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Abstract

The possibility of face contact is examined for a coaxial rotor-stator bearing in
dynamic motion constrained by a highly rotating very thin liquid film. A mod-
ified Reynolds equation for pressurised flow is coupled to the bearing structure
leading to determination of the bearing gap from solving a nonlinear second-
order non-autonomous ordinary differential equation. Periodic solutions are
found via a mapping solver. Rotor deformation is parametrised by a coning
angle and considered a random variable. The method of derived distributions is
used to quantify variation in coning angle and examine the probability of rotor-
stator contact. Additionally, effects of possible destabilising random aspects on
the axial rotor oscillations are investigated. Exact solutions for probability of
contact are obtained for various bearing configurations.

Keywords: Reynolds equation, method of derived distribution, probability
density function, face contact

1. Introduction

Liquid film bearings typically comprise a coaxial axisymmetric rotor and
stator pair with a thin liquid film used to maintain a clearance between the
faces when the bearing experiences external loading. The local film pressure
may be enhanced through normal motion of the plates and flow dynamics asso-
ciated with the bearings rotational motion. Commonly industrial applications
of this type of bearing are required to operate with increasing rotor speed; cor-
respondingly inertia effects which are typically neglected in classical lubrication
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theory need to be considered. In this high speed scenario, comprehensive and
accurate predictions of variation in the face clearance is essential to examine the
feasibility of contact between the bearing faces.

For current advanced applications the use of a coned face can be incorpo-
rated in the bearing design to further increase the lubrication force, enabling
a design film thickness to be maintained. Multiple lubrication theory studies
have identified an optimal coning angle and bearing conditions to maximise the
stability [1], [2] and critical angle to avoid face contact [3].

Alternatively, dynamic coned rotor configuration may arise by over- pres-
surisation of the flow through the bearing structure, inducing structural dis-
placement. In a previous study [4] such bearing dynamics were examined for
prescribed periodic axial rotor oscillations where a no-slip boundary condition
was imposed on the bearing faces. Results indicate the film thickness can become
increasingly small reaching magnitude of the order of the surface roughness.

To evaluate the case of very small liquid films, comparable to the order of
magnitude of the irregular surface roughness, exisiting numerical simulation be-
comes impractical on account of applying a no-slip boundary condition on the
irregular surface. To extend the modelling approach an effective slip velocity
condition can be implemented at a suitable equivalent smooth surface. Such an
approach is characterised by a slip length parameter having the same order of
magnitude as the surface roughness [5], [6]. A bearing evaluation for a slip con-
dition is incorporated in the dynamic analysis of a high speed thrust bearing, for
parallel faces [7] and a coned rotor [8] under prescribed axial oscillations of the
rotor. These papers model the bearing dynamics under external loading where
the fluid gap can attain thickness of nano or micro scale size. Two different flow
conditions are considered; one corresponds to the flow being driven purely from
the rotation of the rotor when the stator is stationary, usually referred to as
the stationary or steady state condition in the literature. The other case con-
sidered is that of the rotating face (rotor) undergoing prescribed periodic axial
oscillations where the stator also moves axially in response to the resulting film
dynamics, referred to as a dynamic bearing. For both flow conditions, the limit-
ing case of a very small fluid film is considered, where a slip boundary condition
is included in order to account for the interaction of the flow field with the sur-
face roughness. Centrifugal inertia effects are also taken into account which are
not included in the classical lubrication theory, but can be important for high
rotational operational speeds. In the case of a steady state condition analytical
solutions of the problem are reported in [7] and [8], which are consistent with
the classical no-slip solution of Kalita et al. [9], when the slip condition is not
considered (see [10] for the corresponding experimental verification). Even in
this simple flow configuration, the bearing behaviour is defined by the complex
interaction between the different parameters defining the problem; bearing ge-
ometry, rotor inclination angle, fluid pressurisation, slip condition and effects of
inertia. In particular for an externally pressurised bearing, the effects of iner-
tia have an opposite effect to those of the imposed pressure gradient, where a
critical value of a centrifugal inertia parameter can be found, dependant on the
bearing geometry, where a zero flux condition through the bearing is achieved
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(for more details see [8]). The predicted steady state bearing behaviour is also
consistent with the experimental observation reported in Lee et al. [11], where
two additional issues were identified; combinations of the seal parameters that
maximise the fluid film stiffness is optimal for safe non-contacting operation,
and for high rotational speed applications it is necessary to account for the vi-
bration of other seal and system components. The first observation is consistent
with the analytical prediction of the steady state conditions and is also observed
during the dynamic behaviour where the maximum values of the fluid film are
found at larger values of the film stiffness, see Figure 4 in [8]. The second obser-
vation is the main reason why the dynamic bearing behaviour is being studied,
which is essential in the present work.

Due to the complexity of the fluid-structure interaction, the case of a dy-
namic bearing requires the resulting coupled system of equations to be solved
numerically. The numerical simulation of the flow field incorporates a slip ve-
locity boundary condition in order to characterize the surface roughness of the
solid boundaries (rotor and stator) predicts a significant effect of this condition
on the resulting flow. In these cases the bearing faces are predicted to not have
contact in the case of highly rotating parallel bearings, although the fluid film
can become very small during its dynamic behaviour. Notably for the case of a
coned bearing geometry incorporating a slip boundary condition, face contact
is possible with significant practical implications. A further restriction was that
all parameters and variables in these articles were deterministic defined, which
in many cases are not accurately known. In this current work, further analysis
evaluates the uncertainty associated with the values of key bearing quantities.

Improved predictability of bearing dynamics is of increased interest, espe-
cially the quantification of uncertain effects. A parallel face bearing may have
rotor deformation due to over-pressurisation, which are described in this paper
by a conical shape with coning angle obtained according to the imposed pressure
field. The magnitude of the corresponding conical angle is difficult to determine
and considered as a random variable. Predictions from an earlier study [8] high-
lights undesirable aspects under extreme conditions for a liquid gap of nano or
micro scale including possible stator-rotor collision. An additional complemen-
tary source of uncertainty in a bearing model is the random axial motion of the
rotor due to external excitations. This study quantifies the effects of variability
in the coning angle and amplitude of rotor oscillations on the probability of face
contact.

A general approach to dynamical systems with uncertainty that arises from
external sources, leading to the excitation of the system, are typically based on
the Monte Carlo method. In the Monte-Carlo method, samples from the input
parameter are considered to be uncertain and for each different value of input,
the deterministic model is run to give the corresponding output. It is a robust
method and can be used on complex problems, including with a high number of
uncertain parameters. However for results to have a sufficient level of accuracy,
typically an extensive number of runs (Monte Carlo realisations) are needed. To
increase efficiency for quantifying uncertainty, a number methods have been de-
veloped, for example the Markov Chain Monte Carlo method, Gaussian process
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emulator and polynomial chaos, among others.
A simplified approach to model the external excitations was formulated by

Hou et al. [12] where the excitations where assumed to be periodic with a
random amplitude. This was incorporated into a stochastic model for a linear
single degree of freedom system to examine the stationary moment responses.
An approach to quantify effects of uncertain parameters on the response of a
dynamic rotor bearing system was investigated by Zigang et al. [13]. Governing
equations were derived to include uncertainty in the nonlinear support stiffness
and damping through stochastic modelling; results achieved by an adapted poly-
nomial chaos expansion technique are shown to agree well with those obtained
via a Monte-Carlo simulation. The dynamic behaviour and response statistics
of the stochastic system were investigated through the probability density func-
tion and mean value. Results confirmed that predictions are notably effected
by the uncertainty in the damping and nonlinear support stiffness values.

The method of derived distributions [14] is an alternative approach that
can be used to exactly quantify the effects of uncertainty in the input parame-
ters when a deterministic mathematical model of the problem in consideration
exists. On describing the random input parameter by a probability density
function, defining the relation between the deterministic values of the input
and corresponding output parameters, the probability density function and the
cumulative distribution function of the output can be exactly computed. This
methodology was implemented by Bailey et al. [15] to quantify the impact of
variability in the slip condition and the axial displacement of the rotor due to
external excitations. These parameters where considered as random variables,
due to uncertainty in their values, and the probability of contact is analysed
from a corresponding exact solution.

The methodology in Bailey et al. [15] is used in this paper to investigate
the probability of contact due to uncertainty in the magnitude of the deformed
conical angle and amplitude of prescribed periodic axial oscillations of the rotor.
Prior to contact, the bearing thicknesses may be of nano and micro scales, and
correspondingly a slip length of the order of the surface roughness are consid-
ered. These important extensions give a criterion for controlling or mitigate the
likelihood of possible bearing contact. In Section 2 a deterministic mathemati-
cal model is derived for a fluid film coned bearing incorporating a slip boundary
condition and prescribed periodic axial oscillations of the rotor. The high-speed
rotational bearing operation is incorporated through centrifugal fluid inertia
as used in Bailey et al. [8]. A modified Reynolds equation is formulated and
coupled to generic structural dynamics for a bearing.

The resulting pressure field, solution of the Reynolds equation, exerts an
axial force on the stator that can induce its displacement as a reaction to the
enforced rotor motion, the corresponding bearing dynamics are derived resulting
in a single nonlinear second-order non-autonomous ordinary differential equation
for the face clearance. Periodic bearing solutions are obtained iteratively via a
mapping solver, similar to the stochastic algorithm developed in [15]. Results
are presented in Section 3, initially with deterministic results of the bearing
behaviour, and used for later calculations for the probability of face contact.
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Figure 1: Geometry of a fluid-lubricated thrust bearing in an axisymmetric dimensional cylin-
drical polar coordinate system (r, θ, z).

In Section 3.2 the probability of contact is investigated incorporating the lack
of precise knowledge in the coning angle. In this analysis the coning angle
is taken as a random variable with prescribed mean and standard deviation.
The effect on the probability of contact due to variability in both the coning
angle and amplitude of rotor oscillations is examined in Section 3.3 through
taking the corresponding parameters as random variables with prescribed mean
and standard deviation. Finally a parametric study examines the effect on the
probability of contact of core design geometries and operational conditions.

2. Mathematical Model

A high speed liquid film bearing model, including a slip boundary condi-
tion, is taken from the simplified model in Bailey et al. [8]. The incompressible
Navier-Stokes momentum and continuity equations are used to develop a fluid
flow model in axisymmetrical coordinates as illustrated in Figure 1, incorpo-
rating a coned rotor in close proximity to a plain stator. The mathematical
formulation is expressed in dimensionless variables using typical values of a
characteristic bearing film thickness ĥ0, radius r̂0 and rotor velocity Ω̂r̂ to give
the dimensionless slip length as ls = l̂s/ĥ0 and the aspect ratio δ0 = ĥ0/r̂0 as
being small δ0 � 1 for a thin film bearing. The dimensionless radius r = r̂/r̂0
and height z = ẑ/ĥ0 are identified and the dimensionless time variable is defined
by t = ω̂t̂, with ω̂ denoting the angular frequency. The dimensionless velocities
are given by û/Û , v̂/Ω̂r̂0 and ŵ/ĥ0T̂

−1.
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Figure 2: Schematic of an axisymmetric bearing geometry in the z − r plane in the case of
a) PCB β > 0 and b) NCB β < 0; h denotes the film thickness and g the minimum face
clearance.

Pressures are imposed at the inner radius r̂I and outer radius r̂O, which
drives a radial flow and gives the characteristic pressure as P̂ , resulting in inner
and outer dimensionless pressurisations pI = p̂I/P̂ and pO = p̂O/P̂ , respectively
with dimensionless atmospheric pressure pa = p̂a/P̂ . Over-pressurisation of the

bearing can lead to a fixed deformation of the rotor, giving a coning angle β̂,
as shown in Figure 2. The value of coning is taken as not known exactly, but
sufficiently small for cos β̂ ' 1 and sin β̂ ' β̂. Internal pressurisation (pI > pO)
results in a positively coned bearing (PCB) and external pressurisation (pO >
pI) in a negatively coned bearing (NCB) as illustrated in Figure 2. The cases
of a PCB and NCB are considered separately with a coning angle scaled by
β = β̂/δ0 with β = O(1) at most ensuring a lubrication approximation remains
valid.

The dimensionless film thickness for a coned bearing subject to prescribed
periodic axial oscillations hr(t) of magnitude ε sin t is given by

h(r, β, t) = hs(t)− hr(r, β, t) = hs(t)− ε sin t+ (r − a)β if β ≥ 0,

h(r, β, t) = hs(t)− hr(r, β, t) = hs(t)− ε sin t+ (r − 1)β if β < 0. (1)

In (1) the axial height of the stator is denoted by hs(t) and ε as a measure of
the axial displacement amplitude. For convenience the outer radius is scaled
to 1 and the inner radius to a = r̂I/r̂0, with a ≤ r ≤ 1. The rotor height
hr has the temporal and spatial dependence independent of each other, giving
the film thickness h as the stator height minus the axial displacement from the
prescribed oscillations of the rotor plus or minus the axial height change across
the bearing due to the coning angle for a PCB or NCB, respectively.

The radial Reynolds number is defined as ReU = ρ̂ĥ0Û/µ̂, with dynamic vis-
cosity µ̂ and density ρ̂; classical lubrication theory neglects inertia asReUδ0 � 1.
To include very high speed bearing operation the current work retains centrifugal
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inertia, in this case expressions of the order ReUδ0(Re∗)2 are assumed of O(1),
with (Re∗)2 = (Ω̂r̂0/Û)2 � 1. To retain the effects of the pressure gradient

at leading order the pressure is scaled by P̂ = µ̂r̂0Û/ĥ
2
0 and time dependence

effects are parametrised by the squeeze number σ̃ = r̂0/(Û T̂ ). The Froude

number Fr = Û(g̃ĥ0)−1/2 characterises the relative significance of gravitational
effects relative to the radial inertia effects, where the acceleration due to gravity
is denoted by g̃. However, if ReUδ0Fr

−2 � 1, with the Froude number is O(1)
to ensure consistency with lubrication theory, gravity may be neglected.

For a bearing with a narrow gap, the governing equation for the incompress-
ible fluid flow incorporating slip boundary conditions (see [8], [15]) is obtained
from the leading order thin film approximation of the Navier-Stokes continuity
equation, where terms of O(δ0) are neglected. This leads to a modified Reynolds
equation for slip flow

σ
∂h

∂t
− 1

r

∂

∂r

(
rh2

∂p

∂r
(h+ 6ls)

)
+
λ

r

∂

∂r

(
r2h2

(h+ 2ls)2

(
h3 + 10h2ls +

70

3
hl2s + 20l3s

))
= 0, (2)

with scaled squeeze number σ = 12σ̃ and speed parameter λ = 3ReUδ0(Re∗)2/10
characterising the importance of centrifugal inertia. If the speed parameter is
small λ � 1, the effects of inertia are negligible, however the effect of relative
rotational motion between the rotor and stator is still included through the
velocity boundary conditions.

Using the approach in Bailey et al. [8] the modified Reynolds equation (2)
can be solved analytically for the pressure field. The pressure field is then
coupled to the stator axial displacement which is modelled via a spring-mass-
damper model. Defining the time dependent minimum face clearance (MFC)
by

g(t) = hs(t)− hr(a, t) = h(a, t)− (r − a)β if β > 0,

g(t) = hs(t)− hr(1, t) = h(1, t)− (r − 1)β if β < 0, (3)

as shown in Figure 2, with g = g̃/ĥ0, a single ordinary differential equation is
derived for the MFC

d2g

dt2
+D(g, ls, β)

dg

dt
+ S(g, λ, ls, β) = ε((1−Kz) sin t−Da cos t), (4)

with coefficients

D(g, ls, β) = Da − απB(g, ls, β),

S(g, λ, ls, β) = Kz(g − 1)− απA(g, λ, ls, β), (5)

for a PCB. Details are provided in [8], [15] where the equivalent equations

for NCB are also provided. In equation (5), Da = D̂aReUδ0µT̂/m̂ρ̂0ĥ
2
0 denotes

the dimensionless structural damping coefficient, Kz = K̂zReU
2δ0

2µ2T̂ 2/m̂ρ̂20ĥ
4
0
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represents the restoring force coefficient (stiffness parameter) and α = µ̂Û/m̂ω̂2δ30
is the force coupling parameter. Expressions for A and B are given in Appendix
A, equations (A.1) and (A.2), respectively. The associated case for a NCB has
the same form as equation (4), but modified effective restoring force term given
by S(g, λ, ls, β) = Kz(g − (1 − a)β − 1) − απA(g, λ, ls, β). Parameters for the
coning angle β and amplitude of rotor oscillations ε are considered as random
variables to be analysed.

To solve the governing equation for the minimum face clearance (5), a stro-
boscopic map is formulated and Newton’s method is used to obtain periodic
solutions, following the approach used by Bailey et al. [15]. In contrast to the
evaluation described in [15] the current study examines the important effect of
increasing values of the coning angle β. The Euler scheme (parameter continu-
ation) is used to find successive new initial conditions for increasing magnitude
of coning angle β +4β, using derivatives taken with respect to the coning an-
gle. To compute the threshold values of the coning angle corresponding to a
prescribed value of gmin, the formulated Euler scheme is directly extended; the
limiting case of contact given by gmin = 0. The methodology used is the same
as in Bailey et al. [15], but with the coning angle β taken as a new dependent
variable in the Newton scheme, instead of the slip length. Therefore the addi-
tional derivatives in the Jacobian are with respect to the coning angle instead
of the slip length.

Detailed studies (numerical or experimental) of the above dynamic problem
in the limit of large destabilising rotor oscillations which can result in possi-
ble face contact (rotor-stator) are scarce in the literature. The condition of
very small face clearance requires a high order continuous numerical algorithm,
such as the stroboscopic map formulation and Newton’s method described in
[15] which is also used in the current work, in order to be able to predict such
small fluid clearances. Garratt et al. [16] examined numerical solutions of a
dynamic bearing, using a less robust numerical scheme than the one employed
in this work, to investigate cases when the rotor undergoes prescribed peri-
odic axial oscillations of amplitude smaller than the equilibrium film thickness.
Results showed the stator response was such that a finite face clearance is al-
ways guaranteed, avoiding possible face contact. Most of the studies in the
literature examining dynamic behaviour are concerned with the instability con-
ditions or possible ways of controlling them, where small periodic perturbation
are imposed on steady state conditions, enabling possible growth or decay of
the imposed amplitudes (eigenvalue problem) and the corresponding stability
of the system to be predicted (for more details see [17]). On the other hand,
experimental difficulties are known to occur at very small face clearances, of the
nano or micro scale. Pan et al. [18] used a sphere glued to a cantilever to mea-
sure the damping force versus the film gap between the sphere and substrate,
the sphere was forced to oscillate periodically with a prescribed amplitude with
the aim of demonstrating the slip length was independent of the amplitude of
the cantilever oscillation, i.e. constant slip length. The motion of the cantilever
was described by a spring-mass-damper equation with the driven force given by
a lubrication approximation of the flow around the sphere with a slip boundary
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condition, resulting in an equation which is mathematically equivalent to the
stator displacement equation describing the present bearing problem. However
in the cantilever problem the substrate is fixed, while in the present case the
stator is allowed to move in response to the fluid film dynamics and motion of
the rotor. Although these two problems are not equivalent, the cantilever ex-
periments experienced significant difficulties in regions of very small fluid gap,
mainly because the probe becomes overdamped near probe plate contact with
a very large lubrication force making the measurements unreliable. Similar ex-
perimental difficulties are encountered in the experimental measurements of the
dynamic bearing at very small gaps. In Zou et al. [19], the dynamics of a
noncontacting mechanical face seal with a flexibly mounted rotor was studied
numerically and experimental. The dynamics were investigated by considered
both rotor-stator angular deformation and rotor-stator misalignment due to the
response from the introduced rotor oscillations. The flow clearance between
the faces was measured by proximity probes and varied through a pneumatic
adjustment mechanism. While it was not possible to directly observe contact
conditions, they were determined phenomenologically from pattern recognition
of the probe signals and their power spectrum densities, as well as angular
misalignment orbit plots, which were all calculated and displayed in real-time.

3. Results

3.1. Deterministic Results

Over-pressurisation of the bearing, internal pressurisation (pI > pO) will
produce a PCB and external pressurisation (pO > pI) a NCB; the two cases
of pressurisation are considered separately. The pressure imposed at the outer
radius is taken as a base pressure (pO = pa = 1) and the pressure imposed at
the inner radius is pI = 1.5 for internal pressurisation and pI = 0.5 for external
pressurisation. The structural parameters used correspond to a dimensional
structural stiffness K̂z = 5x106 Nm−1 and damping D̂a = 300 Nsm−1. Initial
bearing characteristics are height ĥ0 = 2x10−4 m, radius r̂0 = 0.02 m, pressure
P̂ = 1x105 Pa, stator mass 1 Kg with fluid properties ρ̂ = 800 Kgm−3 and µ =
0.1 Kgm−1s−1. The resulting dimensionless stiffness and damping parameters
are Kz = 55.56, Da = 1 and dimensionless slip length ls = 0.05, based on a
typical surface roughness.

The pressure distribution in a steady bearing, axial rotor amplitude ε = 0,
is given in Figure 3 for a PCB and NCB in the case of a wide and narrow
annulus. For the cases of a PCB and NCB the corresponding parallel bearing
(β = 0) has internal and external pressurisation, respectively. In the case of a
NCB and a PCB with a narrow annulus (a = 0.8) the pressure increase and
decreases monotonically. However, for a PCB with a wide annulus the pressure
decrease monotonically only in the case of a parallel faces (β = 0). Increasing
the magnitude of the coning angle for both a PCB and a NCB gives a decrease
in the pressure at a given radial position.

To compute the probability of contact (Pc), an ensemble of deterministic
realisations of the bearing behaviour are required giving the parameter values at
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Figure 3: Pressure distribution in the case of a PCB (a1, b1) and a NCB (a2, b2) over the
bearing width for a) wide a = 0.8 and b) narrow a = 0.8 annulus; λ = 0.1065, σ = 36,
α = 2.22.
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Figure 5: Coning angle β and axial rotor amplitude ε associated with face contact in the case
of a PCB (a1 − c1) and NBC (a2 − c2) with a) ĥ0 = 8x10−5 m, r̂0 = 0.85 m, λ = 0.6132,

σ = 33.18, α = 5.12, b) ĥ0 = 2x10−5 m, r̂0 = 0.02 m, λ = 0.1065, σ = 36, α = 2.22 and

c) ĥ0 = 5x10−4 m, r̂0 = 0.048 m, λ = 0.01923, σ = 40.64, α = 1.0035 and increasing inner
radius 0.2 ≤ a ≤ 0.8.

which face contact occurs. Values of the coning angle and axial rotor amplitude
ε for which contact first occurs are given in Figure 4 for a PCB and NCB
with increasing inner radius. Increases in the speed parameter are equivalent to
rotational speeds of 0 rpm, 2x104 rpm, 4x104 rpm and 6x104 rpm. In each Figure
face contact will occur for parameter choices above these limiting curves; for
parameter choices under the curve a fluid film is maintained within the bearing.
The contact plots for a PCB and NCB display notably different characteristics;
a NCB can have contact at significantly smaller values of ε than a PCB for
adequately large coning angles. For a sufficiently small ε and coning angle
a NCB has contact at smaller coning angles than for a PCB, however for a
sufficiently large values the behaviour is reversed.

The values of the ε and β at contact, depends markedly upon the bearing
width and speed parameters. For a given value of coning angle in a PCB contact
occurs at smaller ε as the bearing width (1− a) decreases.

However, at sufficiently large values of β, a bearing of width (1 − a) = 0.8
has contact at smaller ε than (1 − a) = 0.6 (see values of β ∼ 1 and a = 0.2,
0.4, in Figure 4, a1) to d1)). In a NCB, for coning angle | β |≤ 0.81 contact
occurs at smaller ε as the bearing width decreases in contrast to coning angles
| β |≥ 0.82 where contact occurs at larger ε as the bearing width decreases (see
Figure 4, a2) to d2)). Increasing the speed parameter predicts contact at larger
ε and | β | with values dependent on the bearing width.

Companion plots showing values of | β | and ε at first contact for the case
of increasing inner radius, i.e. decreasing bearing width, and maintaining the
same aspect ratio for consistency are displayed in Figure 5. Note the plots
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in Figure 5b) correspond to the those in Figure 4b). As can be observed in

Figure 5, reducing the characteristic height ĥ0, and therefore increasing the
characteristic radius r̂0 gives contact occurring at smaller ε and coning angles,
whereas increasing the characteristic height and decreasing the characteristic
radius gives contact at larger values.

Figures 4 and 5 identify for a bearing with conical deformation the possibility
of face contact, dependent on both operational and design parameters.

3.2. Uncertainty in coning angle

To analyse close proximity of the rotor and stator the coning angle β is taken
as a random variable reflecting the typical lack of knowledge in its precise value.
The resulting uncertainty on the magnitude of the minimum bearing gap gmin
is of interest and in particular the probability of face contact. On taking the
value of the coning angle as fixed but not known with certainty, a subjective
interpretation of probability is obtained from expressing the coning angle as a
random variable and implementing the method of derived distributions provides
the corresponding distribution of variability in the bearing dynamics.

The coning angle is modelled by a double truncated normal function, see
Bailey et al. [15], ensuring the angle is bounded by zero and magnitude of the
angle is limited to | β |= 1; thus guaranteeing the lubrication condition holds.
Initially the average value of the coning angle is taken as | β |= 0.25 and the
standard deviation as σε = 0.05, with the effect of changing the average value
and standard deviation examined later. To ensure that the desired average value
of the distribution remains representative due to its truncation, the prescribed
mean of the distribution is chosen such that the effective median Mβ represents
the required average value.

The probability density function (pdf) of gmin can be computed using the
change of variables fGmin(gmin) =| ∂β/∂gmin | fγ(β) when considering the con-
ing angle as a random variable; ∂β/∂gmin is calculated through the stroboscopic
map solver. To compute the cumulative distribution function (CDF) of gmin the
set of coning angles for which gmin is less than or equal to every possible value
is required, Aβgmin = {γ : χε(β) ≤ gmin}. In this case χε represents the relation
between the coning angle and gmin found using the deterministic mathematical
model for different values of ε. The Pc is given by the CDF when gmin = 0.

The untruncated CDF of gmin is given by

F̃Gmin(gmin) = P (Gmin ≤ gmin) = P (χε(γ) ≤ gmin) = P ({γ : χε(β) ≤ gmin})

=

∫
Aβgmin

f̃γ(β;µβ , σβ)dβ, (6)

with the truncated CDF found by normalising (6) within the probability space.
The result of gmin is confirmed by using the method of derived distribution

to compute the CDF and compared to a direct Monte Carlo simulation; a com-
parison is shown in Figure 6. An increased number of simulations (stochastic
realisations) are used in the Monte Carlo method and the CDF with 95% confi-
dence bounds are computed where the required number of coning angle values
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Figure 6: CDF of gmin computed with a) 100, b) 1000 and c) 10000 realisations of the Monte-
Carlo method as well the method of derived distributions in the case of a PCB with a wide
annulus and coning angle distribution Mβ = 0.25, σβ = 0.05; a = 0.2, λ = 0.1065, σ = 36,
α = 2.22.

are taken from the truncated distribution at random. The stroboscopic map
solver computes the corresponding values of gmin for each value of the coning
angle used in the corresponding Monte Carlo calculation. The CDF is found
via the method of derived distributions using the deterministic relationship be-
tween the coning angle and gmin, requiring the set Aβgmin , which is then used in
equation (6). Increasing the number of Monte Carlo realisations gives the CDF
converging to the solution obtained by the method of derived distributions; the
output for the two methods is effectively the same for 10000 realisations in the
Monte Carlo method. However, to achieve the required level of accuracy, the
method of derived distributions is considerably less computationally expensive
than the Monte Carlo method. The bearing configuration in Figure 6 gives
gmin ≥ 0.259, thus giving Pc = 0. The results reported in the remaining of
this manuscript are obtained by the method of derived distributions, due to its
numerical efficiency.

Figure 7 shows the pdf of the coning angle, deterministic relationship be-
tween the coning angle and gmin along with the pdf and CDF of gmin in the
case of increasing ε for a PCB and NCB with coning angle distribution; median
|Mβ | = 0.25, standard deviation σβ = 0.05. The deterministic results show for
increasing magnitude of coning angle, gmin decreases and as ε increases, gmin
decreases for a given coning angle. According with the deterministic relations
reported in Figure 4b1) and b2), it can be observed that for the operation con-
ditions considered in Figure 7, a PCB has no contact for ε = 1.0 and a NBC
has contact at | β |= 0.780 whereas for ε = 1.5 a PCB has contact at β = 0.285
and | β |= 0.265 for a NCB. Using the deterministic relation between the coning
angle and gmin allows the pdf of gmin to be computed, showing smaller values
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Figure 7: Pdf of coning angle β, deterministic relationship between gmin and coning angle β
and pdf and CDF of gmin in the case of increasing axial rotor amplitude ε 1) ε = 1.0 and 2)
ε = 1.5 in the case of a) PCB and b) NCB with narrow faces and coning angle distribution
with median | Mβ | = 0.25, standard deviation σβ = 0.05; a = 0.8, λ = 0.1065, σ = 36,
α = 2.22.

of gmin are likely to occur as ε increase. The value of Pc is given when the CDF
intercepts the y-axis, giving P (contact) = 0 for ε = 1.00, given in columns 1) of
Figure 7, but in the case of ε = 1.5 it is found that the P (contact) = 0.242 for
a PCB and P (contact) = 0.382 for a NCB, shown in columns 2) in Figure 7.

It is advantageous to calculate Pc directly for the parameter study using the
relation

P (contact) =

∫
Aβgtol

f̃γ(β;µβ , σβ)dβ

F̃γ(b;µβ , σβ)
, (7)

where gtol denotes a given tolerance for gmin; gtol = 0 corresponds to contact
between the bearing face. The set Aβgtol = {γ : χε(β) ≤ gtol} comprises discrete
values of the coning angle at which contact between the rotor and stator occurs
for deterministic values of ε, giving the Pc as a function of ε. The deterministic
contact plots in Figure 4 and Figure 5 are used to compute the set Aβgtol .

Figure 8 gives Pc against ε for increasing inner radius value a for both a
PCB and a NCB. For ε smaller than the equilibrium face clearance the Pc is
zero. Larger ε have an increased Pc for increasing amplitude. A NCB has a
larger Pc than a PCB unless sufficiently large amplitudes of rotor oscillation
are considered where a PCB has a larger Pc than a NCB. Decreasing the inner
radius value gives a decrease in the Pc, with a NCB in the case of a wide
annulus (a = 0.2) having negligible Pc for all amplitudes of rotor oscillations.
Both a PCB and NCB have larger increases in the Pc between narrower bearings
(a = 0.6 to 0.8) than wider bearings (a = 0.2 to 0.4).

The effect of increasing the speed parameter on Pc is illustrated in Figure
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Figure 8: Pc against axial rotor amplitude ε for increasing inner radius 0.2 ≥ a ≥ 0.8 in the
case of a) PCB and b) NCB with coning angle distribution |Mβ |= 0.25, σβ = 0.1; λ = 0.1065,
σ = 36, α = 2.22.
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Figure 9: Pc against axial rotor amplitude ε for increasing speed parameter 0 ≤ λ ≤ 1 in the
case of a) PCB and b) NCB with coning angle distribution Mβ = 0.25, σβ = 0.1; a = 0.2,
σ = 36, α = 2.22.
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Figure 10: Pc against axial rotor amplitude ε for various bearing geometries with the same
aspect ratio and azimuthal speed in the case of a) PCB and b) NCB with coning angle
distribution |Mβ |= 0.25, σβ = 0.1; a = 0.8, σ = 36, α = 2.22.

9 against ε in the case of a PCB and a NCB identifying a very small effect.
Only the case of a wide bearing, a = 0.2 is presented as the effect of the speed
parameter in narrower bearings is almost negligible. Increasing ε increases Pc
whilst increasing the speed parameter has a small effect on a PCB and almost
none for a NCB. From a practical point of view the effect of the speed parameter
on Pc can be completely neglected.

In Figure 10, for a PCB and NCB, additional evaluation of Pc is exam-
ined for different bearing geometries but maintaining the same aspect ratio and
azimuthal speed. The value of Pc increases with ε whilst increasing the char-
acteristic height ĥ0 and thus decreasing the characteristic radius r̂0 causes the
Pc to decrease. In this case, the Pc for both cases, PCB and NCB, have similar
behaviour with a NCB having a slightly larger probability for a given amplitude
of rotor oscillation.

The effect on Pc from the probabilistic parameters of conical deformation
are examined by considering 1) fixed standard deviation and increasing median
and 2) fixed median with increasing standard deviation and displayed in Figure
11 for a PCB and a NCB. Increasing the median value increases the value of Pc,
as shown in 11a1) and 11a2), such that coning angle with median | Mβ |= 0.5
has P (contact)= 1 for ε ≥ 1.6 in both a PCB and NCB. A PCB has a smaller Pc
than a NCB in the case of |Mβ |= 0.5 and decreasing the median value gives a
similar trend except at sufficiency large ε where a NCB has a smaller Pc than a
PCB. Increasing the standard deviation of the coning angle increases the value
of Pc until a critical value εc where the Pc curves intersect, see Figure 11b1) and
b2); εc = 1.57 for a PCB and εc = 1.54 for a NCB. For the smallest standard
deviation σβ = 0.01 the Pc increases from zero to one over a very small range
of ε for both a PCB and NCB, almost as a smooth step function. Generally
by increasing the standard deviation σβ the corresponding CDFs become flatter
with higher values of Pc for ε < εcr and smaller for ε > εcr.
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Figure 11: Pc against axial rotor amplitude ε for 1) fixed standard deviation σβ = 0.1 and
increasing median 0.1 ≤|Mβ |≤ 0.5 and 2) fixed median |Mβ |= 0.25 and increasing standard
deviation 0.01 ≤ σβ ≤ 0.2 in the case of a) PCB and b) NCB; λ = 0.1065, a = 0.8, σ = 36,
α = 2.22.

3.3. Uncertainty in coning angle and amplitude of the rotor oscillation ε

Uncertainty in the dynamics of the bearing can also arise due to the bear-
ing experiencing excitations. Hou et al. [12] presented a simplified model for
the excitations where the oscillations are taken to be periodic with a random
amplitude.

This approach is adopted through incorporating axial rotor oscillations which
are assumed to be periodic and have a given amplitude with a value that is not
exactly known and considered a random variable. Taking the coning angle
and amplitude of the rotor oscillations as uncertain, results in a two parameter
random input problem. Use of deterministic relation between | β | and ε enables
an exact evaluation of Pc to be computed, via the method of derived distribution.
In this case the rotor oscillations remain defined by hr = ε sin t, with ε considered
as a random variable. Distributions of | β | and ε are described by a truncated
normal distribution, ensuring ε is non-negative and has a restricted magnitude
set at ε = 2, i.e. twice the equilibrium face clearance. To consider bearing
operation under extreme conditions, initially the average of ε is taken to be
ε = 1.5 with standard deviation σε = 0.2.

The joint pdf of the coning angle and ε is given by the product of their
marginal pdfs as fγ,E(β, ε) = fγ(β)fE(ε), i.e. statistically independent. Using
the deterministic curves from Figures 4 and 5 to identify the set of coning angles
Aεgtol = {γ : Gmin ≤ gtol} and amplitudes of rotor oscillations Aεgtol = {E :
Gmin ≤ gtol} allows the Pc to be calculated using

P (Gmin ≤ 0) = P ({γ : Gmin ≤ gtol})P ({E : Gmin ≤ gtol})

=

∫
Aβgtol

fγ(β)dβ

∫
Aεgtol

fE(ε)dε. (8)
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Figure 12: Pc against decreasing bearing width 0.2 ≤ (1 − a) ≤ 0.8 for increasing speed
parameter 0 ≤ λ ≤ 1 in the case of a) PCB and b) NCB with coning angle distribution
|Mβ |= 0.25, σβ = 0.1 and ε distribution Mε = 1.5, σε = 0.2; σ = 36, α = 2.22.

Figure 12 shows the Pc against decreasing bearing geometries in the case
of a PCB and NCB for increasing speed parameter; as previously the speed
parameter has negligible effect on the Pc. As previously mentioned, the bear-
ing response to imposed rotor oscillations is defined by a complex interaction
between the different parameters defining the problem; bearing geometry, rotor
inclination angle, fluid pressurisation, slip condition and effects of inertia. In
this work we are analysing two cases which arise from rotor deformation due
to over pressurisation of the bearing; internal pressurisation relates to a PCB,
β > 0, and external pressurisation to a NCB, β < 0. In the case of internal
pressurisation, the effects of centrifugal inertia and pressure gradient both act
on the flow in the same radial direction and therefore increasing the effects of
inertia results in an increase of the fluid radial velocity and concurrently a re-
duction in the loading capacity. On the other hand, in the case of external
pressurisation, the effects of centrifugal inertia and pressure gradient act in op-
posite directions, resulting in a decrease of fluid radial velocity and increase of
the loading capacity in the case of increasing effects of inertia (for more detail
see the results reported in Table 1 of reference [8]). More significantly, increas-
ing the slip length results in the radial velocity increasing and the load capacity
decreasing for both cases. This effect becomes stronger as the minimum gap
decreases, reaching a limit condition where the slip effect becomes dominant
with respect to all other effects, increasing the possibility of face contact. This
is the physical explanation of the unexpected result in Figures 9 and 12, i.e. the
speed parameter has negligible effect on the probability of contact.

The effect of different bearing geometries on the Pc for increasing bearing
widths is shown in Figure 13 for a PCB and NCB (note the curves for ĥ0 =
2x10−4m are the same as the plots in Figure 12 for λ = 0.1065). Decreasing the
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Figure 13: Pc against decreasing bearing width 0.2 ≤ (1 − a) ≤ 0.8 for various bearing
geometries in the case of a) PCB and b) NCB with coning angle distribution | Mβ |= 0.25,
σβ = 0.1 and ε distribution Mε = 1.5, σε = 0.2; σ = 36, α = 2.22.

bearing width gives an increase in the Pc, whereas increasing the characteristic
height ĥ0 and decreasing the characteristic radius r̂0 to maintain the same aspect
ratio, decreases the Pc. In the case of the largest characteristic height ĥ0 =
5x10−4m a PCB has a smaller Pc than a NCB, whereas smaller characteristic
heights ĥ0 = 2x10−4, ĥ0 = 8x10−5 give a PCB having a larger Pc than a NCB
for a ≤ 0.469, a ≤ 0.558, respectively, otherwise the situation is reversed.

The effect of the probabilistic parameters of the conical deformation on the
Pc, for fixed standard deviations and increasing medians as well as fixed medians
and increasing standard deviations are shown in Figure 14 for a PCB and NCB.
Increasing the median values of both | β | and ε gives an increase in the Pc,
see Figure 14a1) and b1). The larger median values of the coning angle give a
non-zero Pc for amplitudes of rotor oscillations less than the equilibrium face
clearance. For | Mβ |= 0.1 a PCB and NCB have effectively the same Pc over
all medians of ε, but for larger values of | Mβ | a NCB has a larger Pc than a
PCB, with the difference increasing with the median value.

For a sufficiently small standard deviation σε ≤ 0.145, the Pc increases as
the standard deviation of the coning angle increases. Whereas for sufficiently
large standard deviation σε ≥ 0.374, the Pc decreases as the standard deviation
of the coning angle increases. For 0.145 ≤ σε ≤ 0.374 there is crossover between
the different values. A NCB has a larger Pc than a PCB for a given standard
deviation of the coning angle and ε.

To consider possible design control in order to reduce the probability of con-
tact, we analyse the effects of changing the values of the stiffness and damping
coefficients of the system. Figure 15a) reports values of Pc against increasing
the median of ε in the case of a NCB, for three different values of the dimen-
sionless stiffness parameter; one corresponding to the value used in the previous
analysis, Kz = 55.56, and the other two 10% and 20% larger than the original
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Figure 14: Pc against decreasing bearing width 0.2 ≤ (1 − a) ≤ 0.8 for various bearing
geometries in the case of a) PCB and b) NCB for 1) fixed standard deviation σβ = 0.1,σε = 0.2
and increasing median 0.1 ≤| Mβ |≤ 0.5, 0.5 ≤ Mε ≤ 1.75 and 2) fixed median | Mβ |= 0.25,
Mε = 1.5 and increasing standard deviation 0.01 ≤ σβ ≤ 0.2, 0 ≤ σε ≤ 0.75; a = 0.8.
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Figure 15: In the case of a NCB a) Pc against increasing median of ε 0.5 ≤ ε ≤ 1.75 for
increasing stiffness parameter 55.56 ≤ Kz ≤ 66.67 with coning angle distribution |Mβ |= 0.25,
σβ = 0.1 and σε = 0.2 and b) deterministic minimum face clearance over the time period NCB
for ε = 1, β = −0.2; σ = 36, α = 2.22.
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value. Results show that decreasing the value of Kz reduces the probability of
contact for all median values of ε. This situation arises because the stator op-
poses less resistance to the fluid force induced by the axial displacement of the
rotor by decreasing the spring stiffness parameter Kz, resulting in a larger min-
imum face clearance for a given ε, as shown in the deterministic dynamic plot in
Figure 15b), consequently reducing the probability of contact. Similar plots are
achieved when examining a PCB. Corresponding plots for increasing values of
the structural damping Da show the structural damping has an insignificant ef-
fect on the probability of contact. Therefore in terms of engineering design, the
Pc can be reduced or controlled by decreasing the magnitude of the stiffness of
the stator Kz. However, this approach can be only considered under structures
limitations, since smaller values of Kz also implies reduction on the rigidity of
the system.

Our results show contact always occurs at the side of higher pressure, where
the minimum face clearance arises according to the corresponding conical angle,
i.e. at the inner radius of the bearing when β > 0 and the outer radius when
β < 0. This result is consistent with the experimental observations in Jing et
al. [20], where spiral groove noncontacting seals are studied, indicating that the
pressure deformation decreases the seal clearance at the side of a mechanical
face seal with higher pressure, which means face wear occurs more seriously at
the side with high pressure than the side with low pressure.

It is important to mention that the present analysis is indicative of what
can happen during the dynamic motion of a bearing that has been destabilised
by some periodic external condition. As commented above, over pressurisation
of the bearing can induce angular bearing deformation, which in our analysis is
considered to be small enough to ensure the lubrication approximation remains
valid, where β̂ = δ0β with β as our scaled angle. Near contact, due to the geo-
metric distortion, this condition no longer holds and the validity of the Reynolds
equation can be questionable. However, this is probably the only alternative to
analyse the near contact condition using classical engineering approaches, unless
molecular dynamics is considered, since it could be argued that in the limit of
near contact even the continuous formulation of the problem is violated.

4. Conclusions

A simplified mathematical model is introduced for a deterministic highly
rotating coned bearing with the rotor and stator having slip velocity boundary
conditions. An incompressible fluid flow model is derived to model the pres-
surised fluid flow and is coupled to the axial motion of the stator, which is
modelled as a spring-mass-damper system. The coupled system can be repre-
sented by a single second order non-autonomous ordinary differential equation
in terms of the time dependent minimum face clearance from which periodic
solutions are found numerically using a stroboscopic map solver.

The effect of uncertain values for the coning angle parameter, arising due
to possible rotor deformations by the pressurized flow, as well as the parameter
modelling the axial rotor amplitude are examined; these uncertain parameters
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are taken as random variables. Considering the coning angle as a random vari-
able allows extended analysis for the pdf of the minimum face clearance gmin,
CDF of gmin and the probability of contact (Pc). Analysis shows the Pc in-
creases due to an increase in amplitude of axial rotor oscillations (ε), reduction
in the bearing width as well as in bearing set-ups which have a fixed aspect
ratio, for a decreased characteristic height/increase characteristic radius. The
speed parameter has a negligible effect on the Pc, however the speed parameter
can have a significant effect on the bearing dynamics. Increasing the median of
the coning angle random variable gives an increase in the Pc where as increas-
ing the standard deviation gives a non-monotonic trend; for amplitude of rotor
oscillation below a critical value εc the Pc increases whereas for amplitude of
rotor oscillations ε > εc the Pc decreases.

Accounting for possible external excitations on the bearing results in the
coning angle and axial rotor amplitude ε being considered as random variables.
The Pc is calculated using the method of derived distributions with results
indicating decreasing the bearing width as well as configurations with smaller
characteristic height, and larger radius to maintain the same aspect ratio, have
an increase in the Pc. The speed parameter gives a minimal change in the
magnitude of the Pc. Increasing the median of the coning angle and ε increases
the Pc, whereas increasing the standard deviation of the random variables gives a
non-monotonic trend. The Pc is affected insignificant by the structural damping,
however the Pc may be reduced or controlled through decreasing the magnitude
of the stator stiffness.
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Appendix A. Derivation Equations

Expressions for A and B are defined as

A(g, λ, ls, β) = (1− a2)(pI − pa) + 2(pO − pI)
GI

G(g, 1)

+2λ

(
LI −

L(g, 1)

G(g, 1)
GI

)
, (A.1)

B(g, ls, β) = σ

(
HI −

H(g, 1)

G(g, 1)
GI

)
. (A.2)
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Expressions for G, H and L are given by

G(g, r) =
1

g − aβ + 6ls

(
1

(g − aβ)2
ln

(
gr

a(g + (r − a)β

)
+

1

g − aβ

(
1

g
− 1

g + (r − a)β

)
+

1

36l2s

(
ln

(
g(g + (1− a)β + 6ls)

(g + (1− a)β)(g + 6ls)

)
+ 6ls

(
1

g + (r − a)β
− 1

g

)))
,

(A.3)

H(g, r) =
1

β2

((
1

g
− 1

g + (r − a)β

)
+
g − aβ + 6ls

36l2s

(
ln

(
g(g + (1− a)β + 6ls)

(g + (1− a)β)(g + 6ls)

)
+ 6ls

(
1

g + (r − a)β
− 1

g

)))
,

(A.4)

L(g, r) =
r2 − a2

2
+
ls
β2

(
4

3
ls(g − aβ + 2ls)

(
1

g + (r − a)β + 2ls
− 1

g + 2ls

)
+

3

2
(g − aβ + 6ls) ln

(
(g + 6ls)(g + (r − a)β + 2ls)

(g + 2ls)(g + (r − a)β + 6ls)

)
−14

3
ls ln

(
g + (r − a)β + 2ls

g + 2ls

))
, (A.5)

respectively. Expressions for a NCB are also derived of similar form and for
equations in the case of a no-slip bearing, see [4].

Expressions GI , HI and LI are given by

GI =
1

g − aβ + 6ls

(
− 1

2(g − aβ)2
ln

(
a(g + (1− a)β)

g

)
+

(1− a)(g − aβ − β)

2βg((g − aβ)

+
1

72β2l2s
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6ls(1− a)β

(
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g

)
+
(
(g − aβ + 6ls)

2 − β2
)
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(
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(g + (1− a)β)(g + 6ls)

)))
,

(A.6)

HI =
1

β2

(
− (1− a)(2g − (1 + a)β)

2βg
+

3(g − aβ + 2ls)

2β2
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g

+
(
(g − aβ + 6ls)

2 − β2
)

ln

(
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,

(A.7)
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LI =
(1− a2)2

8
+

2ls
2a(1− a2)

3β(g + 2ls)
+

ls
2

2β2
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)
+ ln
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)
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(A.8)

Expressions for a NCB are also derived of similar form and for equations in the
case of a no-slip bearing, see [4].
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