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Abstract
Distinct electrophysiological phenotypes are exhibited bybiological cells that have dif-
ferentiated into particular cell types. The usual approach when simulating the cardiac
electrophysiology of tissue that includes different cell types is to model the different
cell types as occupying spatially distinct yet coupled regions. Instead, we model the
electrophysiology of well-mixed cells by using homogenisation to derive an exten-
sion to the commonly used monodomain or bidomain equations. These new equations
permit spatial variations in the distribution of the different subtypes of cells and will
reduce the computational demands of solving the governing equations. We validate
the homogenisation computationally, and then use the new model to explain some
experimental observations from stem cell-derived cardiomyocyte monolayers.

Keywords Homogenisation · Monodomain · Bidomain · Cardiac electrophysiology ·
Stem cell-derived cardiomyocytes

1 Introduction

Since its inception in the 1960s, the field of computational cardiac electrophysiol-
ogy has contributed to many advances in understanding the links between the flow
of ions, transmembrane potential and electromechanical activity of the heart under
control, pathological and drug-influenced conditions. In particular, much attention
has been devoted to modelling the action potential within cardiac tissue—that is, the
transmembrane potential at a given location, as a function of time, during a given
cardiac cycle—and the extracellular potential, allowing simulation of electrocardio-
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Fig. 1 Simulated action potentials of atrial-like and ventricular-like human stem cell-derived cardiomy-
ocytes, generated using the Paci et al. (2013) model. Two properties of the action potentials are indicated.
The maximum diastolic potential, MDP, is the most hyperpolarised potential. The action potential duration,
APD90, is the time taken to achieve a given percentage (here, 90%) of repolarisation following the upstroke

grams. Mathematical models are now available of the action potentials observed in
many different species and cardiac cell types (Noble and Rudy 2001; Fink et al. 2011).

In this paper, we develop methods for simulating a system that is of particular inter-
est for safety pharmacology—monolayers of human stem cell-derived cardiomyocytes
(hSC-CMs). The Comprehensive in vitro Proarrhythmia Assay (CiPA) initiative has
proposed a series of complementary cardiac safety assays to improve upon the cur-
rent methods of assessing the arrhythmic risk associated with novel pharmaceutical
compounds (Sager et al. 2014; Gintant et al. 2016). The use of hSC-CMs will form
a key component of the CiPA paradigm through multi-cellular assays such as the
micro-electrode array (Harris et al. 2013; Clements and Thomas 2014).

The action potentials of hSC-CMs are often classified into one of the three subpop-
ulations, or phenotypes, two of which are shown in Fig. 1. The consequences of having
different phenotypes of cell within a small tissue sample are difficult to investigate
experimentally. We therefore propose simulation as a method by which the impact of
variation in cell type on the cardiac safety assessment process may be investigated.
In this paper, we compare two methods of simulating a system that contains variable
cellular populations, with our primary focus on a future application to simulation of
multi-cellular hSC-CM cultures.

1.1 Characteristics of Human Stem Cell-Derived Cardiomyocytes

Human stem cell-derived cardiomyocytes are electrophysiologically and structurally
immature, with some of their properties resembling neonatal cells rather than their
adult counterparts. They are small and rounded, with diameters of approximately 10–
50µm [see for example Snir et al. (2003), Gherghiceanu et al. (2011) or Fig. 1 in
Ma et al. (2011)]. hSC-CMs typically beat spontaneously, with multi-cellular cultures
exhibiting a focus of activation, or pacemaker region, which triggers excitation in
the remainder of the culture. The activation wavefronts travel at slower speeds than
observed in adult cardiac tissue, usually in the region of 2–20cm/s (Burridge et al.
2011; Mehta et al. 2011; Lee et al. 2012).
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As this system is made up of coupled oscillators, from a mathematical perspective
wemight expect to observe synchronous activation throughout themonolayer (Mirollo
and Strogatz 1990). However, finite conduction velocities are observed.

Analysis of hSC-CM action potentials from single cells has indicated that three
subpopulations, or phenotypes, may be present within a given sample of cells: atrial-
like, ventricular-like and nodal-like (He et al. 2003; Zhang et al. 2009; Ma et al. 2011).
The phenotypes are named to reflect the similarity with the action potentials found in
the respective regions of the adult heart, and are usually defined in terms of metrics
based on the duration of the action potential, although alternatives have also been
proposed (Lopez-Redondo et al. 2016). Precise statistics on the relative abundance
of each phenotype are difficult to obtain due to different methods of classification
and inherent variability within each of the phenotypes (Pekkanen-Mattila et al. 2010).
At the present time, there are differing views on the spatial organisation of these
phenotypes within tissue. Zhu et al. (2016) and Vestergaard et al. (2017) reported
regions of different action potential morphology within some, but not all, clusters of
human embryonic stem cell-derived cardiomyocytes. However, Du et al. (2015) did
not detect such spatial organisation in their studies of monolayers of human-induced
pluripotent stem cell-derived cardiomyocytes, instead reporting a spectrum of action
potential morphologies throughout the tissue.

1.2 ExistingMethods for Tissue Simulations ContainingMultiple
Electrophysiology Phenotypes

Tissue-level cardiac electrophysiology is usually modelled using the monodomain or
bidomain equations (Keener and Sneyd 2009). When modelling multiple phenotypes,
the tissue is usually partitioned into regions containing only one phenotype. However,
this method becomes computationally infeasible if the phenotypes are well-mixed
within the tissue, as the tissue must be partitioned into many very small regions where
just a single phenotype is present. Under these conditions, we may utilise the extended
bidomain (or tridomain) model. The extended bidomain model adds a second intra-
cellular domain for a second phenotype and has been used to simulate mixtures of
cardiomyocytes and fibroblasts (Sachse et al. 2009) and gastrointestinal electrophys-
iology (Buist and Poh 2010). The two intracellular domains represent continuously
linked regions of each of the two types of cell; a third intracellular domain would be
required if it were to be used for simulating the three cell types reported in hSC-CM
cultures. The extended bidomainmodel is well-suited for simulating thoroughlymixed
cell types (Corrias et al. 2012), with the two interconnected intracellular domains pro-
viding a natural method by which two cell types can be considered to occupy a small
unit of space. Tomodel spatial variation in phenotype proportions in the extended bido-
main model, we could adjust the surface area of each domain per unit volume of tissue
(χ ). But, as Sachse et al. (2009) observed, “it is unclear [how we should adjust the
intra- and inter-domain gap junction conductivities to model] the density and arrange-
ment of myocytes and fibroblasts”. These authors linearly scaled the conductivities in
each domain from values in tissues with 100% myocytes or 100% fibroblasts accord-
ing to volume fraction of each phenotype. Based on the assumption that within each
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domain there are always connections between cells of a given phenotype, the number
of connections is proportional to the volume fraction. These assumptions may not hold
in regions with low proportions of a phenotype: with only say 10% of a given cell type
present, a typical cell of that type does not ‘touch’ and share gap junctions with any
cells of the same type, there may be no continuous domain of this cell type through
which currents can flow.

We therefore take an alternative and perhaps simpler approach and develop a mod-
ified derivation of the bidomain equations that assumes a mixture of cell types within
the repeating homogenisation unit that is used in their derivation.

1.3 Outline of Study

The overall goal of this study is to model the electrophysiological properties of cardiac
tissue containing multiple cellular subpopulations by extending the derivation of the
standard bidomain equations to permit the modelling of more than one cell type.
The equations governing this model are derived in “Appendix A” and summarised in
Sect. 2. In Sect. 3,we propose a suite of simulations, designedwith two aims inmind: to
verify the derivation of the model, and to illustrate some key properties of systems that
contain more than one cellular population. We present the results of the simulations
in Sect. 4. Finally, in Sect. 5, we conclude by discussing how these simulations can
inform investigation of hSC-CM monolayers in a two-dimensional domain.

2 TheMathematical Model

As explained in Sect. 1.1, we require a mathematical model that includes more than
one cellular phenotype. We consider two possibilities: tissue that may be partitioned
into distinct regions that each contain only one cellular phenotype; and tissue where all
phenotypes are well-mixed. These two situations are shown in Fig. 2. The derivation of
this model (including all assumptionsmade) may be found in “Appendix A”, where the
equations are written in nondimensional form. In dimensional form, these governing
equations are

χ

(
Cm

∂V

∂t
+ Iion

)
= ∇ · (Σi∇(V + φe)) , (1)

0 = ∇ · (Σi∇V + (Σi + Σe)∇φe) , (2)

where V is the transmembrane potential, φe is the extracellular potential, χ is the ratio
of cell membrane area to volume, Cm is the capacitance of the membrane, Iion is the
ionic current per unit area (specified by the solution of a system of ordinary differential
equations at each point in space), and Σi ,Σe are the intracellular and extracellular
conductivity tensors. The surface area of the cell mebmrane consists of a fraction ρ1
of phenotype 1, and a fraction ρ2 = 1−ρ1 of phenotype 2. If the capacitance of these
phenotypes are Cm1,Cm2, and the ionic current densities per unit area are Iion,1, Iion,2
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Fig. 2 Different spatial distributions of cellular phenotype. The case on the left may be divided into two
partitioned regions, each containing a single type of cell. Partitioning the case on the right into single-
phenotype regionswould result inmany tiny partitions. Performing the homogenisation process over regions
containing both types of cell is therefore preferable

we have

Cm = ρ1 Cm1 + ρ2 Cm2, (3)

Iion = ρ1 Iion,1 + ρ2 Iion,2. (4)

When modelling hSC-CMs, both the intracellular and extracellular conductivity ten-
sorsmay be approximated as isotropic.As a consequenceΣi = αΣe, and the bidomain
equations simplify to the monodomain equation (Keener and Sneyd 2009):

χ

(
Cm

∂V

∂t
+ Iion(V ;u)

)
− ∂

∂x

(
Σ

∂V

∂x

)
= 0, (5)

where

Σ = Σi (Σi + Σe)
−1 Σe = α

1 + α
Σe.

When the cells are not well-mixed, we may instead partition the tissue region into
regions where only one phenotype is present and solve the monodomain equations on
each of these regions; we refer to this model as the partitioned phenotypes (PP) model.

3 Description of Simulations

Our initial simulations validate the governing equations by comparing several prop-
erties of the action potential, for both the PP and HP models, in the limit that the
separation of scales parameter [defined in Eq. (22)] δ → 0. We then demonstrate that

123



L. A. Bowler et al.

the HP model may be used to reproduce experimental observations. Our simulations
are all of a single fibre in one spatial dimension. Our boundary conditions enforce no
flow of current across either end of the fibre and may be written

∂V

∂x
= 0, at both ends of the fibre. (6)

This fibre is made up of two different cell types. In the absence of experimental
evidence indicating any variation in conductivities, we assume constant intra- and
extracellular conductivities throughout the fibre.

3.1 Simulation Sets

The simulations may be divided into six sets. In the first five sets, we use the phe-
nomenological FitzHugh–Nagumo (FHN) action potential model (FitzHugh 1961;
Nagumo et al. 1962) where

Iion(V ;w) = V (V − α)(1 − V ) − w, (7)
dw

dt
= εV − βw. (8)

This model is described by only three parameters, α, β, ε, which are allowed to vary
spatially to take account of different phenotypes. In particular, the model is self-
exciting (i.e. does not require a stimulus to excite) if α < 0, and excitable (i.e. requires
a sufficiently large external stimulus to excite) if α ≥ 0. The linearity of the model in
α, β and ε allows the parameters for the HP model to be calculated very easily using
Eq. (4). For example, a parameter α appears in the FHN model in Eq. (7). In the HP
model, we denote this parameter by αH , and see that it takes the value

αH = ρ1α1 + ρ2α2. (9)

The values of βH and εH (the values of β and ε used in the HP model) may be
calculated in a similar manner. As such, the FHN model allows us to compare the
predicted excitability properties of the HP model very effectively. In the final set
of simulations, we use the physiological Paci et al. (2013) models of atrial-like and
ventricular-like hSC-CM electrophysiology to investigate our intended use-case of
simulating a monolayer of hSC-CMs, as used in safety pharmacology assays.

Set 1 This set of simulations is designed to test whether the action potentials of the PP
model tend towards those of the HP model as the size of the unit that we homogenise
over is decreased; that is, in the limit δ → 0, where δ is defined in “Appendix A”.
This is achieved by varying n, the number of repeating units that the domain is divided
into. The layout of phenotypes is shown in Fig. 3. Four different combinations of
parameterisations of the FitzHugh–Nagumo model are investigated, with each pair
having different combinations of positive or negative α values. The simulations are
run until the action potential on each cardiac cycle is identical to that on the previous
cycle.
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Fig. 3 Spatial layout of the different phenotypes in the first three sets of simulations. The dark and light
shades represent regions within which one of two cellular phenotypes is exclusively present. The cellular
electrophysiology models that represent the two cell types are chosen from the six parameterisations of
the FitzHugh–Nagumo model described in the main text. Intermediate shades denote the HP model with
appropriate values of ρ1 and ρ2 (the relative contributions of each phenotype). The value of n indicates the
number of regions into which the domain was partitioned when the PP model was used
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Set 2 In a further stage of verification of the homogenisation, we use a small size of
partitioned unit and alter the relative proportions of the two model phenotypes, ρ1 and
ρ2, throughout the series of simulations, and compare the beat rates from both models.
We see in Eq. (9) that varying ρ1 and ρ2 alters the excitability properties of the HP
model, and so this set of simulations allows us to verify that the excitability properties
of the HP model are correctly predicted. The layout of phenotypes is shown in Fig. 3.

Set 3 We will see later that the first two sets of simulations exhibit some localised
behaviour in the vicinity of boundaries. Our third set of simulations investigates these
effects through varying the distribution of phenotypes close to the boundary, as shown
in Fig. 3.

Set 4Until now, our investigations have assumed constant proportions of the twomodel
phenotypes throughout the fibre at the macroscale. This assumption is, however, likely
to be unrealistic. We therefore consider a fibre where the values of ρ1 and ρ2 used in
the HP model are given by

ρ1(x) = 0.5 + A sin

(
2πx

L

)
, (10)

ρ2(x) = 1 − ρ1(x), (11)

where L is the length of the fibre, and A is the amount of variation in ρ1 and ρ2, with
A ≤ 0.5 so that 0 ≤ ρ1, ρ2 ≤ 1. In the PP model, the fibre is first divided into n units.
In each unit, both ρ1 and ρ2 are calculated at the mid-point of the unit using Eqs. (10)
and (11). The first fraction ρ1 of the unit is designated as phenotype 1; the remainder
is designated as phenotype 2, as illustrated in Fig. 4.

Set 5 In these simulations, the values of ρ1 and ρ2 used in the HPmodel are identical to
those described in Set 4.We introduce some random variation into the values of ρ1 and
ρ2 used in the PP model. We first generate n uniformly distributed random numbers,
R1, R2, . . . , Rn , between 0 and 1, where n is the number of partitioned units. Let xm be
the x-coordinate of partitioned unitm. We then assign partitioned unitm as phenotype
1 if

Rm ≤ 0.5 + A sin

(
2πxm
L

)
, (12)

and phenotype 2 otherwise. We also impose the restriction that an equal number of
units with each of the two phenotypes are present in the fibre by rejecting any pheno-
type layout if this restriction is not met. For each of our choices of parameter A, we
simulate 15 different arrangements of model phenotypes. Some example distributions
of phenotypes are given in Fig. 4.

Set 6 Our final set of simulations closely follows the design of those in Set 5, but a
physiological cell model is used rather than a phenomenological model. The first cell
model is the ventricular-like model of Paci et al. (2013), while the second model is
the atrial-like model from the same paper. In addition to altering the parameter A, we
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Fig. 4 Spatial layout of the different phenotypes in the final three sets of simulations. As in the previous
figures, the dark and light shades represent two different phenotypes. In Sets 4 and 5, we utilise the param-
eterisations of the FitzHugh–Nagumo model that are listed in the main text, while in Set 6 we use atrial-like
and ventricular-like models of hSC-CM electrophysiology (Paci et al. 2013)
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Table 1 Values of the FitzHugh–Nagumo model parameters α, β and ε

Name α β ε Rate APD90 MDP

Model S1 − 0.12 2 × 10−7 0.002 0.0019 122 − 0.433

Model S2 − 0.08 3 × 10−7 0.003 0.0027 81.3 − 0.410

Model S3 − 0.06 4 × 10−7 0.004 0.0034 61.6 − 0.400

Model E1 0.12 2 × 10−7 0.002 N/A 84.6 − 0.281

Model E2 0.08 3 × 10−7 0.003 N/A 67.1 − 0.310

Model E3 0.06 4 × 10−7 0.004 N/A 54.3 − 0.326

These sets of parameterswere used to produce the different action potentials as shown inFigure 5.Alongside,
we list the dimensionless values of spontaneous beat rate, action potential duration (APD90) and maximum
diastolic potential (MDP) for each model

Fig. 5 Action potentials of the six parameterisations of the FitzHugh–Nagumo model. The three self-
exciting models (top) beat at their natural frequencies, while the excitable models (bottom) are stimulated
every 500 time units. Upstroke times have been aligned at time = 0

also alter the number of units, n, that the fibre is partitioned into. Example phenotype
distributions can be found in Fig. 4.

3.2 Parameters Used in the Simulations

We define six sets of the α, β and ε parameters for three self-exciting (S1–S3) and
three excitable (E1–E3) models. The parameters chosen for these models result in
action potentials with clearly different beat rates and action potential durations and
have a range of positive and negative α values. The parameters of the six forms of the
FHN model are listed in Table 1, producing the action potentials shown in Fig. 5.

In our final set of simulations, we use the Paci et al. (2013) physiologically based
cellular electrophysiology model, with other parameters given in the right-hand col-
umn of Table 2.
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Table 2 Tissue-level parameters for monodomain simulations

Parameter Value (FHN simulations) Value (Paci et al. (2013) simulations)

Cm 1 1µF cm−2

χ 1 1400 cm−1

Σ 1 0.3mS cm−1

x-domain 0−100 0−1 cm

x-step 0.013 0.00052cm

Simulation duration 8000 20s

Time step (PDE) 2−10 2.5 × 10−4 s

Time step (ODE) 2−10 5 × 10−6 s

Initial conditions v = 1 × 10−3 As listed in the supplement of

w = 0 Paci et al. (2013)

Stimulus period 500 N/A

Stimulus duration 2 N/A

Stimulus magnitude − 0.4 at 0 < x < xend/30 N/A

The stimulus was only applied when the model combinations present in the fibre would not otherwise
spontaneously activate. All quantities in the FHN simulations are dimensionless. Values of x-step were
chosen so that at least 32 or 16 [FHN and Paci et al. (2013) simulations, respectively] finite elements were
present in the smallest size of partitioned unit

The monodomain problem was solved numerically using a custom implementation
of the piecewise linear finite element method in Matlab. The systems of ordinary
differential equations from either the FitzHugh–Nagumo or Paci et al. (2013) models
were solved using the Forward Euler method. Accuracy of the solver was checked
by comparing output against the analytical solution of an example one-dimensional
monodomain problem fromPathmanathan andGray (2014). Convergence studieswere
performed on systems based on the first set of simulations. The selected values of
the space and time-steps are listed in Table 2, along with other relevant simulation
parameters.

4 Results of Simulations

We now perform the simulations described in Sect. 3.

4.1 Set 1: Variation in the Size of the Partitioned Unit

As we described in Sect. 3.1, the primary aim of these simulations is to validate
our homogenisation procedure. We do this by examining two cell-level properties of
the action potential, APD90 and maximum diastolic potential, and one tissue-level
property, conduction velocity. We use the layout of phenotypes shown in the top panel
of Fig. 3 with four different combinations of the cellular electrophysiology models
described in Sect. 3.2, given by:
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– Models S1 and S3 Both self-exciting, with αH = −0.09;
– Models S1 and E2 Self-exciting and excitable, respectively, with αH = −0.02;
– Models S3 and E2 Also self-exciting and excitable, but with αH = 0.02; and
– Models E1 and E3 Both excitable, with αH = 0.09.

Using ρ1 = ρ2 = 0.5 in these initial simulations, we therefore expect the first two
combinations to be self-exciting in the PP model in the limit that the number of com-
partments n increases; for the second two combinations, a stimulus will be required.
A stimulus at the left-hand end of the fibre was used for combinations that were not
self-exciting.

4.1.1 APD90 andMaximumDiastolic Potential

In Fig. 6, for each of the four different combinations of model phenotype, we plot the
action potential duration for the PP simulations with varying numbers of partitioned
units, n, and the HP simulations. On the left of the figure, we plot the APD90 along the
entire fibre for: the HP model; the PP model with small partitioned units (n = 240);
and the PPmodel with large partitioned units (n = 30). On the right-hand side, we plot
the minimum and maximum values of the APD90 that occur over the central region of
the fibre as n varies. As the stimulus can have a substantial effect on the value of the
APD90 and other properties of the action potential, only the values between x = 35
and x = 65 are taken into account in these plots. In Fig. 7, we plot the maximum
diastolic potential (MDP) in a similar manner to the APD90 values that are plotted in
Fig. 6.

The results shown in Figs. 6 and 7 generally follow a smooth trend in that, as the
size of the partitioned unit decreases, the APD90 and MDP of the PP model approach
those of the HP model. This confirms that the homogenisation process has worked as
expected.

In Figs. 6 and 7, we note that the APD90 and MDP vary across the fibre. This
variation becomes more marked near to the boundaries. This is because a travelling
wave action potential, i.e. V = f (x − ct) (where c may depend on all variables and
parameters in the model) is unable to satisfy the boundary condition given by Eq. (6),
as has previously been noted by Cherry and Fenton (2011) in a single-phenotype
study. We investigate this phenomenon in more detail in Sect. 4.3, but first make some
comments that may be explained using these initial simulations.

There are two reasons for the boundary effects that can be observed in plots of
APD90 across the domain in Fig. 6 where we have spatially alternating phenotype
partitions. Initially we consider regions distant from any boundaries. If a phenotype
A has a longer single-cell APD90 than a phenotype B then, upon repolarisation in the
PP tissue simulation, current flows from more depolarised to less depolarised regions,
which means that phenotype B’s repolarisation is delayed by both its neighbouring A
phenotypes. The same currents cause phenotype A’s repolarisation to be encouraged
by both its neighbouring B phenotypes, and the overall effect is to smooth the APD90
along the fibre. However, a phenotype on the boundary has just one neighbouring
phenotype partition, with a no-flux boundary condition at the other side, which means
that these smoothing effects are reduced and its APD90 phenotype can become more
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Fig. 6 Variation in APD90 (time to achieve 90% repolarisation) during the final beat in Set 1 simulations.
The panels on the left show the variation in APD90 across the fibre during the final complete beat for three
selected cases: those of the PP model with the largest and smallest partitioned regions, and the HP model.
The panels on the right show the minimum and maximum values of APD90 across the central region of
35 < x < 65 during the final complete beat of all Set 1 simulations. Values from the PP model are shown
using crosses, while those from the HP model are indicated with the dotted line

dominant. The difference between the single-cell APD90 values of the phenotypes
themselves (APD90 shown in Table 1) then dictates the magnitude of this effect (S1–
E2 have a large APD90 difference of approximately 55ms, and large edge effects;
whereas S3–E2 have a difference of only 5.5ms and much smaller edge effects).

We also see edge effects due to wave propagation: an action potential reaching
a boundary exhibits a shortened APD90 due to the no-flux condition instead of the
presence of a more depolarised wave ahead; and conversely prolonged APD90 when
an action potential originates on a boundary (as studied in detail by Cherry and Fenton
(2011)). This second effect occurs in a homogenous phenotype situation as well, and
so we deduce it is the dominant cause of the boundary effects in the lower two cases
of Fig. 6 as both the HP and PP models exhibit similar edge effects.

As the MDP is a property of the action potential during the hyperpolarised or
resting phase, the influence of the pacemaker location on its value is smaller than for
the APD90. As we observed for the APD90, the nature of the boundary conditions pulls
the MDP higher or lower than would otherwise be expected at the boundary. The one
exception is again related to the pacemaking site, with the minimum value of MDP
being slightly higher than expected at the right-hand side of the S1–S3 fibre.
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Fig. 7 Variation in maximum diastolic potential (MDP) from Set 1 simulations. As in the previous figure,
the panels on the left show the MDP across the entire fibre for selected cases. Panels on the right provide a
summary of the minimum and maximum values of MDP recorded in all simulations

There are, however, two exceptions to the smooth trends that we now explain. The
first exception is in the two lower plots on the right-hand side of Fig. 6. We note
that the APD90 seen across the region 35 < x < 65 does still exhibit variations,
albeit small variations, as the size of the partitioned unit decreases. This is because
both of these simulations are excitable, rather than self-exciting, and therefore require
a stimulus (artefact of stimulus edge can be seen on far left). Since the subsequent
behaviour is asymmetric the influence of the stimulus prolongation can still be seen
in the 35 < x < 65 domain.

The second exception is in the third panel down on the right of Fig. 6, where
we see an outlying result. For a large partitioned unit, where we may not expect the
homogenisation to be valid, this PPmodel was self-exciting despite αH being positive.
The region of the self-exciting Model S3 closest to the boundary was able to sponta-
neously depolarise as it was separated from the influence of non-self-exciting Model
E2 by the entire large length of the partitioned unit. As a stimulus was also applied,
the action potentials switched between spontaneous and stimulated. The change in
effective beat rate has an impact on the APD90, which can be seen in Fig. 6: the final
beat in the simulation with the second-largest partitioned unit was spontaneous rather
than triggered by the stimulus.
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Fig. 8 Conduction velocity of the travelling waves in the Set 1 simulations. Activation times in cases where
the HP model was used to simulate a spontaneously activating system (i.e. models S1–S3 and S1–E2 in the
top panels) were synchronous, leading to an infinite conduction velocity

4.1.2 Conduction Velocity

In Fig. 8, we plot the conduction velocity of the HP and PP models when the four
phenotype combinations were used. The conduction velocity was calculated through
the region 35 < x < 65. When the HP model was used for the self-exciting systems,
full synchronisation occurred and the activation time was identical throughout the
entire fibre, and so conduction velocity is evaluated as infinite. Consequently, the top
two panels do not contain lines for the conduction velocity of the HP model. As the
length of the partitions in the PP model case decreases towards zero, we expect to
tend towards the synchronised HP case (where each point in space has each model
present). Indeed, we see the effective conduction velocity increase to high above the
stimulated case, as synchronisation effects occur and begin to dominate. We note
that the magnitude of the increase in conduction velocity observed in these simulated
systems is far greater than that typically reported as a result of restitution effects (Yue
et al. 2005; Zhang et al. 2012).

In the non-self-exciting stimulated fibres (the lower panels of Fig. 8), we observe
good agreement between the conduction velocity for the HP and PP models for all
lengths of partitioned unit.

4.2 Set 2: The Beat Rate and Excitability ConditionWhen Phenotype Proportions
Vary

In our second stage of the verification of the homogenisation, we investigate whether
the beating condition of theFitzHugh–Nagumomodel (α < 0 for spontaneous beating)
holds, and compare the beat rates of fibres simulated using the PP and HP models.

We pair each self-activating action potential model (S1, S2, S3) with each of the
excitable models (E1, E2, E3). We alter the relative proportions of the two models, ρ1
and ρ2, in both the HP and PP fibres, giving us a range of model combinations with
different values of the homogenised parameter αH = ρ1α1 + ρ2α2. We perform two
sets of simulations with the PPmodel, onewithmid-sized partitioned regions (n = 60)
and another withmuch smaller partitioned regions (n = 240). The partitioned units are

123



L. A. Bowler et al.

Fig. 9 Beat rate from Set 2 simulations. The beat rates of fibres simulated using the PP model are compared
to those of fibres simulated using the HP model with equivalent proportions of the two phenotypes. With
both sizes of partitioned units, the discrepancies between the HP and PP models (indicated by the proximity
of the cross-dot pairs) are generally small. The discrepancies are noticeably smaller in the lower panel,
where the smaller partitioned units are used. The major difference between the small and large partitioned
unit simulations may be seen around αH = 0. The HP model is quiescent at this value of αH , as are all
instances of the PP model with small partitioned units. However, spontaneous beating is still seen in some
of the simulations that utilise the PP model with larger partitioned units (Color Figure Online)

assigned amodel phenotype in a regular pattern. Rather than alternating the phenotype
of each partitioned unit, the precise layout is determined by the relative proportions
of the two phenotypes (see Fig. 3 for further details).

We first examine the discrepancy in beat rate between the HP and PP models in
both panels of Fig. 9. The beat rates of the HP and PP models differ more when the
partitioned units are large (top panel) than when the partitioned units are small (bottom
panel). In general the condition that the PP model is self-exciting only when αH > 0
is adhered to. The only places where this condition is not met is around αH = 0, for
the case where n = 60. This problem disappears when n = 240, i.e. when the size of
the partitioned unit decreases and δ approaches zero, and we are closer to the limit in
which our homogenisation is valid.

4.3 Set 3: Boundary Effects

In Sect. 4.1.1, we noted the presence of boundary effects in both the PP andHPmodels.
To examine this effect, we alter the model phenotype that is located at the boundary
of three otherwise similar phenotype layouts for the PP model. We use Models S1 and
S3 for this investigation as their spontaneous activity is representative of the beating
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Fig. 10 Activation times of all recorded beats in PP model simulations (Set 3) with equally sized partitions.
The activation times are normalised so that the earliest activation time during each beat is set to 0. Model
S1 has a slower natural beat rate than Model S3, and so propagation spreads from regions where Model
S3 can dominate. As the number of partitions increases, the apparent conduction velocity increases due to
synchronisation effects as we tend to the homogenised case (Color Figure Online)

of hSC-CMs. In the first case, where we have an even number of partitioned units, the
outer model phenotype on the left-hand side of the fibre is Model S1 (with a slower
natural frequency), while that at the right isModel S3 (with a faster natural frequency).
In the other two cases, we have an odd number of units (one more than in the even-
n cases). In one of these, Model S1 is present at both boundary units, while in the
other Model S3 is present at both boundaries. We test these three patterns of model
phenotypes with partitioned units in a range of sizes.

We plot the activation times of every beat in each of the three cases in Fig. 10.
In each row of the figure, we move to a smaller size of the partitioned unit: at the
top, we have 30 or 31 units, with 60 or 61, 120 or 121, and 240 or 241 in the rows
below. In all cases plotted in Fig. 10, several beats occur before activation settles into
a steady pattern. As we start off with identical initial conditions across the entire fibre,
the first beat occurs near-simultaneously across the entire fibre before the dominant
pacemaker begins to take over. While the process of the pacemaker settling to a steady
state is induced by the initial conditions in this case, similar effects have been reported
in experimental systems following other forms of perturbation (Kienast et al. 2014).

Throughout the simulations shown in Fig. 10, the origin of activation is consistent
as the number of partitioned units is increased. The activation wave always originates
from a region of the faster-beating model phenotype; if Model S3 is present at one
of the boundaries, the activation wave originates there. In the central case, activation
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Fig. 11 Activation time of the final beat for Set 4 simulations. We compare the homogenised phenotypes
(HP) model (black line) to the partitioned phenotypes (PP) model with 60, 120 and 240 partitioned units.
Parameter A controls the extent of variation in phenotype—with more variation in phenotype there is
a slower wave speed in both HP and PP models and a more noticeable difference between the HP and
large-unit PP models. See Fig. 4 for the underlying phenotype arrangements across this domain

begins at the central instance of Model S3, as the slower-beating Model S1 takes
longer to reach the activation threshold at the boundaries than it does elsewhere. The
increase in conduction velocity as the size of the partitioned unit decreases shows that
the action potentials tend towards synchronisation in the homogenised limit, as we
saw in Fig. 8.

4.4 Set 4: Regular Spatial Variation in Phenotype Proportion

In Fig. 11, we plot the final activation time from a series of simulations where ρ1 and
ρ2 are allowed to vary spatially. We alter the parameter A from Eqs. (10)–(12) across
our three investigations, to give us three distributions of the two model phenotypes
with different amounts of variability across the fibre (see Fig. 4 for details). This series
of simulations shows that as the size of the partitioned unit is decreased, the PP model
tends towards the HP model.

4.5 Set 5: Random Spatial Variation in Phenotype Proportion

In Sect. 4.4, we investigated a smooth variation in ρ1 and ρ2. We now add a random
perturbation onto this smooth distribution, as described in Sect. 3.1. In Fig. 12, we
plot the activation time of the final beat in as a bold black line for the homogenised
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Fig. 12 Activation times of the final beat in the Set 5 simulations. The bold black line shows the activation
time from the homogenised phenotypes model. The thinner grey lines show the activation time from the 15
randomly assigned partitions for the PP model [probabilities given by Eq. (12)], so that each has a slightly
different phenotype layout, examples of which may be seen in Fig. 4. The HP model and PP model wave
speeds are in good agreement (the same gradients are seen in these activation time plots), but the random
arrangement of phenotype partitions can change the location of the emergent ‘pacemaker’ site(s) in the PP
model

case and grey thin lines for the partitioned cases. We have 15 repeats of the PP model
simulations due to the different random arrangements of model phenotypes, as shown
in Fig. 4, where n = 120.

In contrast to the simulations for a regular variation in ρ1 and ρ2 shown in Fig. 11,
we see that introducing randomness into ρ1 and ρ2 can induce differences between
the PP and HP models. Specifically, the location of the pacemaker region may differ
between these models, particularly in the simulations where the smooth variation is
small (i.e. A is small), as the variations due to random error are then relatively large
when compared to A. We note, however, that the gradients of all activation plots are
very similar. Hence, although the pacemaker region may not be accurately located
using the HP model, the conduction velocity is consistent. We return to this point
when considering a physiological cell model in Sect. 4.6.

4.6 Set 6: Simulations with Physiological Action Potential Models

In this set of simulations, we extend the simulations in Sect. 4.5 to use the Paci
et al. (2013) models of atrial-like and ventricular-like hSC-CM electrophysiology.
The atrial-like model has a faster beat rate and shorter APD90 than the ventricular-like
model, as is shown previously in Fig. 1. We arrange these two phenotypes in a similar
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Fig. 13 Activation times of the final beat of simulations in the Set 6 simulations. The two cell types are
represented by the Paci et al. (2013) models of ventricular-like and atrial-like hSC-CM electrophysiology.
Results from the homogenised phenotypesmodel are shown as a bold black line; the thin grey lines represent
the 15 randomly generated partitions according to Eq. (12). Each repeat has a slightly different phenotype
layout; see Fig. 4 for examples of the underlying phenotype arrangements across this domain. As we noted
in the previous set of simulations, the HP model and PP model wave speeds are in good agreement and we
observe that the random arrangement of phenotype partitions can change the emergent ‘pacemaker site’ in
the PP model

manner to that used in the previous series of simulations, which can be seen in the
second panel of Fig. 4. We investigate the impact of varying the parameter A, which
sets the amount of variation in phenotype across the fibre.

In Fig. 13, we plot the final activation times of the simulations with varied numbers
of partitioned units and values of A. From left to right, the figure shows the activation
times of fibres divided into 20, 30 and 120 partitioned units. Aswe are nowdealingwith
a dimensional simulation, this corresponds to patches of cells that are approximately
500, 330 and 80µm across. The typical size of a hSC-CM varies, but even the smallest
size of partitioned unit that is tested here would correspond to at least two cells. As in
the previous section, we decrease the amount of variability in phenotype from top to
bottom of the figure, with parameter A set to 0.5, 0.3 and 0.1 in each row.

In the previous section, we noted that the HP model is able to capture the overall
behaviour of the PP model very well when there is substantial variation in phenotype,
i.e. a high value of A. We make similar observations to those made in Fig. 13—as
A is progressively increased, keeping n fixed, we see that the pacemaker region is
accurately located by the HP model. Even if the pacemaker region is not accurately
located, it is seen that the conduction velocity is accurately predicted, as can be seen
by the gradient of the plot of activation times. We also observe that the pacemaker
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region is more accurately located as n increases, as expected. Finally, we note from
the gradient of the activation plots that the conduction velocity is around 19 cm/s for
all values of A, which is similar to that discussed in Sect. 1.1.

5 Conclusions

We have investigated two models for including multiple cellular phenotypes within
simulations of cardiac tissue. In the partitioned phenotypes (PP) model, the simulated
domain contains distinct regions where a single-model phenotype is present. The
homogenised phenotypes (HP) model assumes a well-mixed sample of cells, which
we represent as a homogenised system. We have verified that the electrical activity
generated by the PP model tends towards that of the HP model as the size of the
partitions decreases. The HPmodel is therefore a good approximation to the PPmodel
when the length scale of regions containing a mixture of cell types is small.

Use of the PP model requires that the mesh is sufficiently fine in order to capture
the geometry of the partitioned regions as closely as possible. For realistic two- and
three-dimensional simulations with small regions of distinct cell types, this will result
in a very large number of nodes, and simulations using this mesh may not be compu-
tationally feasible. An advantage of the HP model is that it does not require the mesh
to explicitly model the geometry of the partitioned regions, thus significantly reducing
the number of nodes in the mesh and eliminating the need for customised versions of
the mesh when simulating the same domain with different arrangements of cell types.

Our simulations have demonstrated some experimentally observed properties of
hSC-CM monolayers. The first two sets of simulations involved fibres with regularly
repeating units of alternating phenotype, tending towards a fully mixed system. We
observed that changes in values ofAPD90 andMDPwere apparent across thefibre,with
the changes being gradual despite clear division between cell types in the PP model.
The conduction velocity of the activationwave increased rapidlywhen a self-activating
cell model was present in fibres simulated with the small-unit PP model or the HP
model. More realistic conduction velocities were seen in simulations where there was
spatial variation in the distribution of phenotypes. The lack of a dramatic variation in
conduction velocity in experimental hSC-CM systems, such as those described in Lee
et al. (2012), suggests that spatially homogeneous cellular phenotypes are unlikely to
occur in cultures of hSC-CMs; and that there must be variation in the intrinsic beat rate
of hSC-CMs in these multi-cellular cultures. This prediction is consistent with two
other recent modelling studies: Abbate et al. (2018) and Tixier et al. (2018) propose
that there must be spatial variation in phenotype in hSC-CMs to provoke signals of the
magnitude observed in micro-electrode array experiments. In these papers, different
phenotypeswere introducedwith a partitioned phenotype, andwith a smoothly varying
parameter set within one model, respectively.

The final three sets of simulations demonstrated how local spatial variability in the
relative proportions of the two phenotypes introduced a stable pacemaker region in the
HP and small-unit PPmodels. This observation provides a mechanism bywhich stable
propagation of the activation wave can occur in hSC-CMs, even in cultures that only
exhibit small amounts of variation in phenotype. The sixth set of simulations utilised
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physiologically based models of atrial-like and ventricular-like hSC-CM electrophys-
iology. We demonstrated similar conduction velocities in cases where both large and
small amounts of phenotypic variationwere simulated, in the region of values observed
experimentally, which vary from approximately 1cm/s to 20cm/s depending on matu-
rity (Mehta et al. 2011; Lee et al. 2012; Zhu et al. 2017). We can therefore propose
that even a small amount of phenotypic variation removes the system from the fully
synchronous regime observed when the HP model was used in the first set of simula-
tions. However, synchronisation may still play a small role in the value of conduction
velocity: our observations lead us to the prediction that paced hSC-CM monolayers
may show slower conduction velocities than they do when left to self-excite.

In future work, we will compare two-dimensional simulation results using this
model with experimental measurements from approximately two-dimensional mono-
layers of stem cell-derived cardiomyocytes. Such experiments typically use micro-
electrode arrays to record extracellular potential at a number of sites in the centre of
a monolayer in a circular well, and so provide some information on the direction and
speed of propagating waves.

In addition to our main focus of human stem cell-derived cardiomyocytes, the
homogenised phenotypesmodelmay also be useful in other types of cardiac simulation
where two or more cell types are present, such as in sino-atrial node where cellular
properties are reported to vary based on their position within the pacemaking region.
The current interest in uncertainty quantification and variability in biological systems
is driven by the need to understand how these factors can affect model output, thus
influencing the utility of these models to complement experiments (Elkins et al. 2013;
Mirams et al. 2016). Our proposals for simulation of multiple cell types will enable
detailed investigation of the impact of variable spatial distributions of cell type on the
signals recorded frommonolayer cultures of human stem cell-derived cardiomyocytes
that are part of the proposed Comprehensive in vitro Proarrhythmia Assay initiative
(Sager et al. 2014).
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A Derivation of theMathematical Model

The derivation of the HP model is very similar to the derivation of the bidomain equa-
tions given by other authors (Neu and Krassowska 1993; Keener and Panfilov 1996;
Keener and Sneyd 2008; Hand and Griffith 2010, 2011; Richardson and Chapman
2011; Bruce et al. 2014). By including different cell types in the spatial unit that
we homogenise over, we must take account of cell parameters that depend on the
microscale coordinate. We therefore follow the approach of Bruce et al. (2014) who
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allowed some cell parameters to vary when modelling gap junctions. The derivation
of the PP model is simpler than that of the HP model and follows naturally from the
derivation of the latter. We therefore describe the derivation of the HP model first, and
then explain how this may be modified to obtain the PP model.

In Sect. A.1, we begin by writing down a discrete model that partitions cardiac
tissue into an intracellular region and an extracellular region, and nondimensionalise
the governing equations in Sect. A.2. We then set the scene for the homogenisation
by defining the macroscale and microscale coordinates, and the periodic unit that we
homogenise over, in Sect. A.3.1. We proceed with the derivation of the homogenised
equations in intra- and extracellular space in Sects. A.3.2 andA.3.3 allowing us towrite
down the HP model for well-mixed cellular phenotypes in Sect. A.4. The collapse of
the HP model to the PP model is described in Sect. A.5.

A.1 The Discrete Domains Model

We assume that cardiac tissue occupying a region can be partitioned into an intra-
cellular region denoted by Ωi , and an extracellular region denoted by Ωe. These two
regions are separated by the cell membrane, assumed to be of negligible thickness,
denoted by Γm . The intracellular space and extracellular space have scalar conduc-
tivities σi and σe, respectively. We will allow σi to vary spatially to take account of
different cell types, but will assume that σe is constant. By Ohm’s law, the intracellular
and extracellular currents are given by

ii = −σi∇φi , x ∈ Ωi ,

ie = −σe∇φe, x ∈ Ωe,

where φi , φe are the intracellular and extracellular potentials. Conservation of current
in the intracellular and extracellular space then gives

∇ · (σi∇φi ) = 0, x ∈ Ωi , (13)

∇ · (σe∇φe) = 0, x ∈ Ωe. (14)

The boundary conditions that model the flux of current across the cell membrane may
be written

− σi∇φi · n = Im, −σe∇φe · n = −Im, x ∈ Γm, (15)

where n is the unit vector, normal to Γm , that points from the intracellular space into
the extracellular space, and Im is the transmembrane current per unit area flowing into
the intracellular space from the extracellular space. Modelling the cell membrane as
a capacitor, Im is given by

Im = Cm
∂v

∂t
+ Iion, (16)
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where Cm is the capacitance of the membrane per unit area, v = φi − φe is the
transmembrane potential, t is time, Iion(v;u) is the net current per unit area due to
the flux of ions across the membrane, and u contains quantities that are specified by a
model of the flow of ions across the cell membrane. As we are modelling more than
one cell type we allow both Cm and Iion to vary spatially.

A.2 Nondimensionalisation

We nondimensionalise the equations given in Sect. A.1 using the following scalings:

t = T t̂, x = L x̂, σi = Σ̄σ̂i , σe = Σ̄σ̂e,

φi = Φφ̂i , φe = Φφ̂e, v = Φv̂, Cm = C̄Ĉm Iion = Ī Îion,

where T is a typical timescale, L is a typical lengthscale for the solution (rather than
the length of amyocyte), Σ̄ is representative of the scalar conductivities,Φ is represen-
tative of the potential difference across the cell membrane, C̄ is representative of the
capacitance, and Ī is representative of the ionic current per unit area. Equations (13)
and (14) may then be written in nondimensional form as

∇ ·
(
σ̂i∇φ̂i

)
= 0, x̂ ∈ Ωi , (17)

∇ ·
(
σ̂e∇φ̂e

)
= 0, x̂ ∈ Ωe, (18)

and we can reformulate the boundary conditions of Eq. (15) using the definition of Im
from Eq. (16) to give

−σ̂i∇φ̂i · n̂ = AĈm
∂v̂

∂ t̂
+ B Îion, x̂ ∈ Γm, (19)

−σ̂e∇φ̂e · n̂ = −AĈm
∂v̂

∂ t̂
− B Îion, x̂ ∈ Γm, (20)

where the nondimensional constants A and B are given by

A = C̄ L

T Σ̄
, B = Ī L

ΦΣ̄
. (21)

For the remainder of Sect.A,we use the nondimensional equations (17)–(20) presented
above, dropping hats for clarity.

A.3 Derivation of the Homogenised Equations

To allow us to homogenise the equations presented in Sect. A.2, we make the assump-
tion that cardiac tissue is a periodic lattice of repeating cuboid units, where each unit
contains a small number of cardiac cells. We show a representation of this lattice in
two dimensions in Fig. 14. No assumptions are made regarding the type of cells within
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Fig. 14 Cells of two different phenotypes in the HP model. The repeated unit is made up of both cell types;
it should be noted that the two types do not have to be present in the same proportions. Ωi and Ωe denote
the intracellular and extracellular domains, respectively. The surface area of the cell membrane within the
repeated unit is given by Γm = Γm1 + Γm2. The lengthscale of the solution, L , is assumed to be much
larger than the lengthscale of the repeated unit, l

each unit of the lattice: we allow the cells to have different shapes, sizes, capacitances
and conductivities, and also allow the ionic current passing through the cell membrane
to take different functional forms depending on which cell type the membrane belongs
to.

A.3.1 The Domains and Coordinate Systems

We assume that the lengthscale for the solution, L , is much greater than the lengthscale
of each unit in the lattice, l. We then define the nondimensional parameter δ by

δ = lengthscale of unit we homogenise over (= l)

lengthscale for solution (= L)
, (22)

and note that our assumptions on the lengthscales imply that δ � 1.
Before deriving the bidomain equations, we first verify that our assumption that

δ � 1 is valid. In Sect. 1.1, we explained that hSC-CMs are small and rounded, with
diameters of approximately 10–50µm. Setting l = 200µm allows us to homogenise
over a unit containing several cells. Further, L = 2000µm is a representative length-
scale of the solution, yielding δ = 0.1, and T = 10−2 s is a representative timescale
of the solution. Other parameters that appear in the nondimensional constants A and
B defined by Eq. (21) are: C̄ = 1µFcm−2 (from Table 2); Σ̄ = 0.3 mScm−1 (from
Table 2); Ī = 2× 10−5 Acm−2 [from Paci et al. (2013)]; and Φ = 7× 10−2 V [from
(Paci et al. 2013)]. We may then deduce that the nondimensional constants A and B
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defined by Eq. (21) satisfy A = O(δ) and B = O(δ), and write

A = A1δ, B = B1δ, (23)

where A1 = O(1), and B1 = O(1). This is identical to the distinguished limit inves-
tigated by Richardson and Chapman (2011) when deriving the tissue scale bidomain
equations and is consistent with the parameters used in typical bidomain simulations;
see, for example, Morgan et al. (2009) and Bishop and Plank (2012).

We will utilise the separation of scales described above by introducing a microscale
coordinate z, defined by

z = 1

δ
x, (24)

where x is the macroscale coordinate used in Sect. A.1.

A.3.2 Derivation of the Homogenised Equation in Intracellular Space

We write φi = φi (x, z, t), where φi is periodic in z. Using the definition of the
microscale and macroscale coordinates given by Eq. (24), we see that

∇φi = ∇xφi + 1

δ
∇zφi , (25)

where ∇x and ∇z are the gradient operators with respect to the x and z coordinates,
respectively. We then write φi as a regular asymptotic expansion in the parameter δ:

φi (x, z, t) = φ
(in)
0 (x, z, t) + δφ

(in)
1 (x, z, t) + δ2φ

(in)
2 (x, z, t) + · · · , (26)

where all functions in the expansion are periodic in z. We assume that σi = σi (z)
to allow for different conductivities should cell types with different conductivities
be present in the unit that we homogenise over. Substituting Eqs. (25) and (26) into
Eq. (17) and collecting equal powers of δ gives, for z ∈ Ωi .

δ−2 : ∇z ·
[
σi (z)∇zφ

(in)
0

]
= 0, (27)

δ−1 : ∇x ·
[
σi (z)∇zφ

(in)
0

]
+ ∇z ·

[
σi (z)

(
∇xφ

(in)
0 + ∇zφ

(in)
1

)]
= 0, (28)

δ0 : ∇x ·
[
σi (z)

(
∇xφ

(in)
0 + ∇zφ

(in)
1

)]
+ ∇z ·

[
σi (z)

(
∇xφ

(in)
1 + ∇zφ

(in)
2

)]
= 0.

(29)
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Similarly using Eq. (19) and using Eq. (23), we may equate powers of δ to generate
the following boundary conditions:

δ−1 : −σi (z)∇zφ
(in)
0 · n = 0, (30)

δ0 : −σi (z)
(
∇xφ

(in)
0 + ∇zφ

(in)
1

)
· n = 0, (31)

δ1 : −σi (z)
(
∇xφ

(in)
1 + ∇zφ

(in)
2

)
· n = A1Cm

∂v

∂t
+ B1 Iion. (32)

The differential equation Eq. (27), and boundary condition (30), are satisfied by

φ
(in)
0 = φ

(in)
0 (x, t), (33)

and so there is no z dependence in the solution for φi at leading order, as expected. We
now turn our attention to the differential equation Eq. (28), and boundary condition
(31). Equation (33) allows us to deduce that the first term on the left-hand side of
Eq. (28) is zero. The structure of this equation and boundary condition suggests seeking
a solution

φ
(in)
1 (x, z, t) = W (in)

1 (z)
∂φ

(in)
0

∂x1
+ W (in)

2 (z)
∂φ

(in)
0

∂x2
+ W (in)

3 (z)
∂φ

(in)
0

∂x3
, (34)

for functionsW (in)
1 ,W (in)

2 ,W (in)
3 to bedetermined.Thedifferential equation andbound-

ary condition given by Eqs. (28) and (31) are then satisfied providing, for j = 1, 2, 3,

∇z ·
(
σi (z)∇zW

(in)
j

)
= − ∂σi

∂z j
, z ∈ Ωi , (35)

(
σi (z)∇zW

(in)
j

)
· n = −σi n j , z ∈ Γm, (36)

where W (in)
1 ,W (in)

2 ,W (in)
3 are periodic in z, and n j is component j of n, j = 1, 2, 3.

Integrating Eq. (29), the differential equation at order δ0, over the intracellular space
component of the unit we are homogenising over (denoted by Ω̂i ) yields

∫
Ω̂i

∇x ·
[
σi (z)

(
∇xφ

(in)
0 + ∇zφ

(in)
1

)]
dVz +

∫
Ω̂i

∇z ·
[
σi (z)

(
∇xφ

(in)
1 + ∇zφ

(in)
2

)]
dVz = 0.

Applying the divergence theorem to the second integral in the equation above gives

∫
Ω̂i

∇x ·
[
σi (z)

(
∇xφ

(in)
0 + ∇zφ

(in)
1

)]
dVz +

∫
∂Ω̂i

[
σi (z)

(
∇xφ

(in)
1 + ∇zφ

(in)
2

)]
· n dVz = 0.

Using the boundary condition given by Eq. (32) and periodicity in z then gives

∫
Ω̂i

∇x ·
[
σi (z)

(
∇xφ

(in)
0 + ∇zφ

(in)
1

)]
dVz =

∫
Γm

A1Cm
∂v

∂t
+ B1 Iion dSz. (37)
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Denoting the volume of the repeating unit by |Ω|, Eqs. (33) and (34) then allow us to
write

∇x ·
(
Σi∇xφ

(in)
0

)
= 1

|Ω|
∫

Γm

(
A1Cm

∂v

∂t
+ B1 Iion

)
dSz, (38)

with Σi = 1

|Ω|
∫

Ω̂i

σi (z)
(
I + ∂W(in)

∂z

)
dVz, (39)

where I is the identity matrix, and the matrix ∂W(in)/∂z has entries given by

(
∂W(in)

∂z

)
jk

= ∂W (in)
j

∂zk
, j, k = 1, 2, 3.

We note that the homogenised conductivity tensor would not be calculated in practice
using Eq. (39) as this would require extremely high-resolution imaging in three-
dimensional space to determine the domain occupied by a cell. Rather, Eq. (38) serves
to demonstrate the structure of the differential equation satisfied by the leading order
intracellular potential. The entries of the homogenised conductivity tensor are deter-
mined by fitting to experimental values of conduction velocity.

A.3.3 The Homogenised Equation in Extracellular Space

Using a similar argument, we may also write φe as a regular asymptotic expansion in
the variable δ:

φe(x, z, t) = φ
(ex)
0 (x, z, t) + δφ

(ex)
1 (x, z, t) + δ2φ

(ex)
2 (x, z, t) + · · · ,

where all functions in the expansion are periodic in z, and deduce that

∇x ·
(
Σe∇xφ

(ex)
0

)
= − 1

|Ω|
∫

Γm

(
A1Cm

∂v

∂t
+ B1 Iion

)
dSz, (40)

where Σe = 1

|Ω|
∫

Ω̂e

σe

(
I + ∂W(ex)

∂z

)
dVz, (41)

where Ω̂e is the extracellular space component of the unit we are homogenising
over. Remembering that σe is assumed to be constant, the equations for the func-
tionsW (ex)

1 ,W (ex)
2 ,W (ex)

3 satisfy simpler differential equations than the corresponding

functionsW (in)
1 ,W (in)

2 ,W (in)
3 for the intracellular space, defined by Eqs. (35) and (36).

In this case, the functions W (ex)
1 ,W (ex)

2 ,W (ex)
3 , periodic in z, satisfy

∇2
zW

(ex)
j = 0, z ∈ Ωe,

∇zW
(ex)
j · n = −n j , z ∈ Γm .
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A.4 The Homogenised Phenotypes Model

Before we can write down the bidomain equations, we need to evaluate the integral
that appears on the right-hand side of Eqs. (38) and (40) when the repeating unit that
we homogenise over comprises two distinct varieties of cardiac cell. We write v as the
asymptotic expansion given by

v(x, z, t) = V (x, t) + δv1(x, z, t) + δ2v2(x, z, t) + · · · , (42)

We first partition the cell membrane into two regions, Γm1 and Γm2, where Γm1
represents the membrane between the first cell type and the extracellular space, and
Γm2 represents themembrane between the second cell type and the extracellular space.
These two cell types have capacitances Cm1 ,Cm2 , and ionic currents Iion,1, Iion,2. We
may then write the integral on the right-hand side of Eqs. (38) and (40) as

∫
Γm

A1Cm
∂v

∂t
+ B1 Iion dSz

=
∫

Γm1

A1Cm1

∂v

∂t
+ B1 Iion,1(v;u1) dSz +

∫
Γm2

A1Cm2

∂v

∂t
+ B1 Iion,2(v;u2) dSz.

The surface area, S, of the membrane within the unit that we homogenise over
is partitioned in the proportions ρ1, ρ2 of the two cell types. Using the asymptotic
expansion of v given by Eq. (42), we obtain, to leading order,

∫
Γm

A1Cm
∂v

∂t
+ B1 Iion dSz = S

(
ρ1Cm1 + ρ2Cm2

)∂V

∂t

+S
(
ρ1 Iion,1(V ;u1) + ρ2 Iion,2(V ;u2)

)
. (43)

Using Eqs. (38), (40) and (43), we may write down the bidomain equations for our
homogenised system,

∇ ·
(
Σi∇φ

(in)
0

)
= χ

(
A1Cm

∂V

∂t
+ B1 Iion

)
, (44)

∇ ·
(
Σe∇φ

(ex)
0

)
= − χ

(
A1Cm

∂V

∂t
+ B1 Iion

)
, (45)

where the homogenised forms of Cm and Iion are defined by

Cm = ρ1 Cm1 + ρ2 Cm2, (46)

Iion = ρ1 Iion,1(V ;u1) + ρ2 Iion,2(V ;u2), (47)

so that both the homogenised capacitance and ionic current are the proportional con-
tributions from the two cell types, and we have χ = S/|Ω|. Note that extending this
approach to further cell types would be a simple extension of Eqs. (46) and (47) to
add further terms and proportions of each phenotype.
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When using the bidomain equations in practice, it is common to eliminate φ
(in)
0

from Eqs. (44) and (45), giving

χ

(
A1Cm

∂V

∂t
+ B1 Iion

)
= ∇ ·

(
Σi∇(V + φ

(ex)
0 )

)
,

0 = ∇ ·
(
Σi∇V + (Σi + Σe)∇φ

(ex)
0

)
.

A.5 The Partitioned Phenotypes Model

When using the partitioned phenotypes model, we are able to partition the tissue into
one set of regions containing only the first phenotype, and another set of regions where
only the second phenotype exists. In the first of these regions, we have ρ1 = 1, ρ2 = 0
allowing us to deduce that Cm = Cm1 from Eq. (46) and that Iion = Iion,1 from
Eq. (47). Similarly, in the second regionwe haveρ1 = 0, ρ2 = 1 and soCm = Cm2 and
Iion = Iion,2. The solutions to the bidomain equations in these regions are then coupled
by demanding that φ

(in)
0 , φ

(ex)
0 and the homogenised intracellular and extracellular

currents are continuous across the partition between these regions, i.e.:

(
Σi∇φ

(in)
0

)
· n, and

(
Σe∇φ

(ex)
0

)
· n,

are continuous across the partition boundary,wheren is a normal vector to the partition.
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