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Abstract 

Tourette syndrome (TS) is a childhood-onset neurological condition characterised by an 

evolving repertoire of chronic motor tics and one or more phonic tics. Tics, like habits, are 

inflexible and repetitive behaviours that are acquired over a period of time. It has been proposed 

that tics arise in TS as a result of increased habit learning: which may bias the child to acquire 

automatic behaviours (i.e. tics) more readily than is normal and make it harder to unlearn 

maladaptive habits once they have been acquired. Using a well-established visuomotor 

adaptation task, we investigated motor learning in a group of children and adolescents with a 

clinical diagnosis of TS relative to a group of age and gender matched typically developing 

individuals. In particular, we quantified differences in the strength and quality of motor learning 

and unlearning in TS, and the consolidation of motor learning over a 24 hour washout period. We 

demonstrated that there was a marginally significant decrease in learning rate in the individuals 

with TS relative to age and gender matched typically developing controls. However, this effect 

was not associated with tic severity and could be entirely accounted for by the severity of co-

occurring ADHD symptoms. Thus, once ADHD symptoms had been accounted for, there were 

no between group differences in learning rate or the degree of learning observed. By contrast, 

and more importantly, we found that following learning the rate of forgetting (unlearning) was 

significantly negatively associated with motor tic severity, such that individuals with more severe 

tics took longer to unlearn previously learnt motor patterns of behavior. This finding is consistent 

with the proposal that TS is associated with alterations in the striatal habit learning system and 

with the view that TS may make it harder to unlearn maladaptive motor habits once they have 

been acquired. 
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Introduction 

Tourette syndrome (TS) is a childhood-onset neurological condition characterised by an 

evolving repertoire of chronic motor tics and one or more phonic tics (Leckman, 2002). Tics are 

involuntary, repetitive, stereotyped motor and vocal behaviours that occur in bouts, typically 

many times in a single day, and are the most common form of movement disorder in children. It 

has been proposed that tics arise in TS as a result of increased habit learning (Leckman & Riddle, 

2000; Graybiel et al., 2008). This may bias the child to acquire automatic behaviours (i.e. tics) 

more readily than is normal and make it harder to unlearn maladaptive habits once acquired. 

However, few studies have yet explored habit learning in TS. 

Habits can be defined as learned, repetitive, sequential, context-triggered behaviours 

(Graybiel, 2008). In the initial stages of habit learning, behaviours are goal-directed, but with 

repetitive training, behaviours become automatic. One of the main characteristics of habits is 

insensitivity to reward, which has repeatedly been shown in experimental settings using reward 

de-valuation paradigms in which animals or humans perform the same behaviour even when a 

reward is reduced or removed. Only a limited number of studies have investigated “habit 

learning” in individuals with TS, and most of these have focused on reward or reward de-

valuation.  

Treatments for TS currently focus on psychosocial education, behavioural therapies and 

medication (Roessner, Plessen, Rothenberger, et al., 2011). The lack of available, effective, and 

acceptable medication for tics has led to the development of non-pharmacological interventions 

(Piacentini, Woods, Scahill, et al., 2010) and two behavioural therapies have been shown to be 

efficacious in reducing tics (Piacentini, Woods, Scahill, et al., 2010; Verdellen, Keijsers, Cath, et 
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al., 2004). Both depend upon mechanisms of learning and un-learning, and require practice, 

particularly when tics are well established and associated with strong urges. One of these 

treatments, Habit Reversal Therapy (HRT), focuses on replacing tic movements with alternative, 

more acceptable, actions. The other, Exposure and Response Prevention (ERP), aims to develop 

and strengthen the ability to suppress tics. Despite the theoretical and practical importance of 

understanding habit learning in TS, remarkably few studies of learning in TS have been conducted 

to date, and to our knowledge, no quantification of habit formation, consolidation, and unlearning 

in TS has yet been published. Furthermore, the few learning studies that have been published have 

used behavioural tasks that were insensitive to differences in learning rate (i.e., the tasks were 

learnt too quickly) (e.g., Palminteri, Lebreton, Worbe, et al., 2011) or have involved very little or 

no motor learning (e.g., Keri, Szlobodnyik, Benedek, et al., 2002; Channon, Pratt, Robertson, 

2003). We believe that this is an important omission as tics are motor phenomena and studying 

motor habit learning is likely to be closer to the mechanisms underpinning TS. 

Marsh et al. (2004) used a probabilistic classification learning paradigm to study habit 

learning and found impaired habit learning in both children and adults with TS, and a negative 

correlation between the rate of learning and the severity of tic symptoms, such that impaired 

learning accompanied more severe tic symptoms. They interpreted this as indicating that 

impaired habit learning is in line with previous findings that individuals with TS have 

abnormalities within the striatum, which plays a critical role in habit learning. However, 

impaired habit learning in individuals with TS appears to contradict the clinical impression that 

individuals with TS appear to be more prone to the acquisition of repetitive motor behaviours 

like tics; and would therefore be expected to show enhanced habit learning. The contrasting 

results might be due to the fact that the task used in the Marsh et al. (2004) study involved very 
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little actual motor learning. By contrast, enhancement of habit learning in TS has been also 

reported. Palminteri et al. (2011) adopted a motor sequence learning task and found enhanced 

reinforcement learning in a TS group (unmedicated). However, their task was insensitive to 

differences in learning rate as their tasks were learnt too quickly. In a subsequent study, Delorme 

et al. (2015) used an instrumental learning task and showed that (unmedicated) individuals with 

TS exhibited a significant relationship between the degree of engagement in habitual responses 

and tic severity. However, this task again involved very little learning. 

In summary, in spite of the fact that TS is chiefly characterised by motor symptoms (i.e. 

the occurrence of tics), surprisingly few of the previous studies of habit learning in TS have used 

habit learning tasks that involve learning dynamic movement and to our knowledge, no detailed 

quantification of habit formation and consolidation in TS has yet been reported. 

In the current study, we adopted a visuomotor adaptation task that has been used 

extensively to investigate motor learning (Krakauer, 2009).  In our visuomotor adaptation task, 

individuals were required to execute planar reaching movements to different target locations 

while learning to adapt to a visuomotor transformation (i.e., a systematic rotational bias was 

added to the visual feedback provided during the reaching movement). Following a period of 

adaptation to the visuomotor perturbation, there was a de-adaptation phase, in which no visual 

feedback was provided during reaching, that allowed us to test the retention of the motor 

memory acquired in the preceding (adaptation) phase. In order to test overnight memory 

consolidation, participants performed the same task again on the next day. Formal modelling 

analysis was conducted to precisely investigate and quantify the strength of automatic motor 

learning in children/adolescents with TS and age-matched typically developing controls. We 

recruited individuals with a confirmed clinical diagnosis of TS who presented without a 
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comorbid diagnosis of ADHD). However, as ADHD is highly co-occurring with TS, we 

measured ADHD symptoms using an appropriate clinical measure (see below). 

 

Methods 

Participants 

25 participants with TS (mean age 13.21±1.94 years, all males) took part in the study. All 

TS participants had previously received a formal clinical diagnosis of TS from a clinician. The 

Yale Global Tic Severity Scale (YGTSS) was used to measure current tic severity. For the 

purpose of this study we recruited the only participants with a diagnosis of TS who presented 

without a co-occurring diagnosis of ADHD or ASD. Participants’ characteristics are shown in 

Table 1. Also, none of the participants were on stimulant medication. One TS participant did not 

understand the instruction, so was excluded from entire data analyses. One TS participant did not 

complete the day 2 session due to technical problems, so only their day 1 session data were 

included in the analysis. 23 typically developing participants were recruited as a control group 

and were gender and age matched to the TS group (mean age 13.27±2.17, all males). Both the TS 

and control participants used a computer mouse with their right hand in daily life. The parents of 

all the participants gave written informed consent prior to the study. This study was approved by 

the ethics committee of School of Psychology, University of Nottingham, U.K.. 

 

Procedure 

The participants visited the University of Nottingham on two consecutive days. Testing 

on day 1 and 2 was at least 20 hours apart. Participants performed the visuomotor adaptation 

task, which took approximately 30 minutes, on each day. In addition, on the first day IQ was 
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assessed using the Wechsler Abbreviated Scale of Intelligence (WASI, Vocabulary and Matrix 

Reasoning subscales, Wechsler, 1999) and current tic severity (Motor, Phonic and Global tic 

severity) was assessed in the TS group using the Yale Global Tic Severity Scale (YGTSS; 

Leckman et al., 1989).   

The parents/carers of both the TS and control group participants also completed clinical 

questionnaires on the day of testing or within one week of the session taking place.  In all cases, 

ADHD symptoms were calculated from the 10 items of the Conners 3 – Parent (Conners, 2008) 

to assess severity of ADHD symptoms. The Social Communication Questionnaire (SCQ) lifetime 

version (Rutter et al., 2003) scores were used to measure levels of ASD symptoms. Although we 

excluded participants who met diagnostic criteria for ADHD or ASD, sub-threshold traits of 

these conditions may still influence habit-learning. We therefore checked for the influence of 

ADHD and ASD traits by modelling these questionnaires scores as covariates in all between-

group analyses. 

 

Task 

Participants sat comfortably at a table facing a computer screen located at a distance of 

approximately 40 cm. The participants performed the task using a wireless computer mouse that 

was placed on a particularly large mouse pad (33 x 26 cm2). The mouse pad was covered by a 

wooden cover (50 x 40 x 20 cm3) to prevent participants viewing their hand during the task. 

On every trial, an image of a car (1 x 2 cm2) was presented in the centre and at the bottom 

of the computer screen (the start position). Participants were asked to place the mouse at the 

bottom edge of the mouse pad and to get ready. Once the mouse had been correctly positioned, 

an image of a chequered flag (1.23 x 1.23 cm2) was presented either in the top-left or top right of 
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the screen (15.9 cm away from the start point at -45 or +45 degree) pseudo-randomly such that it 

did not appear on the same side more than three times in a row. Participants were asked to move 

the car toward the flag using the computer mouse (Figure 1). They were instructed not to stop at 

the target but to pass through it (i.e., a shooting-reaching movement) at a fast speed. If peak 

velocity was over 58.8 cm/s (this threshold was determined through pilot testing with children 

and young adults), a pleasant sound was played at the end of the trial as feedback. If peak 

velocity was below 58.8 cm/s, a low sound was played and an image of a snail (4.9 x 4.9 cm2) 

was shown in the centre of the screen at the end of the trial to alert the participants that the speed 

on that trial was too slow. No explicit feedback about the spatial accuracy of the movement was 

provided, but the participants were instructed to move as straight as possible and to pass through 

the target. 

 

FIGURE 1 about here 

On day 1 participants performed 16 practice trials prior to the experimental task.  After 

the practice trials, participants completed four blocks of the task: block 1 baseline (16 trials); 

block 1 and 2 adaptation (80 trials each); and block 4 de-adaptation (40 trials). In the baseline 

phase, veridical visual feedback was given of the mouse cursor. In the adaptation phase, there 

were two types of trials: perturbation trials (70 per block) where the mouse cursor was rotated by 

30 degrees in a clock-wise direction and catch trials (10 per block) in which visual feedback was 

not shown (i.e., the mouse cursor disappeared as soon as the participants moved the computer 

mouse). Catch trials were inserted pseudo-randomly so that they occurred once in every eight 

trials. In the de-adaptation phase, no visual feedback was given. In order to keep the participants 

motivated until they finished the task, a smiley face image was shown with the message ‘you are 
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doing great’ every 24 trials in the adaptation and de-adaptation phases. On day 2, participants 

completed the same identical four blocks again (i.e. baseline (washout), re-adaptation 1 and 2, 

and de-adaptation). 

A 21.5 inch iMac computer (Apple Inc.) and a wireless mouse (M235, Logitech) were 

used to present stimuli and record responses. The task was programmed with Psychtoolbox (v 

3.0.10) in Matlab (R2011a). The movement was recorded at a sampling rate of 60 Hz. 

 

Data Analysis 

Reach direction (RD) was calculated in angular degrees between a line from the start 

point to the target and a line from the start point to the location of the mouse cursor when the 

mouse was 15.9 cm away from the start point. Reaches in the same direction as the perturbation 

(i.e. clock-wise) were recorded as positive values and the reaches made in the opposite direction 

were recorded as negative values. Trials in which participants moved to the wrong target (i.e. RD 

> 60 or < -60 degree) or where participants did not reach the target level (i.e., 15.9 cm from the 

start point within 1 second) were excluded from the analysis. The alpha (significance) level was 

set at 0.05). 

For each phase, trials were grouped into bins of trials and the median RD of the bin was 

calculated for each individual. In the baseline and de-adaptation phases, there were 8 trials in 

each bin. For the adaptation phase, 7 perturbation and 1 catch trial were included within each 

bin. A two-way mixed ANOVA (Group × Time) was conducted on binned data with Greenhouse-

Geisser correction where appropriate.   

Modelling analysis was applied to the binned data of day 1 to quantify the motor learning 

and the forgetting (unlearning) rates. An exponential decay function (shown below) was utilised 
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for this purpose based upon previous studies (Palminteri et al., 2011; Heathcote and Brown, 

2000). 

𝑅𝐷(𝑛) = 𝑏 × 𝑒𝑥𝑝−(𝑎×𝑛) + 𝑐   

This exponential decay function models RD in bin 𝑛 with three parameters: a, the motor 

learning rate; b, the magnitude of RD changes; and c the plateau to which the RD curve would 

converge after an infinite number of bins (n=∞, Palminteri et al., 2011).  Parameters a and b were 

optimised to fit the data using least squares minimization within Matlab with bounds of 0<a<1for 

both the adaptation and de-adaptation phases, and 0<b<40 for the adaptation phase and -40<b<0 

for the de-adaptation phase. Parameter c was held constant at -30 for the adaptation phase which 

is the degree of RD adjustment required to compensate 30 degree of perturbation and hit the 

target without errors. Parameter c was held constant at 0 for the de-adaptation phase, which is the 

degree of RD that participant would show if they had completely forgotten what they had learnt 

within the adaptation phase. To model how the RD changed in the adaptation phase from the 

baseline, the RD of the last bin of baseline phase was entered to the model as bin 0 together with 

the RD of bins 1 to 20 of the adaptation phase. To model how RD changed in the de-adaptation 

phase from the level of the preceding adaptation phase, the predicted RD of the exponential fit of 

the adaptation phase at bin 20 was included as bin 0 together with the RD of bins 1 to 5 of the 

de-adaptation phase. While parameter b is a marker of asymptote, not all of the participants in 

the current study reached asymptote level within 20 bins of training. Therefore, the achieved 

level of performance at the end of the adaptation phase (bin 20) was estimated as the predicted 

RD of the modelled exponential fit. In the same way, the after-effects at the end of de-adaptation 

phase (bin 5) were estimated as the predicted RD of the modelled exponential fit.  
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Learning/forgetting rates (i.e. parameter a) and achieved level of performance were used 

as dependent variable for the following analysis. Grubb’s test (Grubbs, 1969) was conducted to 

remove outliers prior to further analysis. 

 

Figure 2 about here 

Results 

Day 1: Group comparison (TS vs. control group) 

The binned results of day 1 for the TS and control group are shown in Figure 2. Inspection of this 

figure clearly illustrates that during the baseline phase, when veridical visual feedback was given 

of the cursor’s position, there were no group differences in reaching accuracy (RDs for both 

groups are close to zero). This was confirmed by a repeated measures ANOVA which revealed 

no main effect of bin or group and no interaction effect (all p>.05). In the adaptation phase, 

Figure 2 shows that RDs progressively moved toward -30 degrees. A repeated measures ANOVA 

confirmed that there was a significant main effect of time (training) (F(8.68, 390.38)=44.67, 

p<.001, partial η2=.50) and also a marginal main effect of group (F(1,45)=3.685, p=.06, partial 

η2=.08), indicating that there was less adaptation in the TS group. However, since previous 

studies have reported that adolescents with ADHD have shown impaired learning on explicit 

(goal-directed) cognitive tasks (e.g., Shephard et al., 2016), we conducted an ANCOVA with 

individual ADHD scores entered as covariate to test if the marginally significant group 

differences in RD of the adaptation phase perturbation trials still approached statistical 

significance after having first controlled for ADHD scores. This analysis clearly showed that 

there was no significant difference in learning rate between TS and control groups once levels of 

ADHD were controlled for (p>.05) and that there was no significant interaction (p>.05). 
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Furthermore, ADHD score was a statistically significant predictor of individual learning rates 

(see below).  

In the de-adaptation phase, participants exhibited clear aftereffects, especially at the 

beginning of the de-adaptation phase, and in the same direction as the perturbation, as they 

adjusted their RD back towards baseline. A repeated measures ANOVA confirmed that there was 

a significant main effect of time (training), (F(2.79,125.46) = 26.75, p < .001, partial η2 = .37), 

but no main effect of group or time x group interaction effect (p>.05).  

Learning/forgetting rates and the final level of performance (i.e. final bin RD) were 

quantified by modelling the RDs across bins as an exponential curve within each participant. 

Group means for each measure are shown in Table 2. Independent t tests were conducted for 

each measure. These analyses confirmed that there were no significant group differences for any 

of these measure (all p > .05, see Table 2).   

 

Day1: Relationship between learning/forgetting rates and tic severity 

We investigated the association between the learning/forgetting rates on day 1 and motor 

tic severity in TS group using a Pearson correlation analysis. Additionally, we carried out a 

stepwise linear regression analyses to examine if any other measures, or combination of 

measures, could explain the learning/forgetting rates of TS group.  The following variables were 

included in the regression analysis: age (in months); motor tic severity (YGTSS); IQ estimates 

(WASI); ADHD score (Conners); and SCQ score. First, we examined relationships between these 

variables and learning rate. The correlation analysis demonstrated that there was no significant 

relationship between the learning rate (i.e. parameter a) of the adaptation phase and motor tic 

severity (p>.05). By contrast, the stepwise regression analysis revealed that ADHD index and IQ 
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estimates together could account for 29% of the learning rate in TS group. ADHD index was 

entered into the regression equation first and on its own significantly predicted 18% of the 

learning rate (F(22,1) = 5.90, p = .024, R2 = .21, adj.R2 = .18). IQ estimates were entered into the 

regression equation next and predicted a further 11% (F(21,2) = 5.77, p = .01, R2 = .36, adj.R2 

= .29). None of the other variables significantly increase the predictive power of the model (all p 

> .05). In addition, there was no significant relationship between the final level of performance 

of the adaptation phase (i.e., last bin RD) and motor tic severity (p>.05) and stepwise regression 

analysis did not reveal any significant predictors (all p>.05). 

Next, we examined relationships between these variables and forgetting rate. There was a 

significant correlation between the forgetting rate (i.e., parameter a) of the de-adaptation phase 

and motor tic severity (r = -.43, p = .04, See Figure 4a) such that the participants with more 

severe motor tic symptoms showed decreased forgetting rates (i.e., increased retention of learned 

information). Stepwise linear regression analysis also demonstrated that individual motor tic 

severity scores significantly predicted forgetting rates in the de-adaptation phase (F(1,22) = 4.85, 

p = .04, R2 = .18, adj.R2 = .14), but no other variables could significantly increase the predictive 

power of the model once motor tic severity was entered into the model (all p > .05). The analysis 

of the final level of performance of the de-adaptation phase (i.e. last bin RD) revealed a similar 

pattern of results. Specifically, there was a marginally significant correlation between the last bin 

RD and motor tic severity (r = -.43, p = .05, See Figure 4b) such that the participants with more 

severe tic symptoms showed more residual aftereffects at the end of the de-adaptation phase. 

Stepwise regression analysis revealed that age significantly predicted the last bin RD of the de-

adaptation phase (F(22,1) = 4.93, p = .04, R2 = .18, adj.R2 = .15). After age was entered to the 

regression equation, motor tic severity did not account for any additional variance (p > .05), 
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however it is important to note that there was a significant negative correlation between age and 

motor tic severity (r = -.56, p = .01). 

To further investigate how tic severity related to the rate of forgetting rate we binarized 

the TS group into a High tic severity and Low tic severity group (median split). This resulted in 

two sub-groups, each containing 12 TS participants. We then compared the forgetting rate (de-

adaptation rate) for each sub-group against that for the control group. This analysis revealed that 

TS individuals with low tic severity scores had slightly higher forgetting rates than controls 

(means: CS group = 0.53 [±0.07], low tic severity group = 0.63 [±0.08]) but this difference was 

not statistically significant (t(33) = -0.88, p = 0.19). By contrast, individuals with high tic 

severity scores had significantly reduced forgetting rates compared to the control group (means: 

CS group = 0.53 [±0.07], low tic severity group = 0.33 [±0.08]; t(33) = 1.78, p < 0.05). 

  

Day2: Group comparison (TS vs. control group) 

The binned results of day 2 for TS and control group are shown in Figure 1. For the 

baseline washout phase, a repeated measures ANOVA revealed that there was a significant main 

effect of time (training) (F(1,45) = 21.35, p < .001, partial η2 = .322). This indicated that 

participants still exhibited the aftereffects of the previous day’s training, however it rapidly 

reduced once veridical visual feedback was provided. There was no significant main effect of 

group or a time x group interaction effect (p > .05).  

In the adaptation phase, a repeated measures ANOVA revealed that there was a 

significant main effect of time (training) (F(8.66,381.03) = 22.82, p < .01, partial η2 = .34). The 

pattern of results was similar to the those for the adaptation phase of day 1 insofar that 
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participants adjusted their RDs over bins again in day 2, but there was no significant main effect 

of group or a group x time interaction (p > .05).  

In the de-adaptation phase, a repeated measure ANOVA revealed that there was a 

significant main effect of time (training) (F(3.37,148.36) = 24.47, p < .01, partial η2 = .36) but no 

significant main effect of group or group x time interaction (p > .05). 

Learning/forgetting rates and the magnitudes of learning/forgetting were quantified in the 

same manner as outlined above for day 1. The binned data for the adaptation/de-adaptation 

phases were modelled as exponential curves for each individual participant. For the adaptation 

phase, there were no group differences in the learning rate (i.e., parameter a) or the magnitude of 

the RD adjustment (i.e. parameter b) (both p>.05). In the de-adaptation phase, there was no 

group difference in the forgetting rates (i.e. parameter a) or the magnitude of decrease in 

aftereffects (i.e., parameter b) (both p>.05).  

Previous studies have suggested that the amount of savings (consolidation) observed can 

be quantified by comparing performances at the beginning of the adaptation phase of each day 

(e.g., Krakauer et al., 2005).  We therefore calculated the difference in RDs between the first bin 

of the Adaptation phase on Day 2 and the first bin of the Adaptation phase on Day 1. However, a 

between group comparison did not reveal significant difference in savings between the TS and 

control groups (p > .05). 

 

Day2: Relationship between learning/forgetting rates, savings and tic severity 

We investigated the degree of association between the learning/forgetting rates on day 2 

and motor tic severity in TS group using Pearson correlation analysis. Additionally, we also 

carried out a stepwise linear regression analyses in the same manner as we reported for the day 1 
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data, with the following variables entered into the model: age (in months); motor tic severity 

(YGTSS); IQ estimates (WASI); ADHD score (Conners); and SCQ score. There was no 

statistically significant relationship between the any of the Day 2 measures and motor tic severity 

(p > .05). There was a trend toward a positive relationship between motor tic severity and the 

amounts of savings observed, such that the participants with severe motor tic symptoms showed 

increased savings in the adaptation phase of Day 2, but this did not reach conventional levels of 

statistical significance (r = .36, p = .09). We note however that this effect is consistent with the 

day 1 finding reported above that increased retention of learning (i.e., decreased forgetting rate) 

is associated with increased motor tic severity.  

A stepwise regression analysis revealed that ADHD index was a significant predictor of 

the amount of saving observed during adaptation phase of day 2 (F(21,1) = 5.46, p = .03, R2 

= .21, adj.R2 = .17). The stepwise regression revealed that none of the variables entered into the 

analysis could significantly predict: learning rates during adaptation; the last bin RD of 

adaptation phase; the forgetting rates during de-adaptation; or the last bin RD of de-adaptation 

phase of Day 2 (all p > .05).  

Discussion 

In the current study, we investigated motor learning using a visuomotor adaptation task in 

a group of children and young adults with TS, compared to a group of age and gender matched, 

typically developing, individuals. We quantified both motor learning and unlearning (forgetting) 

rates and investigated the retention/consolidation of motor learning over two consecutive days. 

We found that, once ADHD symptoms had been controlled for, there were no significant group 

differences between individuals with TS and control participants in motor learning or the 

retention of the acquired motor memory. However, we did find a significant correlation between 
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the severity of motor tic symptoms and the retention of motor memory (i.e., the rate at which 

previously learnt motor patterns are forgotten [unlearned]). More specifically we found that 

individuals with severe motor tic symptoms are significantly slower to unlearn (de-adapt) 

patterns of motor behaviour that have been acquired during the previous motor adaptation phase.  

In our task, participants learnt to adapt to a visuomotor perturbation during the adaptation 

phase. One of the main hypotheses of our study was that, due to the proposed increase in striatal 

dopamine associated with TS (Buse et al., 2013), children/adolescents with TS may acquire 

automatic behaviours more rapidly than the matched typically developing controls. However, 

this hypothesis was not supported and, once ADHD scores were controlled for, there was no 

group difference in learning rates between TS and control participants and no relationship 

between learning rates and tic severity. In fact, there was a trend towards impaired learning in the 

TS group compared to CS group, however it was found to be uncorrelated with tic severity 

scores and entirely due to the presence of comorbid ADHD symptoms. 

It is important to note that participants showed gradually increasing after-effects (i.e., reaching 

movements in a direction opposite to the perturbation) on the catch trials presented throughout the 

adaptation phase (recall that on catch trials visual feedback was not presented). If participants RD 

adjustments in the adaptation phase by using visual feedback to deliberately adjust their motor 

movements, they would show RD adjustment only on perturbation trials, not on catch trials, as 

online correction would not be possible without visual feedback. The presence of after-effects on 

catch trials therefore suggests that the motor learning occurred gradually and automatically insofar 

as it was largely independent of strategic processing such as online correction. The occurrence of 

after-effects on catch trials when no perturbation was applied therefore suggests that a visuomotor 

adaptation has occurred. The after-effects lasted a finite period of time during the de-adaptation 
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phase. The degree of after-effects has been suggested as a marker for the retention of acquired 

motor learning. Our main finding is that there was a statistically significant relationship between 

motor tic severity and the rate at which previously learnt motor patterns are unlearnt during the 

de-adaptation phase of the study. Specifically, TS individuals with severe motor tic symptoms 

showed slower rates in forgetting automatic behaviour obtained in the preceding phase and showed 

increased after-effects at the end of de-adaptation phase. This is a very important observation as it 

is consistent with anecdotal accounts of the acquisition of tics in TS which have proposed that 

motor habits may be readily acquired and once established are then particularly difficult to unlearn. 

For instance, a child’s early tics might be associated with the onset of an infection such as a cold, 

and nose twitching, sniffing, and throat clearing may all relieve the uncomfortable sensations 

associated with the cold, and these behaviours may be reinforced by abnormal DA signalling in 

the child with TS (Buse et al., 2013). Once the infection is over, these newly acquired behaviours 

may remain, despite the original context for these actions having ceased, because the actions have 

become over-learnt. Our finding also supports the proposal that TS is associated with abnormalities 

in the striatum (Albin & Mink, 2006) and that tics arise as a result of abnormalities in the striatal 

habit learning system (Graybiel et al., 2008).  

Previous studies have suggested that motor memory undergoes a process of consolidation 

that may take approximately 4-24 hours (Brashers-Krug, Shadmehr, & Bizzi, 1996; J. W. 

Krakauer, 2005; Shadmehr & Brashers-Krug, 1997). To test for consolidation of motor learning, 

participants performed the same task approximately 24 hours later (Day 2). Our results 

demonstrated that participants clearly showed more rapid learning when they were re-exposed to 

the same perturbation in the adaptation phase of day 2, which has been referred to as motor 

savings (Krakauer et al., 2005). There was a trend toward a positive correlation between the 
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amount of savings observed and motor tic severity in TS group. This finding should be 

interpreted with caution but is also consistent with the idea that tic severity in TS is associated 

with increased retention of learnt motor patterns. The lack of statistical significance might be due 

in part to the washout phase that preceded the adaptation phase on day 2. Importantly, not all of 

the participants in this study actually regained baseline levels during the washout phase on day 2. 

We suggest that further examination of motor consolidation in TS may be particularly worthy of 

investigation. 

It is of interest that we tested child and adolescent participants in the current study, 

whereas most previous studies investigating learning in TS have tested adult participants 

(Palminteri et al., 2011; Delorme et al. 2015). The time course of tic symptoms is that it typically 

first presents during early childhood and often remits with increasing age in adolescents. As only 

a minority of individuals will continue to exhibit debilitating tics into adulthood (Cohena et al., 

2013), the inclusion of adults with TS cannot be considered to be representative of the general 

TS population.   

The underlying neurobiological mechanisms of TS are not yet fully understood, but there 

is broad agreement that TS is associated with impairment in the operation of cortical-striatal-

thalamic-cortical (CSTC) brain circuits that are implicated in motor learning (particularly habit 

formation) and the selection of actions according to behavioural context (Albin & Mink, 2006; 

Graybiel et al. 2008). TS has been linked to dysfunctional signalling of neurotransmitters such as 

dopamine (Buse et al., 2013) and GABA (Lerner et al., 2012) that are strongly linked to 

reinforcement (Schultz et al., 1997) and motor learning (Reis et al., 2009). Our finding of the 

relationship between tic severity and habit learning is in line with the overlap between the 
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pathophysiology of TS and habit learning. However, the interpretation of our findings must be 

limited insofar as no neurobiological measures were obtained in the current study.  

Co-occurring conditions or co-existing psychopathologies are highly prevalent in the TS 

population and ~90% of individuals with TS may have one or more co-occurring diagnoses or 

psychopathologies, most typically ADHD, OCB/OCD and/or ASD (Hollis et al., 2016). In our 

study we recruited individuals with a clinical diagnosis of TS who presented without a a co-

occurring diagnosis of ASD or ADHD, as these comorbid conditions can have a differential role 

in motor learning. However, we note that our TS participants had significantly higher mean 

Conners (ADHD) and SCQ (ASD) scores than the age- and gender-matched control group. 

Furthermore, our data clearly demonstrate that the differences in learning rate between the TS 

group and controls that we observed on Day 1 could be entirely predicted by sub-clinical ADHD 

scores and not tic severity scores. As individuals presenting with TS but without co-occurring 

conditions may be somewhat unrepresentative to the typical clinical population, this suggests 

that further research is needed to further understand how habit learning mechanisms may be 

altered in individuals with TS. 
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Tables 

 

Table 1 Summary of demographic and clinical characteristics for TS and control groups. Group means 

are presented with SD in parentheses. 

 
TS (n=24) Control (n=23) t test 

Age (years) 13.21 (1.94) 13.27 (2.17) n.s. 

Gender all male all male 
 

IQ 114.96 (13.09) 117.52 (8.91) n.s. 

Conners ADHD index 6.58 (6.39) 0.74 (1.14) p<.001 

SCQ scores 8.08 (6.97) 2.61 (2.59) p=.001 

YGTSS Motor 13.12 (4.26) n/a 
 

YGTSS Phonic 9.48 (6.58) n/a 
 

YGTSS Total 34.60 (15.62) n/a   

 

Table 2 The results of modelling analysis of visuomotor adaptation/de-adaptation task in TS and control 

group 

    TS CS t test 

    n Mean (SD) n Mean (SD) T p η2 

Day 1 Adaptation 
     

  

 Learning rate 24 0.12 (0.08) 22 0.17 (0.12) -1.61 .11 .06 

 Last bin RD 22 -26.58 (3.09) 23 -27.27 (3.30) 0.722 .47 .01 

Day 1 De-adaptation        

 Forgetting rate 24 0.48 (0.30) 23 0.53 (0.33) -0.56 .59 .01 

 Last bin RD 24 -3.86 (3.49) 22 -3.64 (3.37) -0.22 .83 .00 

Day 2 Adaptation        

 Learning rate 23 0.25 (0.29) 23 0.31 (0.33) -0.60 .55 .01 

 Last bin RD 19 -28.79 (1.44) 20 -28.71 (1.59) -0.17 .87 .00 

 

Saving (Day 2 - Day 

1) 
23 6.51 (8.43) 23 7.15 (10.80) -0.22 .83 .00 

Day 2 De-adaptation        

 Forgetting rate 23 0.32 (0.27) 23 0.43 (0.30) -1.33 .19 .04 

  Last bin RD 23 -8.60 (7.22) 22 -5.59 (5.32) -1.59 .12 .06 
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Figures 

 

Figure 1: Illustration of the computer task. Participants are asked to move the cursor (car icon) as 

quickly as possible to pass over the chequered flag icon. The dotted white line represents a 

straight line path from the start location to the target location. 
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Figure 2: Binned results for the TS group (red) and control group for Day 1. Solid lines indicate the 
reach direction under the perturbation and the dashed lines indicate the reach direction when no 

perturbation was applied. Error bars indicate SEM. Error bars are not shown for catch trials of the 

adaptation phases for clarity.   
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Figure3 The modelling analysis results for a single example participant. a. the adaptation phase and b. 
the de-adaptation phase for day 1. Parameter a was considered to reflect the learning rate during the 

adaptation phase (a) and the forgetting rates during the de-adaptation phase (b). 
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Figure 4 Illustrates the relationship between motor tic severity (YGTSS) and the day 1 forgetting rate [left 

panel]and the final level of performance (i.e. last bin RD) of day 1 de-adaptation [right panel]. 
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Figure 1 Illustrates binned results for the TS group (red) and the  control group on Day 2. Solid lines 
indicate the reach direction under the perturbation and the dashed lines indicate the reach direction 

when no perturbation was applied. Error bars indicate SEM. Error bars are not shown for catch trials of 

the adaptation phases for clarity.   
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