
How should a spatial-coverage sample design for a

geostatistical soil survey be supplemented to support

estimation of spatial covariance parameters?

R.M. Lark1 ∗, B.P. Marchant

British Geological Survey, Keyworth, Nottinghamshire NG12 5GG, U.K.

Abstract1

We use an expression for the error variance of geostatistical predictions, which in-2

cludes the effect of uncertainty in the spatial covariance parameters, to examine the per-3

formance of sample designs in which a proportion of the total number of observations4

are distributed according to a spatial coverage design, and the remaining observations are5

added at supplementary close locations. This expression has been used in previous studies6

on numerical optimization of spatial sampling, the objective of this study was to use it to7

discover simple rules of thumb for practical geostatistical sampling. Results for a range8

of sample sizes and contrasting properties of the underlying random variables show that9

there is an improvement on adding just a few sample points and close pairs, and a rather10

slower increase in the prediction error variance as the proportion of sample points allo-11

cated in this way is increased above 10 to 20% of the total sample size. One may therefore12

propose a rule of thumb that, for a fixed sample size, 90% of sample sites are distributed13

according to a spatial coverage design, and 10% are then added at short distances from14

sites in the larger subset to support estimation of spatial covariance parameters.15
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1. Introduction18

1.1 The problem and its motivation19

How should we sample a variable in space to allow geostatistical prediction for an20

information system or mapping project? This is an important question for the application21

of geostatistics in soil science, particularly when limited resources are available to support22

soil sampling in the field and the analysis of sampled material in the laboratory. It is23

important because the sampling determines both the cost of the survey and the quality of24

the resulting predictions.25

One of the first approaches to this question was made by McBratney et al. (1981)26

who showed that if the spatial covariance parameters (variogram parameters) of the target27

random variable are known, at least approximately or from a homologous setting, then28

one may identify the spacing of a square sample grid such that the kriging variance at29

the centre of a grid cell (where the point kriging variance takes its largest value) does not30

exceed some threshold. Van Groenigen et al. (1999) demonstrated that spatial simulated31

annealing, a method for numerical optimization, can be used to find sampling designs32

in irregularly-shaped regions so as to minimize the mean or maximum kriging variance33

over that region. This approach will tend to produce a ‘space-filling’ or ‘spatial-coverage’34

design, which can also be achieved by the methods of Walvoort et al (2010).35

The limitation of spatial-coverage designs for geostatistics, be these regular grids36

or space-filling designs in irregular regions, is that they do not provide information on37

spatial dependence over short intervals, and so the modelled spatial covariance at short38

lag distances is poorly constrained. The covariance at short distances is particularly39

influential on the kriging weights. While some early geostatistical studies in soil science40

used regular sampling grids (e.g. Burgess and Webster, 1980; Webster and Oliver, 1989)41

it was realized that it is necessary to include some observations within a sample array that42

are a short distance apart to support the estimation of spatial covariance parameters (e.g.43

Atteia et al., 1994; Cattle et al., 2002). However, we are not aware of an explicit analysis44
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of the benefits of doing this in terms of the quality of final kriging predictions. Stein45

(1999), in a simple 1-D simulation with only 20 sample locations on a regular transect,46

showed that the likelihood function for spatial covariance parameters was very flat near47

the maximum, but that adding just three additional observations at finer intervals within48

the transect markedly reduced the uncertainty. In 2-D simulations with more realistic49

sample sizes Haskard (2007) supported this finding. She considered a total sample size of50

100, but allocated either 10 or 20 of these points to clusters within an incomplete 10� 1051

square grid. She found a marked reduction in the standard errors of spatial covariance52

parameters when using the sample array with 10 points in a cluster by comparison to53

the full 10 � 10 grid, and only a small additional benefit in using 20 of the 100 points in54

clusters.55

Simple spatial-coverage sampling will not do to support geostatistical prediction, so56

how can appropriate designs be discovered? Zhu and Stein (2006) and Marchant and Lark57

(2007a,b) showed how to define an overall objective function for the quality of a sampling58

design, an expected mean square error of predictions, which accounts for the two sources59

of uncertainty in the empirical best-linear unbiased prediction (E-BLUP, equivalent to the60

kriging prediction in the general case with no covariates and the local mean assumed to61

be stationary). These two sources are the spatial variation of the target variable and the62

uncertainty in the maximum likelihood (ML) estimates of the spatial covariance param-63

eters. More detail is provided in section 1.2. The key point is that we do not assume64

that the spatial covariance parameters are known without error, but account for their65

uncertainty, which depends in part on the sampling design. Spatial simulated annealing66

can then be used to minimize the mean value, or the maximum value, of this objective67

function across a study area. The resulting designs resemble a spatial-coverage sample68

with some additional points at shorter distances.69

These formal methods for optimization may be complex to implement. They require70

an approximation of the spatial covariance parameters of the target variable, or a specifi-71
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cation of their joint prior distribution. In practice the scientist who is planning a survey72

may have a more-or-less fixed sample size to deploy, and simple rules of thumb may be73

more useful than complex procedures for optimization, which may also be computationally74

demanding. There are various rules of thumb in geostatistics which have been influential75

amongst practitioners. For example, it is generally advised to form empirical estimates76

of the variogram for lag distances no longer than D{2 where D is the maximum distance77

between observations (Journel and Huijbregts, 1978). Webster and Oliver (1992) suggest78

that at least 100 observations are required to obtain a reliable estimate of the variogram.79

Kerry et al. (2010) advise that a sampling grid for geostatistical prediction should have80

a spacing no coarser than half the range of spatial dependence of the target variable, and81

ideally one third to two fifths of the range.82

The objective of this paper is to see whether it is possible to devise rules of thumb83

to plan a geostatistical soil survey de novo. Following the observations of Stein (1999) and84

Haskard (2007), and from the simulation results of Zhu and Stein (2006) and Marchant and85

Lark (2007a,b), we propose that the rule for a geostatistical survey with N observations86

is to withhold some number of these (a short-distance subset), distribute the remaining87

NSC according to a spatial-coverage design and then to insert each observation from the88

short-distance subset into the resulting regular array at some fixed short distance, but89

in a random direction, from a randomly selected site in the spatial-coverage subset. We90

examine a quality measure for the resulting surveys, the mean square error of prediction as91

computed by Marchant and Lark (2007a) which accounts both for the density of sampling92

around a prediction site and the uncertainty of the spatial variance parameters. The93

key question is whether a general recommendation can be made as to how many sample94

sites to reserve for the short-distance subset. Our study is therefore one in the spirit of95

‘innovization’ (innovation by optimization), as discussed by Deb et al. (2014). The key96

idea of innovization is that one seeks to discover rules which a practitioner can implement97

which capture the key properties of solutions identified by formal optimization.98
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In the next section we review the calculation of the prediction error variance of the99

E-BLUP as proposed by Zhu and Stein (2006) and Marchant and Lark (2007a). The100

Methods section then sets out the sampling schemes and scenarios for which we evaluated101

this error variance. The scenarios correspond to random variables with a range of spatial102

covariance parameters. These include parameter sets selected from a Markov Chain Monte103

Carlo sample of parameters for the random effects in a linear mixed model for the variation104

of soil carbon content across a part of eastern lowland England with a range of contrasting105

land uses.106

1.2 The mean-square error of the empirical best linear unbiased prediction107

In this paper we consider the case of ordinary kriging, although the formulation of108

the problem extends to the more general best-linear unbiased prediction (BLUP) which109

includes universal kriging (or regression kriging in an approximately equivalent presenta-110

tion). The ordinary kriging prediction of a variable, Z at a location x0, given q covariance111

parameters in θ and n observations in z � pzpx1q, zpx2q, . . . , zpxnqq
T can be written as112

pZ px0|θq � λTz, (1)

where λ is a vector of weights. The weights are obtained from the ordinary kriging equation113

L � A�1b, (2)

where114

A �

�
C, 1n
1Tn , 0

�
the matrix C is the covariance matrix of the n observations given their locations, x1,x2, . . .xn115

and the covariance function with parameters in θ, C pxi � xj |θq; 1n is a vector length n116

of ones,117

L �

�
λ
ψ

�
,

where ψ is a Lagrange multiplier. If c is a vector of the covariances between the target118

location x0 and the observations, x1,x2, . . .xn, then119

b �

�
c
1

�
.
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In this formulation the expected square error of the prediction, the kriging variance, is120

σ2OKpx0q � C p0|θq � LTb. (3)

The derivations above are based on known covariance parameters, θ. In this paper121

we consider a frequentist framework in which θ is treated as fixed but unknown, with the122

estimate pθ obtained by maximum likelihood, see Lark (2000) for a fuller account. The123

estimate pθ is ‘plugged in’ to the equations above to give the empirical BLUP (E-BLUP).124

Zimmerman & Cressie (1992) considered the effect of this parameter uncertainty on the125

kriging prediction using a Taylor series approximation. They showed that the prediction126

remained approximately unbiased, but an additional component of the prediction error127

variance should be considered. This is128

τ2px0q � E

�! pZ px0|θq � pZ �
x0|pθ	)2

�
�

q̧

i�1

q̧

j�1

Cov pθi, θjq
B pZ
Bθi

B pZ
Bθj

, (4)

where θi denotes the ith parameter in θ and Cov p�, �q denotes the covariance of two random129

terms in the brackets. Zhu and Stein (2006) and Marchant and Lark (2007a) used this as130

a basis for a component of the expected squared prediction error. The expected value of131

the term due to uncertainty in the ML estimate, pθ, is132

E
�
τ2px0q

�
�

q̧

i�1

q̧

j�1

Cov pθi, θjq
BλT

Bθi
C
Bλ

Bθj
, (5)

where C is the covariance matrix of the n observations, given their locations. The term Bλ
Bθj

133

is the vector of partial derivatives of the kriging weights with respect to the jth covariance134

parameter in θ. Marchant and Lark (2007a) provided the following equation from which135

these can be obtained:136

BL

Bθi
� A�1

�
Bb

Bθi
�

BA

Bθi
A�1b



. (6)

The covariance matrix for the estimated variance parameters may be approximated by the137

inverse of the Fisher information matrix, F, so138

Cov pθi, θjq � F�1 pθi, θjq , (7)
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where139

F �
1

2
Tr

�
C�1 BC

Bθi
C�1 BC

Bθj

�
, (8)

and Tr r�s denotes the trace of the matrix in the brackets (Kitanidis, 1987).140

Following Zimmermann and Cressie (1992) we may obtain an overall mean square141

error of the prediction at x0, σ
2
Ppx0q as the sum of the kriging variance, Eq. (3), and the142

expected value of τ2px0q given in Eq. (5):143

σ2Ppx0q � σ2OK � E
�
τ2px0q

�
. (9)

It is acknowledged that this expression is an approximation, given the Taylor Series ap-144

proximation in Eq. (4) and the comparable assumption in the use of the Fisher Information145

matrix to obtain Cov pθi, θjq in Eq. (7). However, Zhu and Stein (2006) suggest that this146

approximation is reasonable, at least for comparison between sampling designs.147

In this paper we use Eq. (9) to compute the mean squared error of E-BLUPs from148

samples in which a specified proportion of all observations are distributed according to a149

spatial-coverage design with each of the remaining points added to a location a short fixed150

distance from a randomly selected point in the spatial-coverage subset. By varying the151

total sample size, and the numbers of points in the spatial-coverage subset we were able to152

show how the division of total sampling effort between spatial-coverage and close points153

affects the uncertainty in the predictions, and how this differs between random variables154

with contrasting spatial covariance parameters.155

3. Materials and Methods156

3.1. Sampling schemes and their implementation.157

We start with a fixed total sample size, N . Of these N points NSC   N were158

distributed according to a spatial-coverage design within a square uniform region. In the159

initial experiment N was set to 100 and the uniform region was 256 � 256 units. The160

selection of locations for the spatial-coverage points was done with the stratify procedure161
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in the spcosa library for the R platform (Walvoort et al., 2010; R Core Team, 2014). This162

procedure uses a k-means algorithm to partition a region into k units, the centroids of163

which constitute a spatial-coverage sample, Walvoort et al (2010) give further details. The164

remaining N �NSC points were then each allocated at random to one of the points in the165

spatial-coverage subsample and placed a fixed distance (δ � 5 units) from the allocated166

point in a random direction. The fixed distance, δ, is the ‘short’ distance included in the167

sampling scheme to support spatial covariance modelling. We specified a fixed distance (in168

a random direction) for simplicity. Figure 1 shows the mean distance between a location in169

the region and its nearest neighbouring sample point in the spatial coverage design. The170

distance between a location and its nearest neighbouring sample point is the shortest lag171

over which the spatial covariance is required to determine the E-BLUP prediction. The172

value of δ was set to a short distance relative to the values in Figure 1, about one fifth the173

mean distance for the denser sample schemes.174

Having generated this sample the next objective is to estimate the maximum pre-175

diction error variance at unsampled locations, which is equivalent to finding the kriging176

variance at the centre of a regular grid cell in the procedure of McBratney et al. (1981).177

To do this we first found the Voronoi tesselation of the spatial-coverage sample points178

(the short-distance subset was excluded) using the deldir package in R (Turner, 2015).179

We then found for each vertex of the set of Voronoi polygons the longest distance to a180

spatial-coverage sample point in one of its adjacent polygons and then found the maximum181

value of this distance over all vertices within the central 150 � 150 unit region, denoted182

dmax. We then found a vertex, at location xVmax and a spatial-coverage point in one of183

the adjoining polygons xSCmax such that the vector d � xSCmax � xVmax has Euclidean184

norm |d| � dmax. The vertex at xVmax is necessarily a point in the domain such that185

none other is further from any point in the spatial-coverage set, and so is a site where the186

kriging variance for a prediction from points in the spatial-coverage set is large.187

We then selected five target locations at which the prediction error variance, σ2P,188
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was evaluated. The first location was at xVmax , the fifth location was at xVmax�dp|d| �189

pδ{2qq{|d|. This latter location is on a line joining xVmax to xSCmax and is distance δ{2190

from xSCmax. The remaining three points were spaced equally on the line joining the first191

and fifth. The contribution to the prediction error variance from the kriging variance will192

be largest at the target point coincident with xVmax and will be smallest at the point193

closest to xSCmax. We computed the prediction error variance for a random variable at194

these five locations, given a set of spatial covariance parameters for the random variable.195

We computed the Fisher Information Matrix, Eq. (7), for the spatial covariance pa-196

rameters using all N observations, but assumed that only the NSC points were available for197

prediction. This allows us to consider the ‘worst case’ scenario, i.e. prediction in a region198

where only points from the spatial-coverage sample are close by. The partial derivatives199

with respect to the κ and φ parameters of the Matérn spatial covariance model (Stein,200

1999) were estimated numerically using the grad function from the numDeriv package for201

the R platform (Gilbert and Varadhan, 2015). This was done because, as discussed by202

Haskard et al. (2007), the analytical solutions to these derivatives are prone to rounding203

error. The expected value of τ2 was then computed at each of the five target points using204

Eq. (5) and (6). The corresponding kriging variances were computed with Eq. (3) and205

then the overall prediction error variance at each site was computed with Eq. (9). The206

maximum prediction error variance over the five sites was then extracted.207

The maximum prediction error variance obtained this way for a given sample size,208

N , with NSC distributed by spatial-coverage sampling is a random variable because the209

spatial-coverage sample obtained may differ from one run of the stratify procedure to210

another. For this reason we repeated this procedure 50 times and calculated the mean211

and 95% confidence interval for each N and NSC.212

3.2. Scenarios. 3.2.1 Contrasting random variables. In all calculations we considered a213

standard random variable with a nugget variance of 0.1 and a correlated variance of 0.9.214
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We specified an isotropic Matérn spatial correlation model (Matérn, 1986; Stein, 1999)215

ρphq �
 
2κ�1Γpκq

(�1

�
|h|

φ

�κ

Kκ

�
|h|

φ

�
, (10)

where h is the lag vector, Γp�q is the gamma function, Kκ is a modified Bessel function216

of the second kind of order κ. The two parameters are κ, a smoothness parameter, and217

φ, a distance parameter. We considered cases with three values of κ: 0.5 (equivalent to218

the exponential variogram), 0.3 (somewhat rougher than exponential) and 0.7 (somewhat219

smoother than exponential). All three smoothness parameters were specified in combina-220

tion of each of four effective ranges of spatial dependence at which the correlation decays221

to approximately 0.05, equal to ακφ where φ is the distance parameter of the variogram222

and ακ is equal to 2.4, 3.0 and 3.5 respectively when κ is 0.3, 0.5 and 0.7. We specified223

values of φ such that the effective range was 37.5, 50, 75 or 150 units. We do not claim224

that this range of scenarios is exhaustive. It reflects a case with a small nugget effect225

and with the smoothness of the random process in the vicinity of that of an exponentially226

correlated one. Within this region of the feature space of spatial covariance parameters227

we consider the effects of variations in the effective range and the overall sample size.228

For any given set of spatial covariance parameters we considered three sample sizes229

with N= 75, 100 and 150. In each case we considered spatial-coverage subsets with230

NSC � N � n with n � 1, 2, � � � , 10 and then larger numbers which differed between the231

basic sample sizes. Figure 1 shows how the mean distance from a point in the spatial-232

coverage sample to its nearest neighbour depends on the number of points in the spatial-233

coverage sample.234

We kept the overall sampling density constant, irrespective of N . To achieve this235

the dimensions of the uniform square region of interest were adjusted so that the overall236

sampling density was equal to 100{2562 in all cases. This means that differences between237

sample sizes are not confounded with effects of sample density. The effect of sample density238

can be examined by comparing cases with fixed sample size and different effective ranges239

of spatial dependence.240
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3.2.2 Random variables in linear mixed models for variation of soil properties . Here we241

used data from a previously-published study on spatial variation of soil at within-field scale242

in a lowland landscape in eastern England (Lark et al., 1998). The data were collected243

from a 6-ha field in use for research on precision agriculture management of cereal crops.244

The soil was sampled in the spring in the presence of a winter-sown barley crop but prior to245

any fertilizer application. The soil was sampled at 100 locations which comprised a basic246

50-m grid (24 points) with 66 additional sample points at 10-m intervals on transects247

aligned with the 50-m grid, and 10 sample points added to allow comparisons over 5 m.248

At each site the soil was sampled to depth 20 cm with a screw auger. In this paper we249

use data on the organic matter content of the soil samples, which was determined by the250

Walkley Black method (Hesse, 1971), and the nitrate content extractable by KCl (Mengel,251

1991). Statistical analysis was conducted on the organic matter content, expressed as a252

percent by mass of the (dry) soil, and on the natural logarithm of nitrate content (mg253

kg�1 dry soil).254

In both cases a linear mixed model was fitted to the data with a constant mean as255

the only fixed effect. We fitted a Matérn correlation function for the correlated random256

effect; the parameters of this function, along with a nugget variance and the variance of257

the spatially correlated random effects, were estimated by ML.258

We considered a situation in which a 16-ha square site, considered to be homologous259

with the original field with respect to soil variation, is to be sampled to allow geostatistical260

mapping of both variables. We assume that the total sample size is fixed at 100. We261

followed the same procedures described in section 3.1 to generate realizations of space-262

filling samples with between 99 and 50 sample points, and with the remaining sample263

sites (1 to 50) distributed between sites of the space-filling design selected at random, and264

placed 5 m from the associated site in a random direction. For each design we computed265

the maximum prediction error variance in the same way described in section 3.1.266

4. Results267
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Results are shown in Figures 2 to 5. In Figure 2 are shown results for all cases where268

the effective range of the random variable of interest was 150 units. This is large relative to269

the spacings between points in the spatial-coverage samples as shown in Figure 1. Figure270

2a and 2b both show the maximum prediction error variance for random variables with the271

parameter κ equal to 0.7 (somewhat smoother than an exponential random variable). The272

different symbols correspond to the different sample sizes, and the horizontal bars show273

the 95% confidence interval for each mean value. In Figure 2a the maximum prediction274

error variance is plotted against the fraction of all N sample sites which are in the short-275

distance subset (rather than the spatial-coverage subset) up to a maximum proportion of276

0.4. In Figure 2b the same results are shown but plotted against the number of sample277

points in the short-distance subset. Similarly, Figures 2c and 2d show maximum prediction278

error variance plotted against, respectively, the proportion of sites in the short-distance279

subset and the number for a random variable with κ � 0.5, and Figures 2e and 2f are280

corresponding plots for the case with κ � 0.3. Figures 3, 4 and 5 show the corresponding281

output for cases with the effective range of the random variable equal to 75, 50 and 37.5282

units. The latter is of similar size to the distance to the nearest point in the spatial-283

coverage samples.284

In Figure 2 in all cases there is an initial reduction in the maximum prediction error285

variance as a result of increasing the number of sample sites in the short-distance set286

from one and a more gradual increase in the maximum prediction error variance as the287

number of short-distance sites is increased much above 10 or so. Reducing κ (making the288

random variable rougher) makes the response of the maximum prediction error variance289

to the number of short-distance sample points more sensitive. For the random variable290

with κ � 0.3 it can be seen that there is no improvement from increasing the number of291

short-range sites above about six, but the curves are somewhat ‘flat-bottomed’, and there292

is very little increase in the maximum prediction error variance if up to about 10 points293

are allocated to the short-range subset. Figure 2e shows that increasing the proportion of294
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points in the short-distance set above about 0.1 increases the maximum prediction error295

variance for all sample sizes. For the variables with κ equal to 0.5 or 0.7 (Figures 2a–2d)296

the ‘flat-bottomed’ form of the plots is more pronounced, with very little increase in the297

maximum prediction error variance as the size of the short-distance subset is increased.298

Reducing the effective range of the random variable, other factors being held con-299

stant, increases the maximum prediction error variance, as can be seen by comparing300

Figure 2 with Figures 3–5. It also makes the increase in the maximum prediction error301

variance as the short-distance subset is increased above 10–15 points more pronounced,302

and the effect is very notable for the random variable with the shortest effective range303

(Figure 5), although this also depends on the total sample size. Note that the range of304

values on the ordinate of the plots (prediction error variance) is increased for shorter ef-305

fective ranges, and that a wider range is used for Figure 3e and f than for the plots for306

the smoother random variables with an effective range of 75 units.307

In the case of the random variables with effective range of 75 or 50 units the max-308

imum prediction error variance is markedly reduced on adding up to 2 points in the309

short-range subset when κ is equal to 0.5 or 0.7, but for the rougher random variable310

with κ � 0.3 further improvement is achieved by adding 5 to 7 points in the short-range311

set. Using up to 10 sample points in the short-range set incurs a small penalty for the312

smoothest random function (κ � 0.7) with the smallest sample size, but the increase in313

the maximum squared prediction error is not large, and with a total sample size of 100 or314

150 the increase is negligible for up to 20 or so points in the short-distance set.315

Figure 5 shows results for the case where the effective range is 37.5, short relative to316

the spacing between neighbouring sites in the spatial-coverage sample. Note that in many317

cases the maximum squared prediction error exceed the a priori variance of the random318

variable. Whilst there is a benefit from putting some points into the short-distance set the319

increase in prediction error variance from putting too many into this set is very pronounced320

for the smaller two sample sizes. Reduction in the spatial-coverage subset of points, with321
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the addition of extra points at a short distance, affects the uncertainty in the spatial322

covariance parameters as well as the kriging variance component of the prediction error323

variance when the range of spatial dependence is close to the spacing of the spatial-coverage324

subset.325

Comparing Figure 2e and 2f show that the absolute number of short-distance points326

rather than the proportion of points in the subset determines the initial reduction in327

the maximum prediction error variance (a short range set of 5-7 achieves the minimum328

squared-prediction error regardless of the overall sample size. However, the increase in the329

maximum prediction error variance with the proportion of sample points in the short-range330

set is similar for all sample sizes as this proportion increases above 0.1. Examining all the331

plots shows that setting the number of short-distance points to 10% of the total sample332

size (shown by the vertical dotted line in the plots for the short-distance fraction) ensures333

that sufficient short-distance points are included. For the random functions equivalent to334

the exponential or rougher the curves are sufficiently flat that a 10% rule incurs no penalty335

from reducing the spacing of the spatial-coverage sampling, and any such effect for the336

smoothest random variable considered is very small.337

Figure 6 shows the scaled variograms for organic matter content and for nitrate338

content from the sampled field. In each case the value of the variogram is divided by the339

sill to facilitate comparison. Note that while the values are similar over longer lags the340

behaviour at short lags is rather different. In the case of nitrate content there is a large341

nugget effect, but the parameter κ for the correlated random variable is 1.04, implying a342

random process which is smoother than an exponentially correlated one. In the case of343

organic matter content the parameter κ is 0.12, which implies a markedly rougher process.344

The nugget effect in this latter case is zero.345

Figure 7 shows the variogram models, scaled to an a priori (sill) variance of 1, for346

organic matter and the log of nitrate content, as estimated by ML. The parameters are347

listed in Table 1. Figure 8 shows the maximum prediction error variance for different348
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numbers of sample points out of 100 used for short-distance comparisons. The prediction349

error variances are standardized by the a priori variance of the respective random effects.350

In both cases there is a marked reduction in the error variance on the adjustment of the351

sample design to include some observations at short distance. The minimum error variance352

for organic matter predictions is with 8 observations used to allow comparisons over short353

distances, and for nitrate content the minimum is with 17 such observations. In both354

cases the rate of increase in the prediction error variance when more observations than the355

optimal number are used for short-distance comparisons is markedly less than the rate of356

increase as fewer such observations are included. That said, the reduction in the prediction357

error variance for nitrate as more than 10 or so observations are used is very small. If358

one was planning a survey to map both these variables, a design with 90 observations359

distributed for spatial coverage and 10 included subsequently at short distances, would360

not be markedly suboptimal for either variable. It is interesting that the 10% rule, which361

seemed reasonably robust for the hypothetical examples with the κ parameter close to362

0.5 and a nugget effect equal to one tenth of the sill, is also reasonable for these two soil363

variables with rather different values of both parameters.364

5. Discussion and Conclusions365

These results show that the findings of Stein (1999) and Haskard (2007) that a366

relatively small subset of short-distance points in a sample can markedly improve the es-367

timation of the covariance parameters extends to the corollary that these short-distance368

points can also improve the maximum prediction error variance, which reflects the uncer-369

tainty in both the covariance parameters and the spatial variation between target points370

for prediction and their neighbouring observations. Figure 1 shows that the distance be-371

tween nearest neighbours in a spatial coverage sample increases relatively slowly as the372

sample density is reduced over the range considered in this study. This, with the findings373

of Stein (1999) and Haskard (2007) account for the asymmetry of the plots in Figures 2–5374

with a reduction in the prediction error variance on the initial addition of a few close375
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points which is steeper than subsequent increases in the prediction error variance as the376

number of points in the spatial coverage sample declines.377

The practical conclusion is that it is important to include a short-distance subset.378

With the larger sample size considered here, and particularly for random variables as rough379

or rougher than the exponential, the potential cost of under-investing in short-distance380

sampling is larger than the cost from degrading the spatial-coverage set by including381

sample points in the short-distance subset, at least as long as the spatial-coverage set is382

not too coarse relative to the effective range of the random variable.383

While a very small number of sample points may markedly improve the maximum384

prediction error variance in these examples, it must be recalled that these calculations are385

done on the assumption of second-order stationarity. If just two or three short-distance386

points are included then there is a risk that they will appear in atypical conditions, and this387

could have a substantial effect on the estimated covariance parameters. For this reason the388

inclusion of a rather larger short-distance set is good practice, and these results suggest389

that using about 10% of the total sample effort in a short-distance subset is reasonable.390

In this study we restrict the supplementation of the spatial coverage sample to391

single points at a fixed distance from one of the spatial coverage set. In the sample392

schemes presented by Marchant and Lark (2007a) that optimize a mean prediction error393

variance the outputs resemble spatial coverage samples with either close pairs or, for394

some sets of covariance parameters, short ‘transects’. This suggests that there might be395

scope for further studies in the spirit of innovization to uncover rules which relate the396

supplementation strategy to the properties of the underlying random variable. Whether397

this provides a basis for practical rules of thumb would depend on, first, the sensitivity of398

the optimal strategy to the (unknown) properties of the underlying random variable and,399

second, how far the robustness of this strategy depends on the stationarity assumption.400

Additional questions for further work would include whether it is more effective to include401

supplementary points at a fixed distance from the spatial coverage points, or to include402
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them at random distances bounded by a maximum.403

The expression for the prediction error variance used in this paper is for the case of404

the E-BLUP where the mean is treated as an unknown constant, equivalent to ordinary405

kriging. There is no reason why this should not be ezxtended to a more general case406

where the mean is modelled as a function of some environmental covariates. We would407

not expect the general conclusions to differ much, because supplementary points will have408

a negligible effect on estimation of fixed effects coefficients, but an investigation of the409

question would be a useful further study.410

To conclude, on the basis of these results we may recommend that, provided the411

spatial-coverage subset of sample points is sufficiently dense to be reasonably confident412

that the spatial dependence of the target variable is resolved, it is good practice to include413

a short-distance subset and a relatively small investment of sample effort in such sample414

points, which add little to the field effort required for sampling, can have a large effect415

on the uncertainty of kriging predictions. In our hypothetical examples, where the nugget416

effect is small to moderate (10%) and the smoothness parameter is close to that for the417

exponential variogram (with both rougher and smoother conditions considered) a robust418

strategy is to use a short-distance subset that corresponds to about 10% of the total419

sample size for a range of values of the effective range of spatial dependence. We showed420

how the optimal size of the short-distance subset could be found using the variogram for421

two variables in a real data set on the soil. Interestingly, applying the 10% rule would be422

a robust strategy for both these variables although their variograms are rather different423

from those used in the hypothetical examples.424
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Table 1. Parameters of the variograms estimated by maximum likelihood for soil organic

matter content and (log-transformed) nitrate content.

Variable φ /m κ Nugget Correlated
variance variance

Organic matter /% 97.9 0.12 0.00 0.92
Nitrate /log mg kg�1 34.9 1.04 0.14 0.15
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Figure captions

Figure 1. Mean distance to nearest neighbour within a set of NSC points in a spatial

coverage sample in a 256 � 256-unit square region.

Figure 2. Maximum prediction error variance over the standard set of five prediction

locations as described in the text for random variables with an effective range of 150

units and κ � 0.7 (Fig. 2a,b), 0.5 (Fig. 2c,d) or 0.3 (Fig 2e,f). The plotted value is

the mean over 50 realizations of the sampling scheme with horizontal bars showing

the 95% confidence interval. The total sample size is indicated by the plotted symbol

150 (�), 100 (�) or 75 (). In the left-hand column (Fig 2a, 2c and 2e) the mean value

of the maximum prediction error is plotted against the proportion of the total sample

size witheld from the spatial coverage subset and added as the short-distance subset

(up to a maximum proportion of 0.4). In the right-hand column (Fig. 2b, 2d and

2f) the same values are plotted against the number of points in the short-distance

subset.

Figure 3. Maximum prediction error variance over the standard set of five prediction

locations as described in the text for random variables with an effective range of 75

units and κ � 0.7 (Fig. 3a,b), 0.5 (Fig. 3c,d) or 0.3 (Fig 3e,f). The plotted value is

the mean over 50 realizations of the sampling scheme with horizontal bars showing

the 95% confidence interval. The total sample size is indicated by the plotted symbol

150 (�), 100 (�) or 75 (). In the left-hand column (Fig 3a, 3c and 3e) the mean value

of the maximum prediction error is plotted against the proportion of the total sample

size witheld from the spatial coverage subset and added as the short-distance subset

(up to a maximum proportion of 0.4). In the right-hand column (Fig. 3b, 3d and

3f) the same values are plotted against the number of points in the short-distance

subset.

Figure 4. Maximum prediction error variance over the standard set of five prediction
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locations as described in the text for random variables with an effective range of 50

units and κ � 0.7 (Fig. 4a,b), 0.5 (Fig. 4c,d) or 0.3 (Fig 4e,f). The plotted value is

the mean over 50 realizations of the sampling scheme with horizontal bars showing

the 95% confidence interval. The total sample size is indicated by the plotted symbol

150 (�), 100 (�) or 75 (). In the left-hand column (Fig 4a, 4c and 4e) the mean value

of the maximum prediction error is plotted against the proportion of the total sample

size witheld from the spatial coverage subset and added as the short-distance subset

(up to a maximum proportion of 0.4). In the right-hand column (Fig. 4b, 4d and

4f) the same values are plotted against the number of points in the short-distance

subset.

Figure 5. Maximum prediction error variance over the standard set of five prediction

locations as described in the text for random variables with an effective range of 37.5

units and κ � 0.7 (Fig. 5a,b), 0.5 (Fig. 5c,d) or 0.3 (Fig 5e,f). The plotted value is

the mean over 50 realizations of the sampling scheme with horizontal bars showing

the 95% confidence interval. The total sample size is indicated by the plotted symbol

150 (�), 100 (�) or 75 (). In the left-hand column (Fig 5a, 5c and 5e) the mean value

of the maximum prediction error is plotted against the proportion of the total sample

size witheld from the spatial coverage subset and added as the short-distance subset

(up to a maximum proportion of 0.4). In the right-hand column (Fig. 5b, 5d and

5f) the same values are plotted against the number of points in the short-distance

subset.

Figure 6. Variograms for organic matter content (broken line) and log of nitrate content

(solid line) estimated by maximum likelihood and scaled to a priori (sill) variance

of 1.

Figure 7. Mean maximum prediction error variance for organic matter content () and

log of nitrate content (�) with a total sample size of 100 in a 16-ha square region.

The number of sample sites inserted at short distances in a space-filling design varies
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from 1 to 50. Crosses show the 95% confidence interval. The dotted vertical line

shows the design where the mean maximum prediction error variance is smallest

for organic matter content, and the dashed line shows the same for log-transformed

nitrate content.
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