are used to mean the same thing, one of the terms should be 

identified as the preferred term, and other terms listed as synonyms or aliases.  

 

Figure 1 proposes a scheme for such a vocabulary based on a rationalisation of existing 

modelling nomenclature used in water resources research. The emulator is situated in a 

basic hierarchy comprising real world, meta-model, functional model and emulator. 

Importantly, in our hierarchy a meta-model is a higher-order generalisation of the real 

world. It documents a conceptual blueprint, to which some larger set of functional 

models will conform, in the same way that a computer program conforms to the 

grammar of the programming language in which it is written. This interpretation is 

consistent with other meta- prefix labellings in different subject domains and as such a 

meta-model abstraction is not a functional model. It cannot be used to deliver predicted 

output. Emulation is completely distinct from the meta-model and it functions at the 

lowest conceptual order. Emulators are substantially more removed from real world 
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physical processes, compared to a functional model simulator, and do not implicitly 

attempt to provide a degraded realisation of ‘process’. They pay no real attention to the 

underlying mechanics but are instead simply designed to deliver full probabilistic 

predictions of the original simulator output. Each emulator should also be capable of 

predicting simulator output to any level of desired accuracy.  

 

1.2.  Methodology 

 

The identification of water resources papers in which neuro-emulation features is 

particularly problematic.  Standard contemporary approaches based on literature 

database queries can only ever uncover papers that have been indexed to an established 

and accepted taxonomy of disciplines and the sub-disciplines / activities that exist within 

them.  At present, neuro-emulation is an emerging field that has yet to be widely 

recognised as a distinct activity by those concerned with water resource studies.   Thus 

the terminology surrounding neuro-emulation does not feature within the taxonomic 

structure to which these studies are indexed and its explicit identification within the title, 

abstract and key words of papers is uncommon.  Indeed, the present lack of a 

conceptual and terminological definition makes it difficult to identify the search terms 

best placed to identify neuro-emulation papers in a database query of water resource 

literature.  The historical record of such activities is, as a result, very difficult to uncover 

since papers which have deployed neuroemulators are hard to detect. This prohibits the 

production of a definitive list of all relevant neuroemulation papers in water resources 

research via standard searches. 

 

For example, a systematic search for relevant papers on water resources issues was 

performed using the Thomson Reuters (formerly ISI) Web of Knowledge research 

platform [19 July 2011]: 

 
Topic=(emulator OR emulation OR neuroemulat* OR neuro-emulat* OR metamodel 

OR meta-model) 

Refined by: Subject Areas=(WATER RESOURCES) 

Timespan=1899-2010 

 

This query returned only 38 papers, with a total citation count of 259, for the period 

1992 to 2010 (Figure 2). Metamodel was the most ‘popular term’. Neuroemulat*/Neuro-

emulat* did not identify any papers. Importantly, most papers which apply emulation 

and neuroemulation in water resources research, and which were collected by the 

authors in an ad hoc manner over the course of several years of general research into 

the wider application of NN for hydroinformatics, were not identified. 

 

The alternative to database searching is the adoption of a more traditional approach to 

uncovering relevant literature that places the emphasises on the ability of those seeking 

the literature to adequately synthesise and collate it.  Indeed, in seeking to define new 

or emerging areas of study, the use of researchers’ experience and contextual 

knowledge of a wide body of potentially-relevant literature is arguably an appropriate 

way to proceed.  This is because it allows the flexible re-interpretation of the conceptual 

underpinnings, semantics and terminology detailed in each study to a new framework 

defining the emergent sub-discipline.  This is an essentially qualitative process founded 

on a high-level abstraction and it can not be duplicated by simple Boolean search 

operations.  The method used to identify papers for inclusion in this review follows this 

approach, and draws upon the authors’ own collections of several hundred papers, 

spanning the last two decades, in which data-driven modelling in general, and NN 

modelling in particular, are applied in water resource studies. The case studies are 

selected by the authors primarily for their illustrative value as exemplars of particular 

modelling opportunities/ benefits.  Further, in most sections, the selected papers also 

represent the first recorded pioneering application(s) on a particular topic or issue of 

interest. It is, however, accepted that the discovery of additional neuroemulation 
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publications may shed more light on the issues which are discussed in the manuscript, 

and potentially suggest new or amended categories of neuroemulator applications. 

 

The remaining sections of this paper are devoted to delivering an overview of potential 

applications of neuroemulation for different aspects of water resources research. The 

review is organised according to a structured categorisation of eight key benefits; 

developed iteratively.  Each category includes example case studies; assigned according 

to the principal reason for developing a neuroemulator as stated in each paper. 

 

2.  NEUROEMULATION APPLICATIONS IN WATER RESOURCE RESEARCH 

 

Traditionally, the use of emulators in water resources research, has comprised a 

response to objectives situated on a continuum ranging between operational and 

scientific. If the emphasis was placed on operational deliverables, the objective is to 

develop models that are more efficient in terms of computational speed and/or data 

requirements. For example, Bond et al. (1979) developed a simple parametric input-

output emulator to predict the simulated output response obtained using a complex 

physically-based catchment model. More recently, Reichert et al. (2011) approximated 

the dynamics of an original hydrological model as a function of both model inputs and 

model parameters using a simplified linear state model emulator. If the emphasis was 

placed on scientific deliverables, the objective is to support knowledge acquisition, such 

as an improved understanding about the functioning of a particular model and its ability 

to adequately replicate processes in the domain of interest. For example, Rosso (1984), 

Chuta & Dooge (1990) and Shamseldin & Nash (1998) emulated a complex 

geomorphologically based network of linear reservoirs using the ‘Gamma Distribution 

Instantaneous Unit Hydrograph Model’ (Nash, 1957).  

 

Similarly, the scope and purpose of neuroemulator applications can be mapped against 

such a continuum. In Figure 3 we position our iteratively-developed categories along this 

continuum, according to the extent to which the reported objectives of each type of 

study is considered to be either more or less scientific. This ordering then forms the 

basis for a structural organisation of our eight subsequent sections. 

 

i. Supporting proof of concept 

 
Neuroemulation can be used to support NN activities by demonstrating proof-of-concept 

modelling capabilities in a simplified and regulated experimental test bed environment. 

Novel methods and approaches are put on trial under controlled conditions provided by 

the original model. The sole purpose of the original model in such cases is to deliver 

comprehensive datasets of an exact relationship which are easier to model i.e. 

containing smooth, free-of-noise self-consistent relationships. The end product will 

nevertheless deliver inflated levels of performance e.g. in modelling pan evaporation, 

due to the acquisition and prediction of equation-generated outputs, in contrast to 

observed records, with the latter anticipated to yield a substantially weaker solution 

which delivered greater errors (Moreno et al., 2010). This category is illustrated by 

means of specially selected case studies which soundly demonstrate the potential merit 

of neuroemulation for proof of concept explorations. The neuroemulators in such cases 

aimed to reproduce predicted model outputs obtained from a set of complex 

mathematical procedures, but used substantially different input drivers from those which 

the original modelling mechanisms required. 

 

French et al. (1992) neuroemulated predicted spatial and temporal rainfall outputs 

originating from a mathematical simulator. Their approach was considered advantageous 

since it is not subject to data quality and observational error issues, and an essentially 

unlimited set of records could be generated. The stochastic rainfall model, developed by 

Rodriguez-lturbe & Eagleson (1987), and modified by Krajewski & Rodriguez-Iturbe 

(1990), was utilised to construct simulated patterns which served as ‘true rainfall’. This 
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model conceptualises rainfall as a spatially random Poisson process in which summed 

contributions of ‘rainfall cells’ over spatial and temporal domains produces realistic 

looking rainfall fields. The cells are characterised by their attributes e.g. time of birth, 

location of birth, rainfall intensity at the centre, velocity, etc. The model, although an 

obvious simplification of reality, was considered sufficiently complex to provide a sound 

case study. The simulation domain was 100 km x 100 km at a resolution of 4 km, 

yielding a regular grid of 25 x 25 points (625 points). NN inputs comprised spatially 

distributed rainfall intensity records: output was forecast intensity valid 1 hour ahead 

over the same region. The simulation model was used to generate 75 statistically 

independent events, using identical parameters, such that the statistical characteristics 

of any sample of events was expected to be preserved. NN performance was compared 

against persistence and nowcasting approaches. The NN was found to be capable of 

learning the complex relationship describing the space-time evolution of rainfall, such as 

that inherent in a complex rainfall simulation model. 

 

Minns & Hall (1996) neuroemulated predicted discharge outputs originating from a well-

established conceptual model: RunOff Routing B (RORB: Mein et al., 1974). Their 

experiments were designed to assess the extent to which such approaches could capture 

the rainfall and runoff relationship. Their methodology was designed solely to assess the 

learning capability of a NN. Theoretical catchments were used to investigate a range of 

different hydrological behaviours, varying from linear to highly nonlinear, all other 

factors being regarded as equal. Important controls are difficult to isolate and/or asses 

on real datasets since: (i) it would require prior classification of river regimes as linear or 

nonlinear; and (ii) influential catchment characteristics will never be exactly equal. RORB 

itself is a general runoff and streamflow routing program. It is used to calculate flood 

hydrographs, by subtracting losses from rainfall, to produce rainfall-excess and routing 

that result through catchment storage to deliver its output. The program settings for 

their hypothetical catchment equated to a rural drainage area of about 30 km2 in 

southern England. For simplicity, no losses were separated and the catchment was 

considered to have no impervious area. Monte Carlo methods, involving parametric 

assumptions, were used to construct six storm sequences. Events of varying duration, 

total depth and profile, occurring at irregular intervals, produced corresponding 

streamflow outputs. For simplicity, these rainfalls were treated as areal averages. NN 

were found to be capable of identifying usable relationships between discharges and 

antecedent rainfalls. It was also suggested that great caution should be applied in 

studies involving extreme flood events. 

 

ii. Enabling structural diagnostics 

 

Neuroemulation, by definition, is intended to replicate the external behaviour of selected 

models. However, from a scientific viewpoint, it is also instructive to compare and 

contrast the internal structures and/or processing mechanisms arising, with potential 

counterparts located inside the source model. The modeller could thereby establish the 

extent of functional similarities and differences and in so doing ascertain if the emulator 

is: (i) modelling matters in a comparable manner for the purposes of providing additional 

credibility to the emulator; or, conversely, (ii) providing alternative answers which could 

be suggestive of conceptual improvements that might be applied to the original 

functional model or higher level meta-model. Moreover, by means of such extended 

investigation and reporting, it should be possible to obtain a better understanding of 

internal neuroemulator dynamics which will in turn assist the neuroemulation community 

in developing improved solutions.  

 

Wilby et al. (2003) neuroemulated predicted discharge outputs originating from a 

parsimonious conceptual water balance model (CWBM: Greenfield, 1984; Wilby et al., 

1994) of the Test River Basin, in Hampshire, England. Their diagnostic experiments were 

designed to move away from the concept of using individual NN connection weights, as a 

basis for analysis, and instead consider hidden units (i.e. an organised collection of 
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weights) as the principal means of establishing ‘acquired knowledge’. The overall 

intention was to match/pair hidden units against conceptual model components and 

thereafter use equivalent functionality to argue a case for analogous representation of 

physical processes. CWBM daily flows at the basin outlet were simulated using daily 

estimates of total precipitation and potential evaporation. NN counterparts were 

developed on different selections of seven potential inputs chosen on the basis of their 

explanatory power. This included elements of high-frequency forcing, lagged forcing and 

smoothed forcing. Three experiments were conducted in which the number of inputs 

upon which the emulators were developed was progressively reduced, so as to 

determine the extent to which a model could represent hydrological processes using 

degraded collections of information. The relative impact of each hidden processing unit 

was examined by means of partial outputs and parallel plots. Their experiments showed 

that for a three hidden-unit-model, provided with antecedent precipitation and 

evaporation inputs, outputs associated with two of the hidden units were suggestive of 

'baseflow' and 'quickflow' components. The third hidden unit appeared to map important 

seasonal variations in the soil moisture deficit and exhibited threshold behaviour.  

 

Abrahart & See (2007) neuroemulated predicted discharge outputs originating from the 

Xinanjiang Rainfall-Runoff Model (XRRM: Zhao et al., 1980; Zhao, 1992). Their 

diagnostic experiments were designed to identify the non-linear nature of different 

functional response surfaces being captured by the NN. The analysis spanned a modest 

range of rainfall events and catchment conditions, using a constrained random sampling 

methodology. XRRM was originally intended for use in humid and semi-humid regions. It 

has a small number of parameters, its structure and components have strong physical 

meaning, and these factors in combination make it a popular tool for hydrological 

modelling purposes. The model in the reported paper was formulated as a single 

equation containing four variables (3 inputs and 1 parameter) and no temporal 

component. The use of random inputs, possessing a uniform distribution, meant that 

certain unlikely combinations could occur. Full emulations were initially developed using 

the original model inputs and one of two different outputs: original computed discharge 

and a calculated runoff coefficient. Partial emulations were also developed on a smaller 

number of input variables, using omission and conflation of the original inputs, to reveal 

the changing nature of particular response surfaces which the authors considered to be 

of hydrological interest. The use of different input combinations also enabled the 

competencies of neural solutions developed on a reduced number of variables to be 

assessed. Their visual depictions provided indisputable evidence of reliable non-linear input-
output mappings being performed, confirming that given a respectable dataset, neural 
computing can deliver what is required. 
 
iii. Performing sensitivity and uncertainty analysis 

 

Neuroemulation can be used to examine internal sensitivity and uncertainty in the source 

model, by means of performing a great number of repeat runs, each based on a series of 

modified inputs or different parameter sets. The results of such explorations are 

subsequently used for generating statistical population distributions and in setting 

confidence limits on the original model. This method of analysis is identical to that used 

for traditional modelling applications, albeit that the neuroemulator is very much 

quicker.  It is also possible, however, to build a NN model of error surface parameters 

derived from the source model. Their flexibility and adaptability with regard to inputs 

and outputs can be employed to deliver sound estimations of several different error 

quantiles and, by analogy, the shape of probability distributions at each individual point 

in a forecast. 

 

Shrestha et al. (2009) neuroemulated parameter uncertainty bounds originating from a 

simplified version of HBV. Instead of building a NN model of the error in process model 

output, as in standard error updating, a predictive model of parameters describing an 

error distribution was developed. This is a useful activity, since direct estimation of 



 8 

model uncertainty bounds could remove the need to perform a Monte Carlo simulation 

on real-time applications. It would be especially advantageous if a large number of 

model runs was not practical, for example in the case of applying complex hydrological 

models, or if the forecast lead time was very short. Testing was performed on the Brue 

catchment in South West England. Nine parameters were involved: using ranges based 

on calibrations derived from other model applications and/or hydrological descriptions of 

the catchment, extended as necessary, if potential solutions occurred near a border. 

Monte Carlo simulation was performed on random parameterisations, sampled from nine 

uniform distributions. HBV is run on each set and a likelihood rejection filter applied. The 

remainder are used to produce a distribution of potential realisations at each time step: 

such that calculated upper and lower quantiles can be used to provide an output 

predictand in the form of either an upper or a lower prediction interval i.e. 'synthetic 

uncertainty descriptors'. The inputs were standard NN inputs: comprising selected lagged 

or differenced discharge and effective rainfall records. This method can be extended to 

predict several different quantiles and by analogy the shape of probability distributions.  

 

iv. Facilitating scenario analysis and decision making 

 

Neuroemulation is often used to substantially increase the processing speed of an 

existing application; but, commensurate with such improvements, the very nature and 

scale of what can actually be achieved within an acceptable waiting period is also 

changed. High-speed modelling and faster completion times will permit more demanding 

types of problem to be addressed over realistic periods of computer calculation: (i) by 

reducing the computational burden involved in resolving convoluted multifaceted 

planning and design issues arising from scenario analysis; (ii) by enabling ‘number 

crunching’ to be replaced with ‘model crunching’; and (iii) by supporting the 

implementation of extended runs on large datasets over very long periods of time e.g. 

commensurate with our need to understand the surface impact of global warming. The 

net gain is twofold: greater end-user empowerment; and a more exciting field of 

thought-provoking opportunities for model builders. 

 

Neuroemulation has been employed on numerous occasions to produce a quicker 

groundwater model, delivering processing speeds, which can be up to two orders of 

magnitude faster. Each solution is subsequently coupled to a genetic algorithm and used 

to produce an optimal groundwater remediation strategy. The simulated aquifer 

contained a dissolved contaminant plume and different pump-and-treat abstraction 

and/or injection options are evaluated to discover the optimum number, location and 

pumping rates for remediation wells. 

 

(i) Rogers & Dowla (1994) tested different remediation strategies for multiple 

contaminant plumes using a hypothetical heterogeneous aquifer. Their work 

followed the advection-dispersion method for solute transport modelling. Modelling 

adopted a discrete set of pumping rates i.e. maximum permitted pumping or not 

pumping. Training examples were obtained from numerous simulation scenarios 

using 2-D hybrid finite difference/ finite element flow and transport code (Voss, 

1984).  

(ii) Rao & Jamieson (1997) performed similar investigations on a simplified but 

representative approximation to a real aquifer contaminated with chlorinated 

solvents. The aquifer was assumed to be confined, homogenous and isotropic. 

Emulation again involved two discrete representations of pumping rates and 

examples developed using the 2-D hybrid finite difference/ finite-element flow and 

transport code: FDMOD.  

(iii) Aly & Peralta (1999) modelled observed records for a real single-layer aquifer 

contaminated with trichloroethylene but did not opt to develop their own physical 

process code: preferring instead to use a combination of two established 

international mathematical models: MODFLOW (McDonald & Harbaugh, 1983; 

1988) and MT3D (Zheng, 1990). The former is a 3-D finite-difference ground-water 



 9 

flow model; the latter is a 3-D solute transport model that simulates advection, 

dispersion and chemical reactions of dissolved constituents in groundwater 

systems.  

 

Parkin and associates (Parkin et al., 2007; Birkinshaw et al., 2008) neuroemulated 

predicted river-aquifer ‘interactions’ originating from the complex process-based 

distributed integrated catchment modelling system SHETRAN (Ewen et al., 2000). Their 

motivation was to provide a means for rapidly assessing the impact of groundwater 

abstractions on river flow. Modelling sought to capture different controlling factors, by 

means of a generic model for different types of river-aquifer system in England and 

Wales. Hypothetical case studies were used to develop a neuroemulator. SHETRAN 

required information on recharge and groundwater abstractions plus parameter values 

for different hydrogeological settings. The simulations were also transient and involved 

time varying recharge. The original model delivered 74 self-consistent outputs: 

comprising time series for flow depletion at the catchment outlet, spatial patterns of flow 

depletions along a river channel and water table drawdowns at various points around the 

abstraction well. To reduce that number a generalised family of well-behaved curves 

were fitted to certain outputs: shape parameters being used to represent four curves, in 

which individual points formed part of a continuous response from SHETRAN. The 

generic emulator proved to be an efficient tool for representing the impact of 

groundwater abstractions, across a wide range of conditions. It was also successfully 

tested on a field dataset for a chalk aquifer i.e. Winterbourne Stream (Lambourn 

Catchment, Thames Basin). Their reported method swiftly reproduced detailed process-

based evaluations but it also highlighted the potential for developing generic emulators, 

which are not tied to a specific dataset, and/or for adopting non-physical outputs in a 

NN. 

 

v. Providing model calibration response surfaces  

 

Neuroemulation is primarily focussed on delivering faster and/or more efficient 

equivalents; but it can also be used to support traditional modelling operations. For 

example, a substantial speed-up in calibration (parameter estimation) and model 

assessment procedures can be invoked by means of an emulator. The development of an 

input-output response surface can also be quicker and better for other reasons, since the 

initial number of complex mathematical realisations required to produce an acceptable 

outcome can be much lower: small gaps can be in-filled; hydraulic insight can be applied 

in selecting strategic/tactical records, in particular for large and complex field sites, 

supporting further acceleration and perhaps a better overall result. Field scale 

applications which demand the use of complex physical models – containing hundreds of 

parameters - requiring slow and complicated numerical optimisation procedures would 

clearly benefit. 

 

Liong & Chan (1993) neuroemulated predicted storm event runoff outputs originating 

from the widely-used Storm Water Management Model (SWMM: Huber et al., 1982). The 

motivation behind their experiment was to develop a functional response surface that 

related model calibration parameters to final model output - similar to the full second-

order polynomial procedure of Ibrahim & Liong (1992) – from which optimum settings 

could thereafter be identified. SWMM is a dynamic physically-based deterministic rainfall-

runoff model which is used to perform single event or long-term (continuous) 

simulations of runoff quantity and quality from primarily urban areas. SWMM was used 

to deliver simulated runoff volumes for the urbanised Upper Bukit Timah catchment in 

Singapore. Ten single-burst storm event records were considered. Three representative 

storms were used to provide a modelling dataset: their selected storms portraying 

upper, intermediate and lower magnitude scenarios of the available rainfall record. The 

other storms were reserved for out-of-sample testing. For each individual storm, 273 

different realisations of eight physical modelling parameter values were implemented. 

Bounded parameter search was performed, within a physically meaningful range, by 
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means of random sampling from a uniform distribution. The required response surface 

could thereafter be constructed. The nine neuroemulator inputs comprised eight 

calibration parameters plus rainfall volume: predicted output was runoff volume. The 

simulation period required for response surface development was reduced from seven 

hours for the equivalent mathematical procedure to about one minute or less for the 

neuroemulator. The neuroemulator also yielded relatively low prediction error: ranging 

from 2% to 5% on their testing datasets. 

 

Khu et al. (2004) neuroemulated predicted discharge outputs originating from the MIKE-

11 NAM model (Nedbor Afstromning Modele: Nielsen & Hansen, 1973). Like Liong & 

Chan (1993), they sought to develop a functional response surface that related model 

parameters to final model output. Their hybrid solution was intended to reduce the 

number of simulation runs required, improving the feasibility of automatic calibration, by 

addressing the challenges of modelling a ‘changing landscape’ i.e. as more cases are 

gathered, the neuroemulator will require adjustment, such that greater efficiencies might 

be gained from performing search and update in a dynamic manner. NAM is a general 

purpose lumped conceptual hydrological rainfall-runoff model in which four interrelated 

storages are used to represent different physical elements of a catchment. The nine 

most important parameters of the model were to be determined by calibration ─ see 

Madsen (2000). First, a genetic algorithm is used to search for an initial population of 

preferred solutions, in much the same way as any other optimisation routine might be 

performed. This information is used in a neuroemulator to construct an initial response 

surface, which is thereafter applied in a second genetic algorithm loop, as a rapid initial 

selection or rejection filter of candidate solutions, prior to implementing best-individual-

based updating of the neuroemulator with NAM. The proposed method was tested on 

daily datasets for the Treggevaede catchment in Denmark. The results were comparable 

to that of a standard genetic algorithm, but the number of mathematical model runs 

required was reduced by 60%.  

 

vi. Supplying surrogate parts for system optimisation 

 

Neuroemulation can be used to deliver independent standalone applications; but it could 

also be used to develop smaller replacement components, which subsequently act as an 

integrated part of some larger system. The act of partitioning a larger problem into a set 

of smaller modelling challenges will hopefully result in the production of superior internal 

components and an improved overall model. If one or more slow(er) components inside 

a complex system are replaced by emulators, the original mechanism will run much 

faster, whilst from an overall conceptual position, everything else remains largely 

unaltered. Neuroemulation also offers a greater degree of independence from structures 

and methods related to the original model or program, something that might be very 

important in the case of a dedicated software product. It will, moreover, support 'ease of 

extension': since to encompass alternative inputs and/or mechanisms and implement 

different objective functions is a straightforward matter. 

 

Solomatine and associates (Solomatine & Avila Torres, 1996; Dibike et al., 1999) 

neuroemulated predicted downstream water level outputs originating from MIKE-11: an 

industry standard hydrodynamic modelling system (Havnø et al., 1995). Two 

computational modules were involved: (i) NAM (described earlier) and (ii) HD, its core 1-

D hydrodynamic component. Their primary goal was one of multi-criterial decision 

making for a 3-reservoir system in the Apure River Basin of Venezuela: operational 

demands required water releases (turbine throughput and bottom outlet) for power 

generation; operational constraints included minimal water releases for navigational, 

industrial, ecological and drinking purposes. The overall river control process was to be 

optimised by means of dynamic programming, requiring a hydrodynamic model of the 

river system to be incorporated into a standard optimisation loop. MIKE-11 was used to 

perform the required downstream water level simulations using observed datasets but 

is: (i) menu driven i.e. modules could not be run unattended or controlled from an 
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external program; and (ii) the time needed to perform an optimisation loop would have 

been prohibitively long. Neuroemulators were instead used to predict downstream depth 

at points of interest: receiving as input upstream sub-catchment discharges, releases 

from reservoirs, plus initial water level. The output was final water level. Each neural 

solution was converted into source code and compiled to provide a small compact 

executable, that was fast to run, and could be incorporated in the reservoir operation 

optimisation loop as a direct replacement for MIKE-11; different objective functions 

and/or optimisation procedures could also thereafter be applied in a straightforward 

manner. 

 

Wang & Jamieson (2002) neuroemulated predicted downstream biological oxygen 

demand outputs originating from TOMCAT (Temporal/ Overall Model for CATchments: 

Bowden & Brown, 1984; Cox, 2003): a process-based river water quality simulation 

model developed by Thames Water. TOMCAT was used to predict downstream 

consequences arising from treated effluent discharged into a river for different 

combinations of either: (i) a fixed-emission standard, enabling site selection; or (ii) 

individual standards for different plants so as to meet in-stream water quality 
requirements, enabling simultaneous site selection/waste load allocation. Their primary 

goal was cost reduction: modelling sought to minimise the total (capital and operating) 

cost of treatment under different regulatory scenarios for works situated in the Upper 

Thames basin of southern England. The overall process was optimised by means of a 

genetic algorithm. TOMCAT is a complex mathematical “cause and effect” model. It is 

designed to account for assimilative capacity such as in-stream dilution, dispersion and 

natural purification (reoxygenation): but is computationally demanding and not easily 

incorporated into a standard optimisation loop. Neuroemulation delivered a simpler and 

faster mechanism, supporting rapid, near optimal convergence, under different 

combinations of plants, standards and hydrological conditions. Increased processing 

speed, however, was supported by other massive computational savings. The number of 

TOPCAT model runs needed was massively reduced in the development of a neural 

response function: for a single river quality objective, from a full search necessitating in 

excess of over 5000 direct calls, to 500 runs considered sufficient to produce an 

appropriate spread of input-output pairings for building a NN.  

 

Muleta & Nicklow (2004) neuroemulated predicted sediment yield and agricultural profit, 

at the level of a hydrologic response unit, originating from the Soil and Water 

Assessment Tool (SWAT: Arnold et al., 1998; American Society of Civil Engineers, 1999). 

SWAT is a physically-based distributed river–basin-scale public domain model which was 

developed to quantify the impact of land management practices in large, complex 

watersheds. Their primary goal was speed-up: so as to improve the practical utility of an 

operational decision support tool, from a typical user perspective, by installing a 

neuroemulator replacement for the SWAT hydrological simulation component contained 

inside a previously developed multiobjective decision-support system. That particular 

routine formed part of a larger hybrid-coupling that was designed to aid in reducing the 

impact(s) of erosion while considering social and economic dynamics of a watershed. The 

overall process was optimised by means of a 'Strength Pareto Evolutionary Algorithm'. 

That mechanism searched for optimal or near-optimal watershed landscapes, defined as 

that combination of land use and farm management practises, at the spatial scale of a 

farm field, which simultaneously minimises sediment yield and maximises net 

agricultural profit over a specified period (Muleta & Nicklow, 2002; Muleta, 2003). The 

original watershed decision support model took 2.5 CPU days to process Big Creek: a 

130 km2 watershed in southern Illinois. Neuroemulation reduced the computational 

period required to identify preferred landscapes and generate watershed management 

policies by some 75% (including dataset creation and model development): run time 

processing dropped from 63.25 hours to 4.5 minutes. 

 

vii. Streamlining of individual and modular solutions 
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Neuroemulation can deliver less complicated modelling solutions, in the form of 

interpreted or compiled products, which can be much easier to work with i.e. a tool that 

is less difficult, convoluted, inconsistent, problematic or demanding. This statement 

might appear contradictory, given NN that are complex parallel processing mechanisms 

i.e. can be broken down into simple parts, without being simple itself. Their ability, 

however, to acceptably perform full, partial, augmented or surrogated modelling, will 

support the rapid production of simpler and less demanding mechanisms. From a 

practical, operational and managerial viewpoint, such products would be substantially 

easier to install, administer and resource. Their flexibility and adaptability with regard to 

inputs and outputs can also be used to deliver sound multi-model couplings, since by 

means of simplicity, neuroemulators could be used to provide an open ended ‘bridging 

mechanism’: relaying diverse information from different models as part of a cascading 

series.  

 

Hsu et al. (2003) neuroemulated predicted suspended sediment concentration outputs 

originating from the popular Hydrologic Simulation Program Fortran (HSPF: Bicknell et 

al., 1997). The motivation behind their experiment was to develop: (i) a less 

complicated surrogate that demanded fewer, easier/cheaper to acquire inputs; and (ii) a 

tool that could be operated by non-professional staff i.e. model reduction/simplification. 

HSPF was considered difficult to support due to its heavy demands for numerous 

datasets and experienced personnel. This river basin modelling program is used to 

assess the effects of land-use change, reservoir operations, point or nonpoint source 

treatment alternatives, flow diversions, etc. It requires continuous temporal records of 

rainfall, temperature and solar radiation; surface characteristics such as land use 

patterns; and information on land management practices in order to simulate the 

processes that occur in a watershed. Flow, sediment, nutrient and pesticide 

concentrations are all predicted. HSPF was applied to the Chi-Cha-Wan watershed in 

Central Taiwan. It was used to model Typhoon Seth (calibration) and Typhoon Tim 

(verification) in 1994. Ten other rainfall records for different typhoon events were 

thereafter passed through HSPF and its model outputs used to develop a neuroemulator. 

NN inputs comprised a simple sequence of past rainfall and current discharge records, 

which were straightforward to collect, meaning that it could be applied in numerous 

situations where the demands of their original complex model could not be resourced. 

Their two models provided similar results, but the neuroemulator was quicker to 

implement and easier to run. Execution times are not reported.  

 

Kamp & Savenije (2007) neuroemulated four different physical models: a daily lumped 

conceptual rainfall-runoff model ─ Hydrologiska Byråns Vattenbalansavdelning (HBV: 

Bergström & Forsman, 1973; Lindström et al., 1997), a 30 min 1-D hydraulic river 

channel routing model (Duflow: www.duflow.nl/), a 30 min estuarine salt intrusion 

model (Savenije, 1989, 1993, 2005) and a 30 min ecological water quality underwater 

light model (Secchi-depth Model: Blom, 1992). Each model formed part of a larger 

loose-coupled ‘modular solution’: outputs from the rainfall-runoff model, were fed into 

the hydraulic model, and so on cascading down through the system in a serial manner. 

The main issue of interest was not emulation per se: it was to encourage simpler and 

sounder model coupling in which NN deliver a ‘bridging mechanism’. The authors 

recognised an increasing need for different models to be coupled: but also understood 

that such activities were frequently handicapped by: (i) a requirement to run individual 

models in particular software packages; (ii) incompatibility issues related to dissimilar 

data formats and scales; and (iii) an inability to directly modify source code ─ a problem 

related to intellectual property rights. Four individual neuroemulators were developed for 

the Alzette Basin in Luxembourg. Three of the four solutions performed reasonably well: 

but their salt intrusion model struggled to represent both short term (tidal) and long 

term (hydrological) processes. The intermediate channel routing NN could nevertheless 

be used to connect two physical models. However, running four neuroemulators in 

series, suffered from accumulated error build-up: mainly stemming from the rainfall-

runoff and salinity NN.  
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viii. Delivering faster time-critical processing 

 

Neuroemulation can deliver sound modelling solutions, possessing run speeds that are 

orders of magnitude faster. Speed-up offers clear benefits for both operational and non-

operational applications. Neuroemulators can be used in operational systems where real-

time demand places important deadlines, or perhaps mission critical constraints, on the 

activities and deliverables which must occur between 'event' and 'response'. The 

replacement of traditional mathematical products with neuroemulators could for instance 

deliver major improvements in processing speed for decision making and operational 

control in a dynamic water environment. However, productivity per time unit is also 

important in other ways, such that methodological improvements regarding the manner 

in which a particular problem is resolved can deliver strong practical benefits for 

laboratory modelling i.e. situations containing no fixed quality-of-life or life-threatening 

deadlines, even if a fast response time, or high performance operation is desired.  

 

Jamieson and associates (Jamieson et al., 2007; Rao & Alvarruiz, 2007; Salomons et al., 

2007; Martinez et al., 2007) neuroemulated predicted hydraulic and water quality 

behaviour in pressurised pipe networks originating from a complex simulation model: 

EPANET (Rossman, 2000). EPANET is public-domain water distribution system modelling 

software developed by the United States Environmental Protection Agency. It performs 

extended-period simulation of pipeline distribution systems and was developed to help 

water utilities maintain and improve their delivery of water to consumers. To estimate 

the physical consequences of different pump and value settings for fluctuating spatial 

and temporal patterns of demand necessitates a process-based hydraulic simulation 

model. The computational demands of such approaches are nevertheless substantial and 

require greater processing efficiencies to be acquired: so as to support real-time, near-

optimal control of larger distribution networks, possessing mechanical operational 

apparatus which must be adjusted at frequent intervals. Neuroemulators were used to 

capture the complex domain knowledge base of this hydraulic simulation model in an 

accurate and robust manner under different test conditions. The reported gains in 

computational speed-up to predict the consequences of different control settings were 

x10 for a hypothetical 41-pipe 19-node 'Any Town" network (Walski et al., 1987). Higher 

gains were reported using larger emulators coupled to a genetic algorithm optimisation 

procedure which matched control settings to operating costs and water demand 

forecasts: x25 for a 112-node 126-pipe Haifa-A network (a sub-set of the water 

distribution network for Haifa in northern Israel); x94 for a 725-node 772-pipe city-scale 

network of Valencia in Spain.  

 

Cullmann and associates (Schmitz & Cullmann, 2008; Cullmann et al., 2009) 

neuroemulated predicted discharge outputs originating from two coupled public-domain 

products: (i) the detailed grid- and physically-based distributed rainfall-runoff hydrologic 

Water Flow and Balance Simulation Model (WaSiM-ETH: Gurtz et al., 2000); and, 

optionally, to cover extended flooding or significant backwater effects at confluences (ii) 

the Hydrologic Engineering Center River Analysis System (HEC-RAS: Brunner, 2002). 

Their hydrodynamic model was parameterised for the Freiberger Mulde catchment in the 

Ore Mountains of Germany. The precipitation record was thereafter enhanced, by 

including synthetic scenarios derived from a stochastic rainstorm generator, which 

mirrored typical meteorological catchment behaviour – so as to represent all possible 

‘constellations of flood formation’. The generator settings were based on meteorological 

analysis and operating the hydrodynamic model on their revised dataset enabled certain 

particulars to be considered as ‘state feature vectors’. This resulted in a database of 

input/output vectors, which is thereafter completed by generally available hydrological 

and meteorological data for characterising catchment conditions prior to each storm 

event. Their solution was considered sound: it was also able to reproduce the dynamics 

of a real flood. The reported gains in computational speed-up exceeded x100. Such 

rapidity is important in delivering flash flood warnings i.e. where every minute counts. It 
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would permit real-time analysis and management of different structural defence 

scenarios, if such items were to be included. Their methodology was also applied to an 

ensemble of temporal and spatial rainfall scenarios containing 200 members – facilitating 

a straightforward evaluation of meteorological forecast uncertainty. 

 

SUMMARY AND CONCLUSIONS 

 

This paper has provided an introduction to the subject of neuroemulation and a 

structured categorisation of on-going developments in an expanding field of water 

resources modelling.  The authors recognise that the methodology employed in 

synthesising and collating relevant literature is counter to the contemporary norms by 

which many reviews are conducted (i.e. extensive database searching).  However, we 

argue that in exemplifying the benefits of the newly-emerging sub-discipline of neuro-

emulation, for which a standard terminology is as yet unrecognised in water resources,  

the adoption of a qualitative appraisal of the literature based on expert knowledge is an 

appropriate starting point.  There is a possibility that more sophisticated and 

comprehensive full-text search methodologies may identify additional relevant studies 

that can build on those presented here, particularly if soft or fuzzy search schema are 

employed.  Conducting such a review represents a future study worthy of consideration. 

 

It is argued that such neuro-emulation activities have not been awarded sufficient 

recognition or given due past credit in the water resources domain.  In part this may be 

attributed to the need for a consistent and coherent vocabulary surrounding emulation 

activities, which makes important applications hard to identify in the research literature.  

If the field is to become better established, some meaningful agreement that delivers 

stronger recognition and appropriate and consistent language is required. However, one 

could also speculate that this lack of a developed nomenclature, is simply symptomatic 

of a more general lack of recognition of the importance of emulation by researchers. 

Indeed, the process of using one model to represent another model, is sometimes 

considered to be less scientific or less elegant than resolving other, more pressing, or 

more controversial, modelling challenges. 

 

The literature presented here challenges recent concerns that further investigation into 

the use of NN tools for water resources modelling might prove to be an academic cul-de-

sac (Wilby et al., 2003, p.164) by highlighting their potential implementation as 

emulators. Indeed, when NN are used to perform emulation, particularly in situations 

where out-of-sample testing is paramount and no physical hydrological considerations 

are involved, arguments about the lack of transparency or hydrological knowledge in NN 

solutions become less important.  Indeed, in this context the potential value of NN 

research is more evident.  The following caveats should nevertheless be noted:  

 The time and effort needed to construct a NN solution must be offset against 

potential gains;  

 Emulator performance will depend on the performance of the parent model; and 

 Emulator performance could deteriorate if it is applied beyond the range of 

conditions used in development.  

 

To conclude, three potential avenues for further research emerge from the literature 

presented in this review: 

 

1.  Neuroemulator choice and evaluation 

 

Most reported experiments involved a single individual neuroemulator. No comparison of 

different types of emulator or different emulation strategies was provided. Thus, two key 

questions remain unanswered: (i) how should the form and function of a neuroemulator 

to be determined; and (ii) how is the preferred neuroemulator mechanism for a 

particular situation to be decided? 
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Several major models have been emulated to good effect but no comprehensive 

evaluation was reported: neuroemulator mechanisms were only tested for accuracy. 

Following Jin et al. (2000), it is our belief that various factors contribute to the success 

of a given emulator, including nonlinearity of model behaviour, dimensionality and data 

sampling, and internal parameter settings for the method under test. They contended 

that multiple metrics should be considered for comparison, including accuracy, efficiency, 

robustness, model transparency, and simplicity. Knowledge of performance and the 

impact of contributing factors to their success is of utmost importance to designers when 

trying to choose an appropriate method for emulating a particular application.  The 

development of neuroemulators in most reported instances equated to a straightforward 

mundane operation: but experiments performed on perfect datasets, that were designed 

to provide a good fit to the simulator, might deliver a different product to a solution 

trained on real world observations that contained random noise or systematic error in 

either inputs and/or outputs. The adoption or inclusion of modified and disrupted input-

output parings should in consequence be tested. 

 

2.  Methods for constraining neuroemulators 

 

In choosing and evaluating a neuroemulator, the satisfaction of constraints will be an 

important factor since a neuroemulator cannot take specific advantage of the original 

model structure; making it vulnerable to the production of inappropriate solutions and/or 

outputs. Indeed, a neuroemulator must provide an accurate representation of the 

simulation model in the vicinity of the global optimum, but it is also vital that an 

appropriate representation is provided at the margins. If the neuroemulator wrongly 

indicates that a particular solution is feasible and/or the output is correct, the search 

process could be directed into an undesirable region of the solution space e.g. a local 

sub-optimum as opposed to a global optimum. 

 

3.  Methods for efficient neuroemulator development 

 

Most studies that were reviewed involved the production of massive datasets; a tedious 

and time consuming business. The reported neuroemulators were developed on a 

random sampling of the solution space but more efficient and effective methods could be 

used. These might include the adoption of non-uniform sampling strategies, as reported 

in other subjects e.g. performing a local search around optimal solutions using the 

original simulation model.  Similarly, the use of neuroemulators is of particular interest 

in the case of large models possessing numerous inputs and outputs. However, for really 

massive simulators requiring hundreds of inputs and parameters to be incorporated, 

some sort of 'screening' or 'input / parameter reduction' procedure would be very useful. 

The different potential methodologies that might be adopted could be explored. 
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Fig 1: Hierarchical rationalisation of existing modelling nomenclature including potential 

pathways for neural network emulator feedback 
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Fig 2: Findings returned from query run on Web of Knowledge 
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Fig 3.  Schematic mapping of neuroemulation applications to the scientific-operational 

continuum 

 


