
IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. **, NO. **, ** 2017 1

A Direct Approach for Determining the Switch
Points in the Karnik-Mendel Algorithm

Chao Chen, Student Member, IEEE, Robert John, Senior Member, IEEE, Jamie Twycross
and Jonathan M. Garibaldi, Member, IEEE

Abstract—The Karnik-Mendel algorithm is used to compute
the centroid of interval type-2 fuzzy sets, determining the switch
points needed for the lower and upper bounds of the centroid,
through an iterative process. It is commonly acknowledged
that there is no closed-form solution for determining such
switch points. Many enhanced algorithms have been proposed
to improve the computational efficiency of the Karnik-Mendel
algorithm. However, all of these algorithms are still based on
iterative procedures. In this paper, a direct approach based on
derivatives for determining the switch points without multiple
iterations has been proposed, together with mathematical proof
that these switch points are correctly determining the lower and
upper bounds of the centroid. Experimental simulations show
that the direct approach obtains the same switch points, but is
more computationally efficient than any of the existing (iterative)
algorithms. Thus, we propose that this algorithm should be used
in any application of interval type-2 fuzzy sets in which the
centroid is required.

Index Terms—Karnik-Mendel algorithm, centroid, interval
type-2, fuzzy sets, iterative, closed-form, direct approach.

I. INTRODUCTION

THE Karnik-Mendel (KM) algorithm was the first algo-
rithm proposed to determine the switch points when

computing the centroids of interval type-2 (IT2) fuzzy sets
[1]. With its fast convergence, it is still the most widely used
algorithm for computing the switch points [2, 3, 4, 5, 6]. It
was originally shown that the maximum number of iterations
of the KM algorithm is N , which is the number of discrete
points in the universe of discourse for an IT2 fuzzy set.
This was believed to be extremely conservative and it was
subsequently proved by Liu [7] that the maximum number of
iterations of the KM algorithm is (N + 1)/2. A much smaller
number (N + 2)/4 was given in [8] as the maximum number
of iterations, without proof. Though these numbers are much
smaller than N , they are still believed to be conservative [3].
Many studies by simulations show that the KM algorithm
converges in from two to six iterations, regardless of N [9].

Many attempts have been made to improve the efficiency
of the KM algorithm. The enhanced KM (EKM) algorithm
introduces a better initialisation, which “on average ... can save

The authors are with the Laboratory for Uncertainty in Data and Decision
Making (LUCID), the Intelligent Modelling and Analysis (IMA) and the
Automated Scheduling Optimisation and Planning (ASAP) Research Groups,
School of Computer Science, University of Nottingham, Nottingham, Jubilee
Campus, NG8 1BB UK e-mail: {chao.chen, robert.john, jamie.twycross,
jon.garibaldi}@nottingham.ac.uk.

Manuscript received *** **, 2016; revised *** **, 2017; accepted *** **,
2017. Date of publication *** **, 2017; date of current version *** **, 2017.

Digital Object Identifier ***

about two iterations” [9]. Also, some algorithmic improve-
ments to simplify computations were introduced to reduce the
computational cost for each iteration. An improved iterative
algorithm with stopping condition (IASC) was first proposed
in [10] and further refined in [11]. Further improvements to the
IASC have been made in the enhanced IASC (EIASC) in [12].
Both the IASC and EIASC algorithms have been reported to
be superior to the KM and EKM algorithms when N is small
(e.g. N 6 100). However, their computational costs increase
rapidly as N increases since many possible switch points have
to be evaluated before finding the correct ones [3].

Rather than calculating the exact centroids, closed-form
solutions, which are much more efficient than iterative algo-
rithms, have been provided for approximations. For example,
the Nie-Tan (NT) method as given in [13]. It has been
demonstrated that the NT method can give a very good
approximation to the KM algorithm. As an extension of the NT
method, a better approximation with Taylor-series is provided
in [14]. Closed-form formulae for calculating the centroids of
a general type-2 fuzzy set are proposed in [15], where linear
connections between the centroid endpoints of any α plane
and that of α = 0 and α = 1 planes have been introduced.
However, the calculations of the centroid end points of the
α = 0 and α = 1 planes are still based on the iterative KM
algorithm. Other algorithms to improve efficiency have also
been proposed recently, such as [16] and [17], although these
too are iterative.

To the best of our knowledge, all existing algorithms, such
as the EKM and the EIASC, for determining the switch points
are iterative-based methods. In this paper, a direct approach
which can compute the switch points based on derivatives,
without multiple iterations, is proposed. We use the term
‘iteration’ here to mean the repeated calculation of the position
of the switch points. Within all approaches there are common
calculations that require looping (e.g. cumulative sum), which
we do not consider as iterations of the main algorithm.

The rest of the paper is organised as follows. The math-
ematical formulation of the KM algorithm is introduced in
Section II. Section III briefly reviews some of the well-known
iterative algorithms for the switch points in the KM algorithm.
The new direct approach is introduced in Section IV, followed
by a proof in Section V to show that the switch points
calculated by the direct approach are the same as obtained
via the KM algorithm. Experimental results for comparisons
are shown and discussed in Sections VI and VII. Finally, a
conclusion is provided in Section VIII. Note that all variables
and constants defined in this paper are real numbers.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Repository@Nottingham

https://core.ac.uk/display/162667251?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. **, NO. **, ** 2017 2

II. THE KM ALGORITHM

Let an IT2 fuzzy set Ã be based on

xi ∈ X, i = 1, 2, ..., N

Ji ≡ [
¯
ui, ūi], 0 6

¯
ui 6 ūi 6 1

where xi is the primary variable in the discrete universe of
discourse X (note that xi is in ascending order for i from
1 to N), Ji represents the membership grade interval for the
primary variable xi, and N is the number of discrete points
in the universe of discourse.

For any given embedded type-1 fuzzy set, with membership
grades ui ∈ Ji for all i, of such an IT2 fuzzy set Ã, the
centroid is defined as:

c =

∑N
i=1 xiui∑N
i=1 ui

.

If the above centroid c is computed for all embedded type-
1 fuzzy sets, a centroid interval C = [cl, cr] can be obtained
where

cl = inf
∀ui∈Ji

∑N
i=1 xiui∑N
i=1 ui

cr = sup
∀ui∈Ji

∑N
i=1 xiui∑N
i=1 ui

In fact, there is no need to compute the centroids for all
embedded type-1 fuzzy sets to get the centroid interval. It is
well known that the endpoints cl and cr of the centroid interval
can also be expressed as (the derivation can be found in [9]):

cl =

∑L
i=1 xiūi +

∑N
i=L+1 xi¯

ui∑L
i=1 ūi +

∑N
i=L+1 ¯

ui
(1)

cr =

∑R
i=1 xi¯

ui +
∑N
i=R+1 xiūi∑R

i=1 ¯
ui +

∑N
i=R+1 ūi

(2)

where L and R, which are integer indices in the range of
[1, N − 1], are the switch points for selecting

¯
ui or ūi.

As stated by Mendel [3], there is no closed-form solution
for such switch points L and R, and hence, for cl and cr. By
utilising the properties of the switch points such that

xL 6 cl 6 xL+1

xR 6 cr 6 xR+1

the KM algorithm can be used to find them iteratively [1].

III. THE ITERATIVE ALGORITHMS

In this section, two commonly used iterative algorithms
are briefly introduced, to establish terminology and notation.
Rather than introduce the original KM and IASC algorithms,
their enhancements (the EKM and EIASC algorithms) are re-
viewed as they are more efficient than the original algorithms.

A. The EKM algorithm

The EKM algorithm is summarised in Table I. Compared
to the original KM algorithm, the EKM algorithm introduces
a better initialisation (Step 2) for the starting position and a
change of the termination condition (Step 4) to remove an
unnecessary iteration [9]. The EKM algorithm can save, on
average, about two iterations. Simplified calculations (Step
5) are also introduced to save computational costs for each
iteration.

B. The EIASC algorithm

The EIASC algorithm is summarised in Table II. Compared
to the original IASC algorithm, the EIASC algorithm intro-
duced a new stopping criterion (Step 4) [12]. Also, the starting
point for computing cr has been changed to N (Step 2) since
the switch point R for cr has been shown to be generally
greater than N/2 [9].

IV. THE DIRECT APPROACH (DA) ALGORITHM

An arbitrary c in the centroid interval C, represented as
Equation 3, can be expanded to Equation 4. Equation 4
can then be transformed to Equation 5 by substituting x1 +∑i
j=2 δxj for all corresponding xi(i > 1), where

δxj = xj − xj−1 .

For example, x3 in Equation 4 is represented as (x1 + δx2 +
δx3) in Equation 5. Note that δxj is always positive since
xi (defined in Section II), and hence xj , is in ascending
order. This transformation is made to allow the sign of
the partial derivatives to be easily identified, as shown in
Equations 7 to 11. After the transformation, by rearranging and
aggregating all the items with x1 and δxj for j = 2, 3, ..., N
in Equation 5, c can finally be represented as Equation 6. We
can then compute the partial derivative of c with respect to uj
in the pattern of Equations 7 to 8. Then, this partial derivative
∂c
∂uj

can be represented as Equation 9 for specific j ∈ [1, N].
It is noted by Karnik and Mendel [1] and Wu and Mendel

[9] that equating the partial derivative of c with respect to uj
to zero does not give us any information about the value of uj
that maximises or minimises c. However, it can be observed
that the sign of the partial derivative of c with respect to uj
does not depend on the value of uj . Hence, it is clear that,
when the partial derivative is negative, it is necessary to take
the largest possible value of uj in order to minimise c. When
the partial derivative is positive, it is necessary to take the
smallest possible value of uj in order to minimise c. That is, to
obtain cl (the minimum centroid), one must set uj to ūj when
the partial derivative is negative, and to

¯
uj when the partial

derivative is positive. We observe that for any given value of
uj , this partial derivative is monotonically increasing with j
(from 1 to N). Hence, for cl, there must be a switch point
k ∈ [1, N] for which ∂c

∂uk
≤ 0 and ∂c

∂uk+1
≥ 0. Based on the

above, it is possible to find the switch point directly by locating
the value of k where the sign of the partial derivative changes.
The same principles can be used to find the switch point k for
the maximum centroid cr, swapping ūj and

¯
uj in uj . The DA

algorithm is such an algorithm, deploying the derivatives of

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. **, NO. **, ** 2017 3

Step The EKM Algorithm for computing cl The EKM Algorithm for computing cr

1 Sort xi (i = 1, 2, ..., N) in ascending order and match
¯
ui and ūi accordingly with their respective xi.

2 Set k = [N/2.4], which is the nearest integer to N/2.4, and compute Set k = [N/1.7], which is the nearest integer to N/1.7, and compute

a =
k∑

i=1

xiūi +
N∑

i=k+1

xi
¯
ui

b =

k∑
i=1

ūi +

N∑
i=k+1

¯
ui

a =
k∑

i=1

xi
¯
ui +

N∑
i=k+1

xiūi

b =

k∑
i=1

¯
ui +

N∑
i=k+1

ūi

c = a/b
3 Find k′ ∈ [1, N − 1] such that xk′ < c 6 xk′+1
4 If k′ = k, set cl = c and stop; If k′ = k, set cr = c and stop;

Otherwise, go to Step 5;
5 Compute s = sign(k′ − k), and

a′ = a + s

max(k,k′)∑
i=min(k,k′)+1

xi(ūi −
¯
ui)

b′ = b + s

max(k,k′)∑
i=min(k,k′)+1

(ūi −
¯
ui)

a′ = a + s

max(k,k′)∑
i=min(k,k′)+1

xi(
¯
ui − ūi)

b′ = b + s

max(k,k′)∑
i=min(k,k′)+1

(
¯
ui − ūi)

c′ = a′/b′

6 Set c = c′, a = a′, b = b′ and k = k′. Go to Step 3.

TABLE I: The EKM algorithm for computing the centroid end points (cl and cr) of an IT2 Fuzzy Set. Note
that for the case described in Section II, Step 1 is not necessary since xi has already been defined in ascending
order. Table I is adapted from [3, 9].

Step The EIASC Algorithm for computing cl The EIASC Algorithm for computing cr

1 Sort xi (i = 1, 2, ..., N) in ascending order and match
¯
ui and ūi accordingly with their respective xi.

2 Initialise k = 0 and Initialise k = N and

a =

N∑
i=1

xi
¯
ui

b =

N∑
i=1

¯
ui

3 Compute k = k + 1 Compute
a = a + xk(ūk −

¯
uk)

b = b + ūk −
¯
uk

c = a/b
k = k − 1

4 If c 6 xk+1, set cl = c and stop; If c > xk , set cr = c and stop;
Otherwise, go to Step 3;

TABLE II: The EIASC algorithm for computing the centroid end points (cl and cr) of an IT2 Fuzzy Set. Note
that for the case described in Section II, Step 1 is not necessary since xi has already been defined in ascending
order. Table II is adapted from [3, 12].

c with respect to each uj , and hence providing a method for
directly obtaining the switch points. Figure 1 illustrates the
monotonically increasing trend of the partial derivative ∂c

∂uj
and the location of the switch point.

Since δxj is always positive, it can be observed in Equa-
tion 9 that the partial derivative consists of two parts, which
are the positive part posj and the negative part negj :

∂c

∂uj
= posj + negj

where posj and negj are presented in Equations 10 and 11,

which can be summarised as Equations 12 and 13. Having
all the partial derivatives, the switch points L for cl and R
for cr can be obtained as follows.

For L and hence cl:
1) Calculate posj by setting all the ui to be ūi and calculate

negj by setting all the ui to be
¯
ui, for all j ∈ [1, N].

2) Calculate all the partial derivatives ∂c
∂uj

as posj + negj .
3) Find the smallest k ∈ [1, N − 1] such that ∂c

∂uk+1
> 0.

4) If k exists, set L = k; otherwise, set L = N − 1.
5) Compute cl by Equation 1.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. **, NO. **, ** 2017 4

Switch Point

−20

−10

0

10

20

1 2 3 4 5 6 7 8 9 10

j

∂c

∂uj

Sign of
∂c

∂uj

positive

negative

Fig. 1: An illustration of the DA algorithm showing the
position of the switch point for an arbitrary example where
N is 10.

For R and hence cr:
1) Calculate posj by setting all the ui to be

¯
ui and calculate

negj by setting all the ui to be ūi, for all j ∈ [1, N].
2) Calculate all the partial derivatives ∂c

∂uj
as posj + negj .

3) Find the largest k ∈ [1, N − 1] such that ∂c
∂uk

6 0.
4) If k exists, set R = k; otherwise, set R = 1.
5) Compute cr by Equation 2.

It should be noted that the denominator (
∑N
i=1 ui)

2 in
Equations 12 and 13, which must be positive, can be neglected
in calculations to save computational costs. In other words,
without the risk of changing the sign of ∂c

∂uj
, posj and negj

can be simplified as presented in Equations 14 and 15. Also,
in practice, there is no need to calculate the partial derivatives
one by one, as cumulative sums and vectorised operations can
be used. The pseudo-code for obtaining L and cl is shown
in Algorithm 1. R and cr are calculated in a similar manner,
making the substitutions as described above (pseudo-code is
omitted due to space constraints).

V. PROOF OF THE DA ALGORITHM

Proposition 1. It is clear that when ∂c
∂uj

< 0, uj should be
its maximum value, ūj , to minimise c and it should be its
minimum value,

¯
uj , to maximise c. Conversely, when ∂c

∂uj
> 0,

uj should be
¯
uj to minimise c and it should be ūj to maximise

c. When ∂c
∂uj

= 0, c is not dependent on the value of uj .

Theorem 1. The index L obtained by the DA algorithm,
as described in Section IV, is the correct switch point for
calculating the minimum centroid cl.

Proof. Given that δxi is always positive, it is clear (from
Equations 14 and 15) that for any j ∈ [1, N], posj attains its
maximum value when ui is ūi and negj attains its maximum
value when ui is

¯
ui; hence ∂c

∂uj
is also maximal. It can be

observed from Equation 8 that ∂c
∂uj

is monotonically increasing
in j. This is because the only difference of ∂c

∂uj
for j = n− 1

and j = n is the nth term (n ∈ [2, N]), which is negative for
j = n− 1 and positive for j = n.

If there exists a smallest k ∈ [1, N−1] such that ∂c
∂uk+1

> 0,
then k is the correct switch point L (for calculating cl) on the
basis that:

1) L cannot be less than k, for the following reason. For
every j ∈ [1, k], it must be the case that ∂c

∂uj
< 0.

Therefore, by proposition 1, uj should be its maximum
value ūj to minimise c. Now suppose L is less than k.
Then, as L is the switch point, every uj∈[L+1,k] should
be its minimum value

¯
uj , which by contradiction is not

possible.
2) L cannot be greater than k, for the following reason.

Assume L is greater than k. Then, as L is the switch
point every uj∈[k+1,L] should be its maximum value ūj .
By proposition 1, it must be the case that ∂c

∂uk+1
< 0, in

which case uk+2 must be changed from
¯
uk+2 to ūk+2.

This means ∂c
∂uk+2

, if it exists, must also be negative. By
induction, it can be deduced that ∂c

∂uN
must be negative.

This is in contradiction to the fact that ∂c
∂uN

> 0. Thus,
the assumption is incorrect. Hence, L cannot be greater
than k.

If there does not exist a k ∈ [1, N−1] such that ∂c
∂uk+1

> 0,
then for every j ∈ [1, N − 1], again it must be the case that
∂c
∂uj

< 0. Also, ∂c
∂uN

must be 0. Thus, there is no contradiction
for the switch point L to be N − 1.

Theorem 2. The index R obtained by the DA algorithm,
as described in Section IV, is the correct switch point for
calculating the maximum centroid cr.

Proof. The proof is similar to above.

VI. EXPERIMENTAL COMPARISON

To further investigate the performance of the new DA, com-
parisons in terms of time efficiency between the new approach
and two of the most widely used algorithms (the EKM and
the EIASC algorithms) were conducted. The platform was a
laptop with Intel Core i7-3720QM CPU @ 2.60GHz and 8GB
memory, running Windows 7 Professional 64bit Service Pack
1. The programming language and software environment is R
x64 version 3.2.3. Computational costs were measured by the
user time returned by the built-in function proc.time() in the
R environment.

A. Examples of IT2 fuzzy sets

In this section, three example IT2 fuzzy sets are used to
verify the correctness of the DA algorithm by comparing
the switch points with the EKM algorithm and the EIASC
algorithm. Specifically, the vector X , containing xi, has 101
discrete values from 0 to 10 by a step size of 0.1. ūi and

¯
ui

are obtained by the following membership functions for each
type of example IT2 fuzzy sets.

1) Symmetric Gaussian membership functions with uncer-
tain deviation:

ūi = exp

(
−0.5

(
xi − 5

1.75

)2
)

¯
ui = exp

(
−0.5

(
xi − 5

0.25

)2
)

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. **, NO. **, ** 2017 5

c =

∑N
i=1 xiui∑N
i=1 ui

(3)

=
x1u1 + x2u2 + x3u3 · · ·+ xNuN∑N

i=1 ui
(4)

=
x1u1 + (x1 + δx2)u2 + (x1 + δx2 + δx3)u3 · · ·+ (x1 + δx2 · · ·+ δxN)uN∑N

i=1 ui
(5)

= x1 +
(
∑N
i=2 ui)δx2∑N
i=1 ui

+
(
∑N
i=3 ui)δx3∑N
i=1 ui

· · ·+
(
∑N
i=N ui)δxN∑N

i=1 ui
(6)

∂c

∂uj
=

∂

∂uj

(
x1 +

(
∑N
i=2 ui)δx2∑N
i=1 ui

+
(
∑N
i=3 ui)δx3∑N
i=1 ui

· · ·+
(
∑N
i=N ui)δxN∑N
i=1 ui

)
(7)

=
∂

∂uj
(x1) +

∂

∂uj

(
(
∑N
i=2 ui)δx2∑N
i=1 ui

)
+

∂

∂uj

(
(
∑N
i=3 ui)δx3∑N
i=1 ui

)
· · ·+

∂

∂uj

(
(
∑N
i=N ui)δxN∑N
i=1 ui

)
(8)

=



0 −
(
∑N
i=2 ui)δx2

(
∑N
i=1

ui)
2
−

(
∑N
i=3 ui)δx3

(
∑N
i=1

ui)
2
−

(
∑N
i=4 ui)δx4

(
∑N
i=1

ui)
2
· · · −

(
∑N
i=N−2 ui)δxN−2

(
∑N
i=1

ui)
2

−
(
∑N
i=N−1 ui)δxN−1

(
∑N
i=1

ui)
2

−
(
∑N
i=N ui)δxN

(
∑N
i=1

ui)
2

 ∣∣j = 10 +
(
∑1
i=1 ui)δx2

(
∑N
i=1

ui)
2
−

(
∑N
i=3 ui)δx3

(
∑N
i=1

ui)
2
−

(
∑N
i=4 ui)δx4

(
∑N
i=1

ui)
2
· · · −

(
∑N
i=N−2 ui)δxN−2

(
∑N
i=1

ui)
2

−
(
∑N
i=N−1 ui)δxN−1

(
∑N
i=1

ui)
2

−
(
∑N
i=N ui)δxN

(
∑N
i=1

ui)
2

 ∣∣j = 20 +
(
∑1
i=1 ui)δx2

(
∑N
i=1

ui)
2

+
(
∑2
i=1 ui)δx3

(
∑N
i=1

ui)
2
−

(
∑N
i=4 ui)δx4

(
∑N
i=1

ui)
2
· · · −

(
∑N
i=N−2 ui)δxN−2

(
∑N
i=1

ui)
2

−
(
∑N
i=N−1 ui)δxN−1

(
∑N
i=1

ui)
2

−
(
∑N
i=N ui)δxN

(
∑N
i=1

ui)
2

 ∣∣j = 3

.

.

.0 +
(
∑1
i=1 ui)δx2

(
∑N
i=1

ui)
2

+
(
∑2
i=1 ui)δx3

(
∑N
i=1

ui)
2

+
(
∑3
i=1 ui)δx4

(
∑N
i=1

ui)
2
· · · +

(
∑N−3
i=1

ui)δxN−2

(
∑N
i=1

ui)
2

−
(
∑N
i=N−1 ui)δxN−1

(
∑N
i=1

ui)
2

−
(
∑N
i=N ui)δxN

(
∑N
i=1

ui)
2

 ∣∣j = N − 20 +
(
∑1
i=1 ui)δx2

(
∑N
i=1

ui)
2

+
(
∑2
i=1 ui)δx3

(
∑N
i=1

ui)
2

+
(
∑3
i=1 ui)δx4

(
∑N
i=1

ui)
2
· · · +

(
∑N−3
i=1

ui)δxN−2

(
∑N
i=1

ui)
2

+
(
∑N−2
i=1

ui)δxN−1

(
∑N
i=1

ui)
2

−
(
∑N
i=N ui)δxN

(
∑N
i=1

ui)
2

 ∣∣j = N − 10 +
(
∑1
i=1 ui)δx2

(
∑N
i=1

ui)
2

+
(
∑2
i=1 ui)δx3

(
∑N
i=1

ui)
2

+
(
∑3
i=1 ui)δx4

(
∑N
i=1

ui)
2
· · · +

(
∑N−3
i=1

ui)δxN−2

(
∑N
i=1

ui)
2

+
(
∑N−2
i=1

ui)δxN−1

(
∑N
i=1

ui)
2

+
(
∑N−1
i=1

ui)δxN

(
∑N
i=1

ui)
2

 ∣∣j = N

(9)

posj =



0
∣∣j = 1

0 +
(
∑1
i=1 ui)δx2

(
∑N
i=1 ui)

2

∣∣j = 2

0 +
(
∑1
i=1 ui)δx2

(
∑N
i=1 ui)

2 +
(
∑2
i=1 ui)δx3

(
∑N
i=1 ui)

2

∣∣j = 3

...

0 +
(
∑1
i=1 ui)δx2

(
∑N
i=1 ui)

2 +
(
∑2
i=1 ui)δx3

(
∑N
i=1 ui)

2 · · ·+
(
∑N−3
i=1 ui)δxN−2

(
∑N
i=1 ui)

2

∣∣j = N − 2

0 +
(
∑1
i=1 ui)δx2

(
∑N
i=1 ui)

2 +
(
∑2
i=1 ui)δx3

(
∑N
i=1 ui)

2 · · ·+
(
∑N−2
i=1 ui)δxN−1

(
∑N
i=1 ui)

2

∣∣j = N − 1

0 +
(
∑1
i=1 ui)δx2

(
∑N
i=1 ui)

2 +
(
∑2
i=1 ui)δx3

(
∑N
i=1 ui)

2 · · ·+
(
∑N−1
i=1 ui)δxN

(
∑N
i=1 ui)

2

∣∣j = N

(10)

negj =



− (
∑N
i=2 ui)δx2

(
∑N
i=1 ui)

2 · · · −
(
∑N
i=N−1 ui)δxN−1

(
∑N
i=1 ui)

2 − (
∑N
i=N ui)δxN

(
∑N
i=1 ui)

2

∣∣j = 1

− (
∑N
i=3 ui)δx3

(
∑N
i=1 ui)

2 · · · −
(
∑N
i=N−1 ui)δxN−1

(
∑N
i=1 ui)

2 − (
∑N
i=N ui)δxN

(
∑N
i=1 ui)

2

∣∣j = 2

− (
∑N
i=4 ui)δx4

(
∑N
i=1 ui)

2 · · · −
(
∑N
i=N−1 ui)δxN−1

(
∑N
i=1 ui)

2 − (
∑N
i=N ui)δxN

(
∑N
i=1 ui)

2

∣∣j = 3

...

− (
∑N
i=N−1 ui)δxN−1

(
∑N
i=1 ui)

2 − (
∑N
i=N ui)δxN

(
∑N
i=1 ui)

2

∣∣j = N − 2

− (
∑N
i=N ui)δxN

(
∑N
i=1 ui)

2

∣∣j = N − 1

0
∣∣j = N

(11)

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. **, NO. **, ** 2017 6

posj =

{
0

∣∣j = 1
(
∑1
i=1 ui)δx2

(
∑N
i=1 ui)

2

[
+

(
∑2
i=1 ui)δx3

(
∑N
i=1 ui)

2 · · ·+
(
∑j−1
i=1 ui)δxj

(
∑N
i=1 ui)

2

] ∣∣j ∈ [2, N]
(12)

negj =


[
− (
∑N
i=j+1 ui)δxj+1

(
∑N
i=1 ui)

2 · · · − (
∑N
i=N−1 ui)δxN−1

(
∑N
i=1 ui)

2

]
− (

∑N
i=N ui)δxN

(
∑N
i=1 ui)

2

∣∣j ∈ [1, N − 1]

0
∣∣j = N

(13)

posj =

{
0

∣∣j = 1(∑1
i=1 ui

)
δx2

[
+
(∑2

i=1 ui

)
δx3 · · ·+

(∑j−1
i=1 ui

)
δxj

] ∣∣j ∈ [2, N]
(14)

negj =

{[
−
(∑N

i=j+1 ui

)
δxj+1 · · · −

(∑N
i=N−1 ui

)
δxN−1

]
−
(∑N

i=N ui

)
δxN

∣∣j ∈ [1, N − 1]

0
∣∣j = N

(15)

input : X, Ū,
¯
U , vectors of the primary variable, the upper membership grades, and the lower membership grades,

respectively; xi, ūi, and
¯
ui denote elements of the respective vectors;

output: L, the switch point; cl, the lower bound of the centroid;

1 X ′ ← {xi − xi−1 | i = 2, 3, ..., N}, a vector of consecutive differences of elements of X ;
2 S1 ← {

∑j
i=1 ūi | j = 1, 2, ..., N − 1}, a vector of the cumulative sum of the first N − 1 elements of Ū ;

3 S2 ← {
∑j
i=N ¯

ui | j = N, ..., 3, 2} a vector of the cumulative sum of the last N − 1 elements of
¯
U in the reverse

order ;
4 TP ← {x ′i · s1i | i = 1, 2, ..., N − 1}, where x ′i and s1i are the ith element of vectors X ′ and S1 respectively ;
5 TN ← {x ′N−i · s2i | i = 1, 2, ..., N − 1}, where s2i is the ith element of the vector S2 ;
6 DP ← {0,

∑j
i=1 t

P
i | j = 1, 2, ..., N − 1}, where tPi is the ith element of the vector TP ;

7 DN ← {
∑j
i=1−tNi , 0 | j = N − 1, ..., 2, 1}, where tNi is the ith element of the vector TN ;

8 D ← {dP
i + dN

i | i = 1, 2, ..., N}, where dP
i and dN

i are the ith element of vectors DP and DN respectively ;
9 Find the smallest k ∈ 1, 2, ..., N − 1 such that dk+1 > 0, where dk+1, which represents ∂cl

∂uk+1
, is the (k + 1)th

element of the vector D ;
10 if k exists then L← k else L← N − 1;
11 Compute cl by Equation 1;

Algorithm 1: Pseudo code for obtaining L, the switch point; and cl, the lower bound of the centroid.

2) Gaussian upper membership function and triangular
lower membership function:

ūi =

exp
(
−0.5

(
xi−2

5

)2) ∣∣0 6 xi 6 7.185

exp
(
−0.5

(
xi−9
1.75

)2) ∣∣7.185 < xi 6 10

¯
ui =

{
0.6(xi+5)

19

∣∣0 6 xi 6 2.6
0.4(14−xi)

19

∣∣2.6 < xi 6 10

3) Piecewise Gaussian membership functions:

ūi = max


exp

(
−
(
xi−3√

8

)2
)

0.8 exp

(
−
(
xi−6√

8

)2
)

¯
ui = max


0.5 exp

(
−
(
xi−3√

2

)2
)

0.4 exp

(
−
(
xi−6√

2

)2
)

As shown in Table III, the switch points L and R obtained
with the examples by three algorithms are all the same.

Example 1 Example 2 Example 3

L R L R L R

DA 36 65 27 69 32 57
EKM 36 65 27 69 32 57
EIASC 36 65 27 69 32 57

TABLE III: The switch points L and R obtained by three
algorithms based on the example fuzzy sets.

B. Generalised IT2 fuzzy sets

1) Generalised bell-shaped IT2 fuzzy sets: It was assumed
that the vector X , containing xi, is uniformly distributed from
0 to 10. ūi and

¯
ui are defined by generalised bell-shaped

function:

ūi =
1

1 +
(
xi−c
ā

)2b
¯
ui =

1

1 +
(
xi−c

¯
a

)2b

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. **, NO. **, ** 2017 7

where
¯
a and b are randomly selected between 1 and 2; ā is

the multiplication of
¯
a with a random number between 1 and

2; c is a random number between 0 and 10.
2) Generalised randomly-shaped IT2 fuzzy sets: This ex-

perimental comparison was designed to be similar to the first
comparison in [12]. It was assumed that vectors X and Ū ,
containing xi and ūi respectively, are uniformly distributed
from 0 to 1.

¯
ui is the multiplication of ūi with a random

number between 0 and 1.
Comparisons are made for these two types of IT2 fuzzy sets

separately. In each comparison, N , which is the length of X ,
is set to be between 10 and 2000 with a step size of 10 (giving
200 different values of N). For each value of N , 5000 Monte
Carlo simulations were made and the computational time costs
were aggregated to be compared for each algorithm.

In all the 2 × 106 simulations, the DA algorithm gave the
same switch points as those given by the KM and the EIASC
algorithms. Computational time comparisons are shown in
Figures 2 and 3. It can be observed that the three algorithms
compared are similar when N is very small. It should be noted
that the EIASC algorithm is shown to be better than the EKM
algorithm when N is smaller than 1000 [12]. However, in
our experiments, the EIASC algorithm is only more efficient
than other algorithms when N is around 10. In contrast, DA
clearly outperforms other algorithms when N is larger than
100 regardless of the shape of fuzzy sets.

VII. DISCUSSION

As can be observed in Figures 2 and 3, the computational
time of the EIASC algorithm increases most rapidly among
the three algorithms. As has already been discussed, this is
because the number of switch points to be evaluated for the
EIASC algorithm increases along with the increase of N . In
other words, the number of iterations for the EIASC algorithm
increases rapidly. In contrast, the EKM algorithm can achieve
its final result in from two to six iterations, regardless of N .
Thus, the computational time for the EKM algorithm increases
less significantly than the EIASC algorithm. However, the
computational time does increase linearly because the size of
the vectors involved in the computing process increases along
with the increase of N .

Regardless of the shape of fuzzy sets, our newly proposed
DA algorithm performs the best among the three algorithms,
although it can be considered as a brute-force approach since
all the partial derivatives have to be computed before locating
the switch points. However, vectorised operations and the use
of cumulative sum make the computing of partial derivatives
quite simple. Thus, the DA algorithm is still competitive for
very small values of N and clearly outperforms the EKM, the
EIASC for N & 100.

VIII. CONCLUSION

In this paper, a direct approach based on derivatives for
determining the switch points for calculating the centroid of
an interval type-2 fuzzy set has been introduced. A derivation
of the algorithm, psuedo-code for calculating the switch points,
and a mathematical proof of correctness of the switch points

●●●●
●●

●
●●

●●●●●●●
●●●●●●

●●●●●
●●●●

●
●●●

●●●●
●●●●

●

●
●●●●

●
●

●●●●
●●●●●●●●●●

●●
●

●●
●

●

●

●●●●●
●

●
●

●
●●

●
●●

●●
●●

●
●●●●

●
●

●
●●

●●
●

●●●●
●

●
●●●

●●
●

●●●

●●●

●
●

●●
●●

●
●

●

●

●
●●

●

●●
●

●

●●●●●

●
●●

●●

●●
●

●
●

●

●●
●

●●

●

●

●

●●
●

●●●
●●

●

●●

●●
●

●

●

●
●

●
●

●
●●●●

●

●

●●●●●●●●●
●●

●

●

0

5

10

15

20

10 200 400 600 800 1000 1200 1400 1600 1800 2000
N

tim
e(

se
c)

Algorithm
● EKM

EIASC

DA

Fig. 2: A comparison of computational time costs for different
algorithms based on generalised bell-shaped IT2 fuzzy sets
described in Section VI.

●●
●●●

●●●●●●●●●●●●●●●
●●

●●
●

●
●●

●
●●●

●
●

●
●

●●
●

●●

●

●
●●

●

●

●●
●●●●●●

●●●●●●

●
●

●
●●

●
●

●
●●●●

●●●
●

●●●
●●●

●

●

●
●●

●●●

●●
●●●●

●
●

●●●●
●

●

●
●

●●
●

●
●

●
●●

●
●

●

●

●●

●

●
●●●●

●

●
●●

●●
●●

●
●

●
●

●

●

●
●

●

●●●

●
●

●
●

●
●

●
●●

●
●●

●
●

●●●

●

●

●

●
●●

●●

●
●

●
●●●

●●
●

●●

●

●●●●

●

●●

●●●
●

●●
●

●

●
●

●

●

●

0

5

10

15

20

10 200 400 600 800 1000 1200 1400 1600 1800 2000
N

tim
e(

se
c)

Algorithm
● EKM

EIASC

DA

Fig. 3: A comparison of computational time costs for different
algorithms based on generalised randomly-shaped IT2 fuzzy
sets described in Section VI.

have been given for the proposed approach. By empirical
simulations, it has been shown that DA is superior to all other
iterative algorithms (including the EKM and the EIASC) in
time efficiency. It should be noted that the DA algorithm is
in fact a brute force method which requires the calculations
of all partial derivatives. While it can be noted that the partial
derivatives are in ascending order and the switch points are
located where the sign of partial derivatives changes, it would
be interesting for an approach to find the switch points without
calculating all the partial derivatives.

In conclusion, we have contributed a new algorithm for
determining the switch points for calculating the lower and
upper bounds of the centroids of an interval type-2 fuzzy set.
Given that our algorithm clearly outperform the EKM and the
EIASC algorithms, we suggest that this new DA algorithm
should always be used when N , the number of discretizations
of the universe of discourse, & 100.

REFERENCES

[1] N. Karnik and J. Mendel, “Centroid of a type-2 fuzzy
set,” Information Sciences, vol. 132, no. 14, pp. 195–
220, 2001.

[2] J. M. Mendel, “On KM Algorithms for Solving Type-
2 Fuzzy Set Problems,” IEEE Transactions on Fuzzy
Systems, vol. 21, no. 3, pp. 426–446, 2013.

IEEE TRANSACTIONS ON FUZZY SYSTEMS, VOL. **, NO. **, ** 2017 8

[3] J. Mendel, H. Hagras, W.-W. Tan, W. W. Melek, and
H. Ying, Introduction To Type-2 Fuzzy Logic Control:
Theory and Applications, 1st ed. Wiley-IEEE Press,
2014.

[4] J. M. Mendel and M. R. Rajati, “On Computing Normal-
ized Interval Type-2 Fuzzy Sets,” IEEE Transactions on
Fuzzy Systems, vol. 22, no. 5, pp. 1335–1340, 2014.

[5] M. Nie and W. W. Tan, “Ensuring the Centroid of an
Interval Type-2 Fuzzy Set,” IEEE Transactions on Fuzzy
Systems, vol. 23, no. 4, pp. 950–963, 2015.

[6] T. Kumbasar, “Revisiting KM algorithms: A Linear Pro-
gramming approach,” in Proceedings IEEE International
Conference on Fuzzy Systems, 2015, pp. 1–6.

[7] F. Liu and J. M. Mendel, “Aggregation using the fuzzy
weighted average as computed by the Karnik-Mendel al-
gorithms,” IEEE Transactions on Fuzzy Systems, vol. 16,
no. 1, pp. 1–12, 2008.

[8] H. Wu and J. M. Mendel, “Uncertainty bounds and their
use in the design of interval type-2 fuzzy logic systems,”
IEEE Transactions on Fuzzy Systems, vol. 10, no. 5, pp.
622–639, 2002.

[9] D. Wu and J. M. Mendel, “Enhanced Karnik–Mendel al-
gorithms,” IEEE Transactions on Fuzzy Systems, vol. 17,
no. 4, pp. 923–934, 2009.

[10] M. Melgarejo, “A fast recursive method to compute
the generalized centroid of an interval type-2 fuzzy
set,” in Proceedings North American Fuzzy Information
processing Society, 2007, pp. 190–194.

[11] K. Duran, H. Bernal, and M. Melgarejo, “Improved it-
erative algorithm for computing the generalized centroid
of an interval type-2 fuzzy set,” in Proceedings North
American Fuzzy Information Processing Society, 2008,
pp. 1–5.

[12] D. Wu and M. Nie, “Comparison and practical imple-
mentation of type-reduction algorithms for type-2 fuzzy
sets and systems,” in Proceedings IEEE International
Conference on Fuzzy Systems, 2011, pp. 2131–2138.

[13] M. Nie and W. W. Tan, “Towards an efficient type-
reduction method for interval type-2 fuzzy logic sys-
tems,” in Proceedings IEEE International Conference on
Fuzzy Systems, 2008, pp. 1425–1432.

[14] J. M. Mendel and X. Liu, “New closed-form solutions for
Karnik-Mendel algorithm+defuzzification of an interval
type-2 fuzzy set,” in Proceedings IEEE International
Conference on Fuzzy Systems, 2012, pp. 1–8.

[15] M. Nie and W. W. Tan, “Closed form formulas for
computing the centroid of a general type-2 fuzzy set,”
in Proceedings IEEE International Conference on Fuzzy
Systems, 2015, pp. 1–8.

[16] S. Chakraborty, A. Konar, A. Ralescu, and N. R. Pal, “A
Fast Algorithm to Compute Precise Type-2 Centroids for
Real-Time Control Applications,” IEEE Transactions on
Cybernetics, vol. 45, no. 2, pp. 340–353, 2015.

[17] S. M. Salaken, A. Khosravi, S. Nahavandi, and D. Wu,
“Effect of different initializations on EKM algorithm,”
in Proceedings IEEE International Conference on Fuzzy
Systems, 2015, pp. 1–6.

Chao Chen received the B.Eng. degree in Electronic
and Information Engineering from Tianjin Univer-
sity of Technology, Tianjin, China, in 2003, and the
M.Sc. degree (Distinction) in Management of Infor-
mation Technology from University of Nottingham,
Nottingham, UK, in 2012. He is currently a Ph.D.
student, with the Vice-Chancellor’s Scholarship for
Research Excellence, in School of Computer Sci-
ence, University of Nottingham. He is a member of
the Laboratory for Uncertainty in Data and Decision
Making (LUCID) and the Intelligent Modelling and

Analysis (IMA) Research Group. His current research interests include the
modelling of time series forecasting with fuzzy logic systems. Particularly, he
has an interest in the optimisation of fuzzy models with the architecture of
the adaptive-network-based fuzzy inference system (ANFIS).

Robert John received the B.Sc. (Hons.) degree in
mathematics from Leicester Polytechnic, Leicester,
U.K., the M.Sc. degree in statistics from UMIST,
Manchester, U.K., and the Ph.D. degree in Fuzzy
Logic from De Montfort University, Leicester, U.K.,
in 1979, 1981, and 2000, respectively. He worked in
industry for 10 years as a mathematician and knowl-
edge engineer developing knowledge based systems
for British Gas and the financial services industry.
Bob spent 24 years at De Montfort University. He
has over 150 research publications of which about 50

are in international journals with over 6000 citations. Bob joined the Univer-
sity of Nottingham in 2013 where he heads up the research group ASAP in the
School of Computer Science. The Automated Scheduling, Optimisation and
Planning (ASAP) research group carries out multi-disciplinary research into
mathematical models and algorithms for a variety of real world optimisation
problems. He is also a member of LUCID.

Jamie Twycross is an Assistant Professor in Com-
puter Science at the University of Nottingham. He
has a B.Sc. (Hons) in Mathematical Physics from
Imperial College, London, an M.Sc. in Evolution-
ary and Adaptive Systems from the University of
Sussex, and a Ph.D. in Computer Science from the
University of Nottingham. His main research interest
is in Computational Biology, where he works at
the interface of computer science and biology to
develop and apply computational and mathematical
approaches to address biological and digital prob-

lems. He has expertise in computational and mathematical modelling, data
analytics, machine learning, and software engineering. He is a member of the
Intelligent Modelling and Analysis Group, and leads the Modelling Group in
the Synthetic Biology Research Centre at the University of Nottingham.

Jonathan M. Garibaldi received the B.Sc. (Hons.)
degree in physics from Bristol University, Bristol,
U.K., in 1984, and M.Sc. degree and Ph.D. degree
from the University of Plymouth, Plymouth, U.K.,
in 1990 and 1997, respectively. Prof. Garibaldi is
currently Head of School of Computer Science,
University of Nottingham, Head of the Intelligent
Modelling and Analysis (IMA) Research Group,
and a member of the Lab for Uncertainty in Data
and Decision Making (LUCID). His main research
interests include modelling uncertainty and variation

in human reasoning, and in modelling and interpreting complex data to enable
better decision making, particularly in medical domains. Prof. Garibaldi is the
current Editor-in-Chief of IEEE Transactions on Fuzzy Systems.

	Introduction
	The KM algorithm
	The iterative algorithms
	The EKM algorithm
	The EIASC algorithm

	The Direct Approach (DA) algorithm
	Proof of the DA algorithm
	Experimental comparison
	Examples of IT2 fuzzy sets
	Symmetric Gaussian membership functions with uncertain deviation
	Gaussian upper membership function and triangular lower membership function
	Piecewise Gaussian membership functions

	Generalised IT2 fuzzy sets
	Generalised bell-shaped IT2 fuzzy sets
	Generalised randomly-shaped IT2 fuzzy sets

	Discussion
	Conclusion
	Biographies
	Chao Chen
	Robert John
	Jamie Twycross
	Jonathan M. Garibaldi

