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A B S T R A C T

We report on the analysis of volatile compounds by SPME-GC-MS for individual roasted coffee beans. The aim
was to understand the relative abundance and variability of volatile compounds between individual roasted
coffee beans at constant roasting conditions. Twenty-five batches of Arabica and robusta species were sampled
from 13 countries, and 10 single coffee beans randomly selected from each batch were individually roasted in a
fluidised-bed roaster at 210 °C for 3min. High variability (CV=14.0–53.3%) of 50 volatile compounds in
roasted coffee was obtained within batches (10 beans per batch). Phenols and heterocyclic nitrogen compounds
generally had higher intra-batch variation, while ketones were the most uniform compounds (CV < 20%). The
variation between batches was much higher, with the CV ranging from 15.6 to 179.3%. The highest variation
was observed for 2,3-butanediol, 3-ethylpyridine and hexanal. It was also possible to build classification models
based on geographical origin, obtaining 99.5% and 90.8% accuracy using LDA or MLR classifiers respectively,
and classification between Arabica and robusta beans. These results give further insight into natural variation of
coffee aroma and could be used to obtain higher quality and more consistent final products. Our results suggest
that coffee volatile concentration is also influenced by other factors than simply the roasting degree, especially
green coffee composition, which is in turn influenced by the coffee species, geographical origin, ripening stage
and pre- and post-harvest processing.

1. Introduction

Coffee aroma is one of the most distinctive characteristics of this
commodity, which is mostly consumed for its flavour. The concentra-
tion of volatile compounds in roasted coffee can undergo dramatic
changes depending on the thermal profile applied during the roasting
process, but also strongly depends on the green coffee bean composi-
tion, the genetic differences in the plant (Sanz, Maeztu, Zapelena, Bello,
& Cid, 2002; Tran et al., 2017), seasonal variation within batches (Silva
et al., 2005), geographic origin (Freitas & Mosca, 1999), pre- and post-
harvest processing of the beans, i.e. wet or dry-processing (Gonzalez-
Rios et al., 2007), environmental factors (Bertrand et al., 2012) as well
as the presence of defective beans (Agresti, Franca, Oliveira, & Augusti,
2008; Joët et al., 2010) and ripening stage (Toledo, Pezza, Pezza, &
Toci, 2016). The roasting process has a dramatic impact on coffee vo-
latiles, as the time-temperature profile affects aroma composition of
roasted coffee (Baggenstoss, Poisson, Kaegi, Perren, & Escher, 2008;
Franca, Oliveira, Oliveira, Agresti, & Augusti, 2009; Moon &
Shibamoto, 2009; Poisson, Blank, Dunkel, & Hofmann et al., 2016), as

well as the extractability of each compound and the brewing method
(Caporaso, Genovese, Canela, Civitella, & Sacchi, 2014).

Volatile compounds in roasted coffee are mainly represented by
aldehydes, ketones, alcohols, esters, pyrazines, furans, acids, nitrogen-
containing compounds and volatile phenolic compounds (Fisk, Kettle,
Hofmeister, Virdie, & Kenny, 2012; Grosch, 1998; Schenker et al., 2002;
Semmelroch & Grosch, 1996; Toledo et al., 2016). The analysis of coffee
aroma compounds can be carried out using a variety of analytical
techniques, but solid-phase microextraction (SPME) has been widely
applied for sampling of volatiles in several food products including
roasted coffee and brewed coffee for many decades (Bicchi, Panero,
Pellegrino, & Vanni, 1997). SPME gives advantages of using minimal
sample treatment and a realistic measurement of the volatiles released
from the food products in the headspace, and when coupled with gas-
chromatography/mass spectroscopy (GC-MS) is a valid technique for
the analysis of headspace aroma released from food matrices, including
roasted coffee (Akiyama et al., 2007; Bertrand et al., 2012; Caporaso
et al., 2014; Fisk et al., 2012; Risticevic, Carasek, & Pawliszyn, 2008;
Zambonin, Balest, De Benedetto, & Palmisano, 2005), and can be used
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even in mixtures of other food components to measure the headspace
release of volatile compounds (Genovese, Caporaso, Civitella, & Sacchi,
2014).

Fisk et al. (2012) applied several sampling techniques to analyse the
volatile compounds in roast and ground coffee, and evaluated 15 key
aroma compounds for possible discrimination of coffee samples.

Despite a vast amount of work on coffee aroma analysis, the in-
formation available on within-batch variability, i.e. at individual coffee
bean level, is limited. Whilst previous research applied methods for on-
line measurement of volatile compounds to understand aroma forma-
tion during roasting (Gloess et al., 2014), little is known in relation to
single bean variability. Hertz-Schünemann, Dorfner, Yeretzian, Streibel,
and Zimmermann (2013) and Hertz-Schünemann, Streibel, Ehlert, and
Zimmermann (2013) applied resonant laser ionisation time-of-flight
mass spectrometry (PTR-MS) for single coffee bean analysis, but the
coffee beans were roasted to simulate industrial conditions. Yeretzian,
Jordan, Badoud, and Lindinger (2002) used PTR-MS to analyse coffee
volatiles during the roasting of small batches of six coffee beans, while a
more recent work applied single bean roasting (Yener et al., 2016).

Another area of research is the use of coffee volatiles to differentiate
roasted coffees for their geographical origins, or for authenticity pur-
poses related to the species, e.g. discrimination of Arabica vs robusta
coffee beans. Despite the relatively ease of visual inspection of green
coffee beans, the identification of the roasted beans is more compli-
cated. Recently, de Toledo et al. (2017) used data of coffee volatile
compounds published by previous research groups to build statistical
models for the discrimination of coffee geographical origins. 2-Me-
thylpyrazine and pyridine were reported as the most effective com-
pounds for the discrimination of coffee geographical origins, explaining
97.3% of the variance, but the discrimination accuracy was lower when
cross-validation was applied.

Tran et al. (2017) recently investigated the physical and composi-
tional difference among accessions of coffee beans reporting on the
variability among coffee plants, by using the cherries harvested from
each plant as one sample (sample size of 25–190 g). 35 of these samples
were roasted and analysed for their aroma compounds. A wide range of
compositional variation was shown for volatile and non-volatile com-
pounds, for example caffeine ranged from 0.82 to 1.75% and trigo-
nelline from 0.80 to 1.38% (dmb). Similar results were also reported by
Caporaso, Whitworth, Grebby, and Fisk (2018a) for caffeine and tri-
gonelline variability in single green coffee beans, demonstrating an
even wider range on a single bean basis.

Looking at the “elementary unit” of a commodity can help to un-
derstand the aroma formation at a basic level, i.e. considering single
coffee beans. Previous works trying to analyse very small batches of just
a few beans described that the volatile composition changed sig-
nificantly when looking at single coffee beans compared to batch
roasting (Yeretzian et al., 2002). However, no information has been
published so far on the variability expected for single beans within the
same batch and considering the inter-batch variation. Roasted coffee
aroma variability has been mostly investigated in relation to different
roasting degrees, with limited focus on the single bean variation when
the roasting conditions are constant.

In addition, origin identification of coffee is an interesting topic, due
to the price difference between Arabica and robusta species, as well as
in terms of authenticity for geographical origin identification, but it
remains unclear whether the sole analysis of volatile compounds allows
coffee classification.

Therefore, the aim of this article was to study the variability of
coffee volatile compounds from a wide range of samples, using SPME-
GC-MS as the analytical technique. In addition, classification models
were built to understand whether volatile compounds can be effectively
used to discriminate single coffee beans according to their origin.

2. Materials and methods

2.1. Samples and reagents

Samples of commercial green coffee were sourced from UK and
European importing companies to obtain a wide geographical dis-
tribution of samples. 25 coffee batches were used, belonging to both
Arabica and robusta species. Ten green coffee beans were randomly
selected from each batch for roasting and analysis, thus the sample
number was 250. Their countries of origin are Brazil, Colombia, Costa
Rica, Ethiopia, Guatemala, Honduras, India, Kenya, Mexico, Nicaragua,
Rwanda, Uganda and Vietnam. Reference chemical compounds were
obtained from Sigma-Aldrich (Steinheim, Germany), and Fluka (Buchs,
Switzerland).

2.2. Coffee roasting

Samples were roasted using a Fracino Roastilino (Birmingham, UK)
fluidized-bed roaster. In this system, the beans are moved by a relative
high flow of hot air from the bottom of the machine. The roasting
conditions applied were isothermal at a set temperature of 210 °C for
3min (the temperature measured over roasting period had coefficient
of variation of 1.8%). Each coffee bean was roasted individually,
ground using a manual grinder (Devo, Holland), which was cleaner
after each grinding operation using expanded polyethylene, and
cleaned the grinder using a brush. Ground coffee samples were im-
mediately stored in a 1.5 mL Eppendorf tube at −80 °C until the mo-
ment of analysis.

2.3. Analysis of volatile compounds

Coffee volatile compounds were analysed by SPME-GC-MS ac-
cording to the method of Franca et al. (2009). Exactly 100mg of ground
roasted coffee were weighed and placed in 5mL vials. Samples were
equilibrated for 10min at 40 °C, followed by 20min fibre exposure and
5min injection times. These conditions were chosen according to
Ribeiro, Teófilo, Augusto, and Ferreira (2010), using a 1 cm 50/30 μm
DVB/Carboxen/PDMS StableFlex fibre (Supelco, Bellefonte, USA). This
type of fibre has been previously reported to be the most efficient one
for coffee analysis (Akiyama et al., 2007; Risticevic et al., 2008). 3-
Heptanone was added as the internal standard, using 20 μL of a 0.01%
methanol solution.

The GC conditions were chosen as per Akiyama et al. (2007),
slightly adapted to the type of column available. The column used was a
30m length Zebron ZB-WAX column (Phenomenex, USA), with
0.25mm internal diameter and 1.00 μm film thickness. GC analysis was
performed using a gas chromatograph (Trace Ultra) coupled to a mass
spectrometer (PolarisQ, ThermoElectron, San Jose, CA), an RTX-5MS
column (5% diphenyl, 95% dimethyl polysiloxane) 30m 0.25mm I.D.
(Restec, Ireland), and helium as the carrier gas (1 mLmin−1). The GC
injector was operated at 250 °C in the splitless mode, and the GC oven
operated at a constant flow of 1.6 mLmin−1. The GC oven program was
set as follows: 40 °C held for 5min, the followed by an increase to
180 °C at a rate of 3 °Cmin−1; then the rate was set at 10 °Cmin−1 until
the temperature reached 250 °C, which was held for 5min. The ion
source (detector) and interface temperatures were 300 °C and 275 °C,
respectively. Mass spectra were acquired in the electron impact mode at
70 eV, using m/z range of 50–350 and 2 s scan time. Compound iden-
tification was done by comparison of the mass spectra against a data-
base (NIST), when reference compounds were not available. In addi-
tion, the identification was carried out by comparing the linear
retention indices (LRI) of volatiles under the experimental conditions
reported above, with data from the literature. The results were ex-
pressed as relative percentage of each compound peak area to the total
GC-MS peak area. Each analysis was carried out in duplicate.
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2.4. Statistical analysis

The standard deviation and coefficient of variation (CV%) were
used to describe the variation observed within and between batches. In
addition, correlation among volatile compounds was analysed using
Pearson correlation and by cluster analysis using the absolute correla-
tion and the complete linkage method to build the clusters. In order to
verify whether the intra-batch variability was significant considering
the inter-batch variability, ANOVA was performed to check whether
multiple groups of samples have the same population mean, at
p < 0.05. The Kruskal-Wallis H-test was also performed, which is valid
when inter-batch variances are not equal. Data from volatile com-
pounds were also used to understand whether it was possible to dis-
criminate the origin of single roasted coffee beans. Classification of
samples was performed using Linear Discriminant Analysis (LDA), and
Multiple Layer Perceptron (MLP). For MLP, the whole dataset was
segmented into a training set (90% of the samples) and test set (10% of
the samples). The resulting model was developed purely on the training
set and then the performance of the classifier was evaluated on the test
set. The segmentation-training-evaluation process was repeated 10
times to determine the averaged cross-validation accuracy. First, all
input attributes (data on volatile compounds) were pre-processed by
mean-centering followed by standardisation. Pre-processed data were
then forwarded into a 5-layer (3 hidden layers) MLP classifier, with a
sigmoid activation function. The structure of the MLP was (26-12-6-2-
4), 26 being the dimension of input attributes, and 4 the number of
classes to be predicted. The parameters of the MLP were randomly in-
itialized near zero and then tuned by limited memory BFGS
(Broyden–Fletcher–Goldfarb–Shanno) optimiser.

3. Results and discussion

3.1. Coffee aroma volatile composition

Green coffee beans from a wide range of locations and genotypes
were individually roasted using an isothermal heating profile, and their
volatile profile was analysed by SPME-GC-MS. This is the first time that
a SPME-GC-MS-based analysis method has been applied at single coffee
bean level to understand variability in this way. The measured average
weight loss for the coffee beans was 15.3 ± 2.67%. This corresponds to
a medium level of roasting according to Franca et al. (2009), which has
been described as suitable to develop the highest content of coffee
aroma compounds (Schenker et al., 2002).

Table 1 lists the compounds identified in the roasted coffee bean
headspace. 50 compounds were identified, 21 of which are described in
the literature as potent odorants in coffee. Fig. 1 shows the distribution
of volatile compounds in single roasted coffee beans in Arabica and
robusta samples. 2-Furanmethanol, acetic acid and 2-methyl pyrazine
were the most abundant compounds, and Arabica coffees showed
higher abundance compared to robusta coffee beans for the first two
compounds but not for 2-methyl pyrazine. Pyridine showed the largest
range of concentration, and had a similar mean value between the two
species, however a wider spread was observed for Arabica, with some
samples showing very high pyridine content. Pyrazines were generally
higher in robusta, e.g. 2-methyl-pyrazine, 2,6-dimethylpyrazine, 2,5-
dimethylpyrazine, pyrazine, ethylpyrazine, 2-ethyl-6-methylpyrazine,
2-ethyl-5-methylpyrazine and 3-ethyl-2,5-dimethylpyrazine. In con-
trast, compounds such as furfural, 1-(acetyloxy)-2-propanone, 2-acet-
ylfuran, ethyl propanoate, furaneol, 2,3-butanediol, acetoin and 1-hy-
droxy-2-butanone were found at higher concentration in Arabica
coffees. Differences observed among Arabica and robusta coffees are
generally supported by previous literature data. Arabica is known to
contain higher concentrations of 2,3-butanedione, 2,3-pentanedione
and 3-methylbutanal than robusta; and robusta was previously shown
to have higher levels of phenols, 1-methylpyrrole and 2,5-di-
methylpyrazine (Blank, Sen, & Grosch, 1991).

The average concentration of volatile compounds for each coffee
batch is shown in Fig. 2, by grouping the volatiles according to their
chemical class and showing each batch separately (10 bean per batch).
Pyrazines were often the compounds found at the highest concentra-
tion, especially in robusta samples, followed by aldehydes and acids.
Heterocyclic nitrogen compounds were less abundant, except for batch
“B” (a Rwandan semi-washed Arabica coffee). Ketones and phenols had
the lowest concentrations. However, phenols had the highest intra-
batch variability in several batches, e.g. A, E8, E21, E, GlRo, but with no
clear pattern. The cause of this very variability is unclear, and further
investigation is needed. Sample E21 is an Indian Arabica (Monsoon
Malabar), which is produced using a particular post-harvesting method,
different from the typical wet- or dry-harvest methods. Sample E is a
dry-processed Brazilian Arabica. When grouping the volatile com-
pounds according to their chemical classes, strong correlations were
also found, particularly between aldehydes and ketones, whose Pearson
coefficient was r= 0.752 (p < 0.001). In contrast, the correlation was
negative between aldehydes and pyrazine (−0.602, p < 0.001); and
between aldehydes and phenols (−0.482, p < 0.001; data not shown).

A cluster analysis of all volatile compounds in single coffee beans is
shown in Fig. 3, with indication of their correlation. A clear clustering
was observed among the majority of pyrazines. This was expected as
they originate from the same reaction, also showing similar chemical
structure with a few differences in terms of location of the functional
groups. Another cluster involving 6 compounds was observed among
acetoin, acetol, 2,3-pentandione, 1-hydroxy-2-butanone and other
compounds. These compounds are likely to originate from subsequent
thermal degradation, for example the strong relationship between 2,3-
butanedione and acetoin could be explained by oxidation reactions,
these compounds only differing in one functional group. Similarly, the
loss of a methyl group in acetoin produces acetol. Other compounds are
likely to have a common origin (propanoic acid originating from the
loss of a methyl group of 3-methyl butanoic acid), while the formation
of other compounds is still unclear and further research is needed to
fully understand some of the inter-correlations found herein.

From a Pearson correlation test, several compounds showed a highly
significant (p < 0.001) and positive correlation, particularly among
pyrazines, with correlation values above 0.8, and some compounds
showed up to r= 0.97 (2-ethyl-5-methylpyrazine vs 2-ethyl-6-methyl-
pyrazine, or 2-ethyl-3-methyl pyrazine vs 3-ethyl-2,5-dimethylpyr-
azine). This result was explained by their common origin from the
Maillard reaction, which is strongly dependent on the roasting condi-
tions and the green bean composition. As the thermal conditions were
kept constant, differences were attributed to the natural variability of
coffee constituents that act as flavour precursors in the Maillard reac-
tion, particularly amino acids and reducing sugars. Thus, in a coffee
bean where the limiting reactant is naturally found at higher con-
centration, higher levels of Maillard reaction products are expected
after roasting. Other correlations were found among compounds that
share a similar structure and only the position of a functional group is
different, or differ in one methyl group, e.g. 1-hydroxy-2-butanone and
1-hydroxy-2-propanone, also correlated with acetoin.

Heterocyclic nitrogen compounds such as pyridine, 1-methyl-1H-
pyrrole, 3-ethylpyridine and 1H-pyrrole-2-carboxaldehyde showed
some interdependence, as they might originate from different degrees
of breakage of the original intermediate molecule. 1-methyl-1H-pyrrole
could originate from 3-ethylpyridine when the latter loses a methyl
group; the loss of a second methyl group could form pyridine. Similarly,
acetoin, 2,3-butanedione and 2,3-pentanedione might originate from
the same precursors, and their presence is likely to be due to subsequent
cleavage of functional groups. Even acetaldehyde is likely to originate
from these three compounds at a later stage of cleavage, which is
suggested by the strong correlations found among those compounds.

The Maillard reaction initially gives Amadori products which fur-
ther degrade into sugar fragmentation products, followed by reactions
of dehydration, fragmentation, cyclisation and polymerisation (Van
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Boekel, 2006). Furfural generation arises from Amadori rearrangement
products, in particular from deoxyosones, when the sugar is a pentose.
It can be also produced by oxidation of furfuryl alcohol, where the
furfuryl alcohol is a product of the reaction of (deoxy)ribose or sucrose
with cysteine/methionine (Hertz-Schünemann, Streibel, et al., 2013). In
the case of hexoses, hydroxymethylfurfural and 5-methylfurfural are
likely to arise from this reaction. Pyrroles, pyranones and furanones are
generated from sugar fragmentation of deoxyosones, with a further
action of reductions. When other amino acids participate in the reac-
tion, the Strecker reaction of aldehydes with aminoketones, followed by
heterocyclisation gives a series of aroma-active volatile compounds,
such as pyridines, pyrazines, thiazoles, pyrroles, etc.

Pyridine is a decomposition product of trigonelline, an alkaloid

found in the green beans. Guaiacols are generated from caffeic and
ferulic acids, which are derivatives of chlorogenic acids (Yeretzian
et al., 2002). Pyridine has been previously related to the roasting time:
high pyridine concentrations are produced at the initial stage of
roasting, which is followed by continuous decrease at longer times
(Baggenstoss et al., 2008). However, in the present case the roasting
time was uniform for all the samples, thus differences in pyridine
concentration have to be attributed to differences in the initial levels of
green coffee bean aroma precursors.

Models for formation of 4-vinylguaiacol, guaiacol and phenol
during roasting were proposed by Dorfner, Ferge, Kettrup,
Zimmermann, and Yeretzian (2003). Degradation of 5-feruloylquinic
acid was reported as the origin of melanoidins and phenolic volatile

Table 1
Identification of volatile compounds in roasted Arabica and robusta coffee samples analysed by SPME-GC-MS at a single bean level.

n RT⁎ LRI Compound Sensory descriptors Literature LRI Odour
threshold (ppb)

IM Chemical
group

1 1.29 <1040 Acetaldehyde Pungent, fruity 690 80 MS Aldehyde
2 1.79 <1040 2-Methylfuran Pungent, fruity 838-866 4000 MS, L Furan
3 2.09 <1040 3-Methylbutanal Fruity, malty 906-914 1.2 MS Aldehyde
4 2.65 <1040 2,3-butanedione Buttery 955 15 MS, L Ketone
5 3.77 1046 2,3-Pentanedione Buttery, oily, caramel-like 1053-1056 30 MS, ST, L Ketone
6 4.12 1069 Hexanal Green, grassy, fruity 1024-1087 5 MS, ST Aldehyde
7 5.24 1128 1-Methyl-1H-pyrrole Smoky, woody, herbal 1123 37 MS, ST Heterocyclic N
8 6.13 1166 Pyridine Sour, putrid, fishy, amine, bitter, roasted 1195-1183 2000 MS, L Heterocyclic N
9 6.95 1201 Pyrazine Cooked spinach, rancid peanuts, strong 1192-1214 177000 MS, L Pyrazine
10 8.40 1252 2-Methyl-pyrazine Nutty 1260-1282 60 MS, ST Pyrazine
11 8.98 1272 3-Hydroxy-2-butanone Sweet, buttery, creamy 1265 800 MS, ST, L Ketone
12 9.42 1287 Acetol Sweet, caramellic 1294, 1208 100000 MS Ketone
13 10.03 1308 2,5-Dimethylpyrazine Nutty, roasted, grassy 1316 2600 MS, ST, L Pyrazine
14 10.22 1314 2,6-Dimethylpyrazine Chocolate, cocoa, roasted nuts, fried 1319 3100 MS, ST, L Pyrazine
15 10.39 1319 Ethylpyrazine Nutty, peanut, butter 1323-1325 6000 MS, ST Pyrazine
16 10.8 1333 2,3-Dimethylpyrazine Nutty, roasted 1335 250 MS, ST, L Pyrazine
17 11.66 1361 1-Hydroxy-2-butanone Sweet, coffee 1368 MS Ketone
18 11.72 1362 3-Ethylpyridine Tobacco, oak, moss, leather 1376, 1397 MS Heterocyclic N
19 11.99 1371 2-Ethyl-6-methylpyrazine Flowery, fruity, hazelnut-like 1363-1381, 1387-1388 30 MS, ST, L Pyrazine
20 12.12 1375 2-Ethyl-5-methylpyrazine Coffee-like 1393-1395 100 MS, ST, L Pyrazine
21 12.58 1390 2-Ethyl-3-methylpyrazine Nutty, peanut 1405-1407 130 MS, ST, L Pyrazine
22 13.57 1422 2,3-Diethylpyrazine Raw, nutty, green pepper 1454, 1444 MS, L Pyrazine
23 13.85 1431 3-Ethyl-2,5-dimethylpyrazine Earthy, roasted 1435-1470, 1439 1 MS Pyrazine
24 14.17 1441 Acetic acid Pungent, vinegar 1435-1459 34000 MS, ST, L Acid
25 14.58 1454 Furfural Sweet, woody, almond 1447-1466 3000 MS, ST, L Aldehyde
26 14.84 1462 Acetoxyacetone Fruity, buttery, dairy 1454 MS Ketone
27 15.21 1474 Furfurylmethyl sulphide Onion, garlic, sulfuraceous 1476-1480 MS Sulphide
28 15.38 1479 2-Ethyl-3,5-dimethylpyrazine Earthy, roasted 1450-1466-1469 1 MS, ST Pyrazine
29 15.55 1485 Furaneol Caramel, sweet 31 TI Ketone
30 15.7 1490 2-Acetylfuran Sweet, balsam, almond, cocoa 1483, 1499 10000 MS, L Furan
31 16.76 1520 Ethyl propanoate Sweet, fruity, rum, juicy 10 TI Ester
32 16.96 1527 2-Furanmethanol acetate Ethereal-floral, herbal-spicy 1514 100 MS Acetate
33 16.99 1528 Propanoic acid Pungent, acidic, cheesy, vinegar 1531 20000 MS Acid
34 17.86 1557 5-Methylfurfural Spice, caramel, maple 1551, 1570 6 MS, ST Aldehyde
35 18.19 1569 2,3-Butanediol Fruity, creamy, buttery 1580 75000 MS Alcohol
36 19.13 1600 2-Formyl-1-methylpyrrole Roasted, nutty 1610-1620-1626, 1618 40 MS Pyrrole
37 19.25 1604 γ-Butyrolactone Creamy, oily, fatty, caramel 1602-1615-1643, 1614 1000 MS, Ketone
38 20.7 1653 2-Furanmethanol Caramellic, burnt, smoky 1573-1667 2000 MS, ST, L Alcohol
39 20.96 1662 3-Methyl-butanoic acid Cheesey, dairy, creamy, fermented 1670-1678-1683 400 MS, ST Acid
40 22.23 1705 N-Acetyl-4(H)-pyridine (not available) 20 TI Heterocyclic N
41 22.91 1728 3-Hydroxy-4.5-dimethyl-2(5H)-furanone Buttery, seasoning-like 1726-2203 50 TI Ketone
42 23.41 1745 3-Methoxy-5-methyl-2-cyclopenten-1-one (not available) TI Ketone
43 23.98 1764 3-Methyl-2-butenoic acid Green, phenolic, dairy 1776 14000 MS Acid
44 24.43 1815 3-Methyl-1,2-cyclopentanedione Spice, caramellic, maple, sweet, burnt 1822 300 MS Ketone
45 24.89 1848 Guaiacol Phenolic, burnt, smoky 1850-1859 3 MS, ST, L Phenolic
46 26.25 1961 2-(1H-pyrrol-2-yl)-ethanone Smoky, spicy 1952 170000 MS Ketone
47 26.60 1994 Phenol Phenolic, plastic, rubber, smoky 1996-2051 2400 MS Phenolic
48 26.77 2012 1H-pyrrole-2-carboxaldehyde Musty, beefy, coffee 2028-2030 MS Heterocyclic N
49 26.86 2022 4-Ethylguaiacol Spicy, phenolic, sweet 2020-2024, 2032-2036 50 MS, ST, L Phenolic
50 28.28 2186 4-Vinylguaiacol Clove 2151-2187-2205-2210 3 MS, ST, L Phenolic

⁎ RT, retention time; LRI, linear retention index; IM, identification method, MS, mass spectra, ST, using standard, TI, tentative identification, L, literature LRI
values. I.S.: Internal standard. Compounds in bold are those considered as potent odourants in roasted coffee, based on literature data. Sensory descriptors are taken
from the literature (Akiyama et al., 2007; Caporaso et al., 2014; Czerny & Grosch, 2000; Maeztu et al., 2001; Grosch, 2001). Odour thresholds are taken from a wide
range of bibliographical sources (Amanpour & Selli, 2016; Giri, Osako, Okamoto, & Ohshima, 2010; Miyazato, Nakamura, Hashimoto, & Hayashi, 2013; Nishimura &
Mihara, 1990; Piccino, Boulanger, Descroix, & Sing, 2014; Puvipirom & Chaiseri, 2012; Semmelroch & Grosch, 1996; Steinhaus & Schieberle, 2007).
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Fig. 1. Boxplot distribution of volatile compounds in single roasted coffee beans, by separately showing Arabica and robusta species. Compounds are shown in order
of elution (Table 1), except the most abundant ones, shown separately. Vertical bars indicate the median for each compound, horizontal bars indicate the maximum
and minimum value, circles indicate possible outliers. The bottom plot shows the most concentrated compounds.
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compounds in coffee, due to hydrolysis, polymerisation and oxidation.
4-vinylguaiacol, guaiacol and phenol concentration is strictly inter-
related, as ferulic acid degradation generates 4-vinylguaiacol.

Degradation of chlorogenic acids causes the appearance of a wider
series of neo-formation products (Kamiyama, Moon, Jang, &
Shibamoto, 2015). Phenol and 2,5-dimethylfuran were reported to be
formed from 5-caffeoylquinic acid degradation over roasting. 4-vinyl-
phenol was reported as a degradation product of 5-caffeoylquinic acid
under slightly acidic conditions. Similarly, furaneol, also named 4-hy-
droxy-2,5-dimethyl-3(2H)-furanone, has been previously reported in
green and roasted coffee (Scheidig, Czerny, & Schieberle, 2007;
Yeretzian et al., 2002).

Despite several mechanisms proposed in the literature to explain the
generation of alpha-diketones, such as 2,3-butanedione and 2,3-penta-
nedione, no clear mechanism is accepted, but it is accepted that the

formation pathway involves glucose, or an intermediate product of
sucrose degradation (Baggenstoss et al., 2008). Previous studies pro-
posed their formation either from sugar degradation or through further
interaction of sugar degradation products with amino acids (Yaylayan &
Keyhani, 1999), while Baggenstoss et al. (2008) suggested an in-
dependent generation.

3.2. Variability of volatile compounds

The intra-batch and inter-batch variability of coffee volatile com-
position is shown in Table 2. The variability is illustrated as the relative
standard deviation of 10 beans within each batch, as well as reporting
the variation between batches. High intra-batch variability indicates
that large differences were observed in beans from the same batch. 3-
ethylpyridine, hexanal, 1H-pyrrole-2-carboxaldehyde, 2,3-butanediol,

Fig. 2. Volatile compounds in roasted coffee beans grouped by chemical classes. The (a) average concentration of each class is shown for each coffee batch (n=10),
and the (b) intra-batch variability is expressed as the relative standard deviation of the ten beans per batch (n= 10).
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3-methyl-2-butenoic acid and 3-methyl-2,5-dimethylpyrazine showed a
variability above 40% (CV). Other compounds also showed a wide
range of concentrations. For example, 2-ethyl-3,5-dimethylpyrazine
had an intra-batch CV% of 39%. It should be noted that the variability
is expressed as relative standard deviation, therefore the high value
found for compounds found at very low concentrations might suffer
from an overestimation of the observed variability due to the analytical
error of the method, as in the case of some phenols.

Other compounds such as guaiacol, pyridine, furfural and 3-me-
thylbutanal all had CV% values above 34. Pyridine showed the largest
range, from ~2 to 40%. On the contrary, the least variable compounds
were generally ketones, with 2-furanmethanol showing the lowest
variation within and between batches, which was 14 and 15.6 (CV%),
respectively. Considerably higher variation was observed between
batches, with several compounds showing variation above 100% CV, 13
compounds having CV above 60%, and another 14 compounds above
40% CV. The highest values for inter-batch variability (CV %) were
obtained for 2,3-butanediol (179.3%), 3-ethylpyridine (143.1%) and
hexanal (135.1%).

The ratio between the highest and the lowest concentration of each

volatile was used as another indicator of the spread of concentrations.
This ratio ranged from a minimum of 1.9 for 2-formyl-1-methylpyrrole
and 2-(1H-pyrrol-2-yl)-ethanone up to 11.2 for 3-ethylpyridine, when
considering the intra-batch variability.

The variability obtained in this study was in line with previous re-
search for other food products (Tikunov et al., 2005; Weingart, Kluger,
Forneck, Krska, & Schuhmacher, 2012), however a direct comparison
cannot be made as no other work has reported on the single-bean
variability of coffee volatiles. Tran et al. (2017) reported on coffee
aroma variability in terms of morphology and chemical composition, by
roasting 50 g of coffee at 180–185 °C for 4min, and selecting 18 volatile
compounds. The reported CV% values varied from 14% (4-vi-
nylguaiacol) to 62% (geraniol). They reported a strong dependence of
4-ethylguaiacol or guaiacol on the roasting degree, which was assessed
by measuring the colour values. In addition, positive correlations were
reported between aldehydes and ketones, aldehydes and phenolic
compounds, as well as aldehydes and pyrazines.

The results of ANOVA (Table 3) indicate strong and significant
differences among coffee samples in terms of volatile compounds, with
p < 0.05. This was likely due to the clear difference between Arabica

Fig. 3. Cluster analysis of volatile compounds in single roasted coffee beans, analysed by SPME-GC-MS (n= 248).
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and Robusta coffees, thus ANOVA was independently performed on the
samples belonging to the two groups. The ANOVA and H-test were
performed on 16 batches of Arabica and 7 batches of robusta sepa-
rately. For all volatiles in Arabica batches, both the ANOVA and H-test
suggest that they varied significantly from batch to batch, except 3-
ethyl-2,5-dimethylpyrazine and 2-ethyl-3,5-dimethylpyrazine. How-
ever, for robusta, for most volatiles there was no evidence showing that
the volatile means of different batches are statistically different. This
might, however, be attributed to the lower number of samples used for
robusta compared to Arabica batches. Similar results were obtained
using ANOVA or H-test, even though these tests are based on different
statistical assumptions.

Some coffee volatile compounds were previously correlated to the
roasting degree, e.g. 2,3-pentanedione, 2,5-dimethylpyrazine, 2-ethyl-
pyrazine, 2,3-dimethylpyrazine, 3-ethyl-2,5-dimethylpyrazine, guaicol,
2-methylbutanal, 2-ethylguaicol, and 4-vinylguaiacol (Franca et al.,

2009; Moon & Shibamoto, 2009; Ribeiro, Teófilo, Salva, Augusto, &
Ferreira, 2013; Toci & Farah, 2014). The concentration of total furans
and generally compounds originating from chlorogenic acid degrada-
tion such as phenols and lactones is therefore expected to be higher at a
more intense roasting (Moon & Shibamoto, 2009). However, our sam-
ples were roasted under the same time-temperature profile, and the
majority of these compounds have been found in the present study to be
significantly different (p < 0.05) among the coffee batches, indicating
that their concentration is also influenced by other factors rather than
simply heat exposure, the levels of volatile precursors in the green bean
likely representing the most important factor; this is in turn influenced
by the coffee species, geographical origin, ripening stage, pre- and post-
harvest processing.

The roasting of Arabica and Robusta coffees can be carried out using
different roasting times, but in this experiment all the roasting opera-
tions were kept constant for all the samples in order to carry out a better

Table 2
Variability of volatile compounds in roasted coffee beans. Each volatile compound was expressed as relative percentage of the GC peak area (%) on the total peak
areas. The within batch bean-to-bean variability was expressed as coefficient of variation (CV%) of the mean for 10 beans per batch; the between bean variability was
calculated as CV% of all 248 coffee beans analysed (all 25 batches). The values in brackets indicate the maximum variation observed expressed as the ratio of the
maximum and minimum concentration of each volatile compound (as per Tikunov et al., 2005).

Volatile compound Mean SD min max range Variation within batch (n= 10) – CV (%) Variation between beans (n= 248) – CV (%)

2-Furanmethanol 17.05 2.66 7.63 25.72 18.09 14.00 (2.4) 15.59 (3.4)
Acetic acid 16.12 4.47 3.9 24.77 20.87 24.54 (3.1) 27.73 (6.3)
2-Methyl-pyrazine 12.51 3.29 5.04 24.24 19.2 18.92 (2.8) 26.26 (4.8)
Pyridine 8.58 5.77 2.17 40.23 38.07 35.99 (3.3) 67.22 (18.6)
Furfural 7.34 3.57 0.5 19.87 19.37 34.57 (4.9) 48.55 (39.8)
5-Methyl-2-furancarboxaldehyde 6.35 2.05 0.95 12.44 11.48 24.17 (3.0) 32.26 (13.0)
2,6-Dimethylpyrazine 4.69 1.42 1.54 11.46 9.91 23.66 (2.5) 30.28 (7.4)
2,5-Dimethylpyrazine 4.47 1.39 1.33 12.85 11.51 23.15 (2.4) 31.19 (9.6)
Ethylpyrazine 2.02 0.68 0.65 4.16 3.51 21.65 (2.2) 33.47 (6.4)
Pyrazine 2.01 0.61 0.82 5.64 4.82 20.50 (2.1) 30.54 (6.9)
2-Ethyl-6-methylpyrazine 1.74 0.72 0.51 6.75 6.24 27.06 (2.7) 41.33 (13.3)
2-Furanmethanol acetate 1.28 0.48 0.37 3.08 2.71 19.73 (2.3) 37.59 (8.3)
2-Acetylfuran 1.25 0.48 0.31 3.99 3.68 23.07 (2.6) 38.07 (12.8)
1-Hydroxy-2-propanone 1.19 0.48 0.15 2.8 2.65 25.73 (3.1) 40.49 (18.5)
1H-pyrrole-2-carboxaldehyde 1.13 0.3 0.36 2.05 1.69 49.12 (5.8) 104.76 (27.9)
Propanoic acid 1.08 0.36 0.19 2.8 2.61 24.32 (3.1) 33.46 (14.7)
2-Ethyl-5-methylpyrazine 1.04 0.45 0.3 3.93 3.63 26.25 (2.6) 42.89 (13.2)
2,3-Dimethylpyrazine 0.94 0.28 0.29 2.11 1.81 20.90 (2.5) 30.36 (7.2)
3-Methyl-butanoic acid 0.72 0.31 0.11 1.9 1.79 26.55 (3.3) 43.69 (17.1)
2-(1H-pyrrol-2-yl)-ethanone 0.68 0.18 0.31 1.39 1.08 17.35 (1.9) 27.28 (4.5)
2-Formyl-1-methylpyrrole 0.66 0.15 0.25 1.08 0.82 15.07 (1.9) 23.22 (4.3)
Phenol 0.66 0.69 0.17 4.67 4.5 16.98 (2.0) 26.70 (5.6)
1-(Acetyloxy)-2-propanone 0.63 0.14 0.17 0.97 0.8 14.77 (2.0) 22.16 (5.8)
3-Ethyl-2,5-dimethylpyrazine 0.60 0.51 0.1 6.5 6.4 43.05 (6.0) 85.35 (63.6)
2-Ethyl-3-methylpyrazine 0.57 0.27 0.18 2.73 2.55 28.26 (3.2) 47.13 (15.4)
Ethyl propanoate 0.45 0.13 0.12 0.75 0.63 16.75 (2.4) 27.78 (6.2)
Guaiacol 0.42 0.33 0.08 2.8 2.72 36.56 (4.9) 77.48 (36.3)
Furaneol 0.39 0.13 0.07 0.79 0.72 18.16 (2.5) 32.81 (11)
γ-Butyrolactone 0.38 0.18 0.11 1.18 1.07 20.70 (2.9) 48.32 (10.7)
Acetaldehyde 0.36 0.23 0.04 1.27 1.23 28.88 (3.8) 63.75 (30.0)
1-Methyl-1H-pyrrole 0.33 0.21 0.09 1.42 1.33 31.63 (4.6) 63.22 (15.8)
2-Methylfuran 0.32 0.2 0.08 1.25 1.17 33.17 (5.9) 62.83 (15.6)
N-acetyl-4(H)-pyridine 0.32 0.08 0.13 0.61 0.47 16.47 (2.2) 24.70 (4.6)
3-Hydroxy-4.5-dimethyl-2(5H)-furanone 0.28 0.08 0.06 0.5 0.44 18.93 (3.5) 29.28 (8.5)
3-Methyl-2-butenoic acid 0.28 0.2 0.02 1.23 1.22 43.27 (8.2) 68.87 (75.8)
4-Vinylguaiacol 0.21 0.16 0.05 0.97 0.92 28.39 (3.8) 74.20 (18.8)
2,3-Butanedione 0.19 0.08 0.03 0.48 0.45 19.27 (3.0) 43.08 (17.0)
Acetoin 0.18 0.06 0.02 0.38 0.36 21.41 (4.2) 33.33 (15.8)
2,3-Pentanedione 0.14 0.08 0.01 0.38 0.37 26.37 (5.9) 55.01 (34.8)
3-Ethylpyridine 0.11 0.16 0.02 1.16 1.14 53.29 (11.2) 143.09 (63)
Furfurylmethyl sulphide 0.10 0.05 0.01 0.3 0.28 27.42 (9.4) 51.00 (20.8)
1-Hydroxy-2-butanone 0.09 0.04 0.01 0.25 0.24 27.03 (8.3) 44.32 (29.1)
3-Methoxy-5-methyl-2-cyclopenten-1-one 0.05 0.02 0.02 0.14 0.12 18.73 (6.3) 34.78 (6.8)
3-Methylbutanal 0.04 0.02 0.01 0.18 0.17 34.29 (6.2) 60.90 (26.8)
3-Methyl-1,2-cyclopentanedione 0.01 0.003 0.003 0.02 0.02 15.74 (7.1) 24.91 (6.0)
Hexanal 0.01 0.02 0 0.20 0.2 49.85 (6.4) 135.08 (103.5)
2,3-Butanediol 0.01 0.02 0 0.22 0.22 48.54 (6.0) 179.28 (179.2)
2,3-Diethylpyrazine 0.004 0.002 0 0.019 0.018 28.44 (3.2) 51.26 (15.3)
4-Ethylguaiacol 0.001 0.001 0 0.005 0.005 27.74 (3.1) 48.46 (19.4)
2-Ethyl-3,5-dimethylpyrazine 0.001 0.001 0 0.001 0.001 39.35 (4.9) 54.62 (20.2)
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direct comparison. In addition to other coffee constituents, the moisture
content of the green coffee beans might be different even within the
same batch, as recently reported (Caporaso, Whitworth, Grebby, & Fisk,
2018b), therefore some differences observed in terms of volatile com-
pounds might be attributed to the initial different moisture content.
However, as shown in Caporaso et al. (2018b) the range of natural
moisture content of coffee beans available to the market is relatively
narrow, therefore the little difference in moisture content would not
fully explain the large differences found herein. Similarly, there might
be influence of the post-harvest processing, i.e. wet and dry processing,
which affect the chemical composition of the coffee beans and therefore
the formation of volatile compounds.

3.3. Classification models for origin discrimination

Fig. 4 shows the results of Linear Discriminant Analysis (LDA) ap-
plied to single coffee beans to discriminate their species (Arabica or
robusta) or geographical origin, grouped into four major areas. The PCA
explained 79% of the total variance, and limited separation between
Arabica and robusta was obtained. On the contrary, excellent separa-
tion was obtained by LDA, with an overall classification accuracy of
99.8%. Thus, Arabica and robusta coffee beans can be effectively
classified according to their volatile profile despite the large variation
found at individual coffee bean level. 4-Ethylguaiacol followed by 2-
ethyl-3,5-dimethylpyrazine were the compounds showing the highest
scores for the discriminant function. The concentration of the first
compound was significantly higher in robusta than Arabica coffees,
while the latter compound had lower concentration in robusta then
Arabica. However, both compounds were found at very low con-
centrations, but they are potent odorants as their odour threshold is
very low. Other compounds such as ethylpyrazine, 2,3-butanediol, 4-
vinylguaiacol and 2,3-pentanedione, had the lowest influence on the
classification model, thus suggesting very limited or no significant
difference in terms of concentrations between the two species. Previous
authors reported quantitative differences between the coffee species,
whereas they cannot be strictly considered as molecular markers, e.g. 4-
ethylguaiacol, 4-vinylguaiacol and some pyrazines are more abundant
in robusta, while 2,3-butanedione and 2,3-pentanedione are more
abundant in Arabica (Blank et al., 1991; Semmelroch & Grosch, 1996).
From the LDA model, the most important volatiles in discriminating
coffee species were mostly pyrazines (2-ethyl-5-methylpyrazine, 2,5-
dimethylpyrazine, 2-ethyl-6-methylpyrazine, 2-ethyl-3-methylpyrazine,
ethylpyrazine), while other compounds such as 4-vinylguaiacol, 2-hy-
droxy-2-butanone and 3-ethylpyridine were also strongly contributing
to the differentiation.

The LDA model built for geographical origin gave satisfactory re-
sults, demonstrating good discrimination ability for the four geo-
graphical locations. The overall model accuracy for geographical origin
was 95.97% correct classification. A quadratic function gave better
classification performance than a linear function (data not shown). The
correct classification was 91.3%, 97.1%, 98.6% and 100.0% for the four
regions (Africa, Asia, Central America, South America), respectively.
The average cross validation error was 11.3%, with the best cross-va-
lidation performance obtained for Asia.

A discrimination model was also built to verify whether it is possible
to classify coffee beans based on their post-harvest processing, i.e. wet-
and dry-processing. The LDA showed 75.6% correct classification for
the dry-processed beans and 82.3% for wet-processed ones. The cross-
validation gave 68.9 and 80.4% correct classification for dry and wet
processed coffees, respectively (data not shown), however this might be
due to correlation between origins and processing in some samples.

An alternative statistical approach tested to build classification
models was Multiple Layer Perceptron (MLP), which is a class of feed-
forward artificial neural network. The final cross-validation accuracy of
the MLP model was 91.9%. The confusion matrix for the geographical
origin classification model is reported in Table 4. Samples from Asia

Table 3
Results of ANOVA test and H-test on single coffee bean volatile compounds, by
reporting the significance value (p). Values indicated in bold are those above
0.05.

All samples Arabica Robusta

ANOVA H-test ANOVA H-test ANOVA H-test

Acetaldehyde 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2-Methylfuran 0.0000 0.0000 0.0000 0.0000 0.0107 0.0039
3-Methylbutanal 0.0000 0.0000 0.0000 0.0000 0.0049 0.0172
2,3-Butanedione 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2,3-Pentanedione 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
Hexanal 0.0000 0.0000 0.0021 0.0000 0.1338 0.0748
1-Methyl-1H-pyrrole 0.0000 0.0000 0.0000 0.0000 0.0621 0.0231
Pyridine 0.0000 0.0000 0.0000 0.0000 0.0318 0.0438
Pyrazine 0.0000 0.0000 0.0000 0.0000 0.0203 0.0040
2-Methyl-pyrazine 0.0000 0.0000 0.0000 0.0000 0.1778 0.0766
Acetoin 0.0000 0.0000 0.0000 0.0000 0.0021 0.0032
1-Hydroxy-2-

propanone
0.0000 0.0000 0.0000 0.0000 0.0008 0.0026

2,5-Dimethylpyrazine 0.0000 0.0000 0.0000 0.0000 0.0923 0.1425
2,6-Dimethylpyrazine 0.0000 0.0000 0.0000 0.0000 0.1009 0.1113
Ethylpyrazine 0.0000 0.0000 0.0000 0.0000 0.1470 0.0692
2,3-Dimethylpyrazine 0.0000 0.0000 0.0000 0.0000 0.1859 0.1593
1-Hydroxy-2-butanone 0.0000 0.0000 0.0000 0.0000 0.0613 0.0797
3-Ethylpyridine 0.0000 0.0000 0.0000 0.0000 0.1299 0.0387
2-Ethyl-6-

methylpyrazine
0.0000 0.0000 0.0006 0.0000 0.0316 0.0321

2-Ethyl-5-
methylpyrazine

0.0000 0.0000 0.0009 0.0000 0.0280 0.0402

2-Ethyl-3-
methylpyrazine

0.0000 0.0000 0.0052 0.0000 0.0106 0.0154

2,3-Diethylpyrazine 0.0000 0.0000 0.0001 0.0000 0.0584 0.0711
3-Ethyl-2,5-

dimethylpyrazine
0.0000 0.0000 0.1226 0.0001 0.0100 0.0214

Acetic acid 0.0002 0.0001 0.0056 0.0041 0.0189 0.0302
Furfural 0.0000 0.0000 0.0000 0.0000 0.2447 0.1430
Acetoxyacetone 0.0000 0.0000 0.0000 0.0000 0.2639 0.2943
Furfurylmethyl

sulphide
0.0000 0.0000 0.0000 0.0000 0.0000 0.0003

2-Ethyl-3,5-
dimethylpyrazine

0.0130 0.0120 0.0568 0.0223 0.5241 0.5214

Furaneol 0.0000 0.0000 0.0000 0.0000 0.0000 0.0002
2-Acetylfuran 0.0000 0.0000 0.0000 0.0000 0.7813 0.7157
Ethyl propanoate 0.0000 0.0000 0.0000 0.0000 0.5684 0.5621
2-Furanmethanol

acetate
0.0000 0.0000 0.0000 0.0000 0.8584 0.8732

Propanoic acid 0.0000 0.0000 0.0012 0.0001 0.8021 0.8780
5-Methylfurfural 0.0000 0.0000 0.0000 0.0000 0.0924 0.0708
2,3-Butanediol 0.0000 0.0000 0.0000 0.0000 0.0320 0.0000
2-Formyl-1-

methylpyrrole
0.0000 0.0000 0.0000 0.0000 0.0006 0.0023

G-butyrolactone 0.0000 0.0000 0.0000 0.0000 0.0006 0.0007
2-Furanmethanol 0.0001 0.0003 0.0016 0.0014 0.2632 0.3563
3-Methyl-butanoic

acid
0.0000 0.0000 0.0000 0.0000 0.0648 0.0506

N-Acetyl-4(H)-
pyridine

0.0000 0.0000 0.0000 0.0000 0.0351 0.0167

3-Hydroxy-4.5-
dimethyl-2(5H)-
furanone

0.0000 0.0000 0.0000 0.0001 0.0281 0.0131

3-Methoxy-5-methyl-
2-cyclopenten-1-
one

0.0000 0.0000 0.0000 0.0000 0.0000 0.0001

3-Methyl-2-butenoic
acid

0.0000 0.0000 0.0000 0.0000 0.5103 0.6271

3-Methyl-1,2-
cyclopentane-
dione

0.0000 0.0000 0.0000 0.0000 0.3911 0.2981

Guaiacol 0.0000 0.0000 0.0000 0.0000 0.2999 0.0086
2-(1H-pyrrol-2-yl)-

ethanone
0.0000 0.0000 0.0000 0.0000 0.0000 0.0000

Phenol 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
2-Formylpyrrole 0.0000 0.0000 0.0000 0.0000 0.2701 0.0448
4-Ethylguaiacol 0.0000 0.0000 0.0000 0.0000 0.0260 0.0013
4-Vinylguaiacol 0.0000 0.0000 0.0000 0.0000 0.0000 0.0000
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had the best prediction, with only two mislabelled samples (predicted
as Africa). In the case of Africa and Central America, 7 and 6 samples
were mislabelled, respectively. The prediction accuracy was thus as
follows: Asia, 97.1%; Africa, 98.7%; Central America, 92.7% and South

America, 58.6%. The prediction accuracy for all origins was very good
except the one for South America, for which we believe it is due to the
insufficient training samples in the category.

The last hidden layers of the MLP were extracted as Neural Network
(NN) scores and are shown in Fig. 5. The whole MLP model can be
viewed as a feature extractor, which maps the original volatile profile
onto a two dimensional space, where the final classification was made.
Each of the extracted features (NN score 1 and NN score 2) is a com-
bination of all volatile compounds, which most efficiently distinguish
coffee samples of various origins. From the Neural Network (NN) scores
scatter plot the clustering of the coffee beans from the same origin can
be observed.

The use of the relative abundance profiles of the volatile compounds
from roasted coffee beans to discriminate the botanical and geo-
graphical origin is interesting for the coffee market for quality control

Fig. 4. Results of Linear Discriminant Analysis (LDA) applied to discriminate roasted coffee beans according to their (a) botanical species or (b) geographical origin,
based on volatile composition assessed by SPME-GC-MS (expressed as % total peak areas). n=248. Each point represents a sample of a single coffee bean.

Table 4
Confusion matrix of the classification model for geographical origin prediction
for single roasted coffee beans based on their volatile profiles.

Predicted origin

Asia Africa Central America South America

True origin Asia 68 1 1 0
Africa 1 79 0 0
Central America 3 1 64 1
South America 1 0 11 17
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purposes and to check coffee bean authenticity, as coffees from dif-
ferent origins can have different market price to reflect differences in
perceived quality and availability. The first distinction in the coffee
industry is related to the coffee species, Arabica being sold at a price
more than double than of robusta coffees. Whilst discrimination of
coffee species on the green beans is relatively easy for experts, it be-
comes more difficult in the roasted coffee, thus the use of SPME-GC-MS
analysis of volatile compounds could be a useful means for coffee origin
authentication even in mixtures of whole roasted beans, where a re-
presentative sample of single coffee beans could be analysed to give
indication on the ratio between Arabica and robusta beans.

The successful classification of roasted coffee beans is likely to be
related to initial different contents of aroma precursors in the green
beans, due to environmental, genetic or processing factors. Previous
authors have reported on the differences in volatile compounds of
coffees produced using wet- or dry-processing. However, the lack of
strong differences between the wet- and dry-processed beans might be
due to the presence of other factors affecting aroma compound varia-
bility, in particular the intrinsic characteristics of the coffee species and
variability of chemical composition in single beans (Gonzalez-Rios
et al., 2007).

Contradictory results have been reported in the literature regarding
the possibility of using coffee volatile compounds for geographical
origin indication. For example, Bicchi et al. (1997) reported successful
differentiation of coffees based on their origin using commercially
available blends. On the contrary, Zambonin et al. (2005) described the
absence of any particular volatile marker related to the geographical
origin of the samples. More recently, Bressanello et al. (2017), applied
SPME-GC-MS for the analysis of volatile compounds in roasted Arabica
and robusta coffee to classify three robusta coffee samples based on
their geographical origin, but no clear clustering was obtained except
for their Indonesian sample, for the ground coffee and coffee brew.
From our results to predict coffee geographical origin, three pyrazines
(2-ethyl-5-methylpyrazine, 2,5-dimethylpyrazine and 2-ethyl-3-me-
thylpyrazine) were the most important compounds in the model, fol-
lowed by 3-ethylpyridine, acetoxyacetone, guaiacol, ethylpyrazine and
2-furanmethanol.

Risticevic et al. (2008) used a sample size similar to our work, with
26 coffee batches taken from several locations worldwide, using SPME-
GC-MS as the analytical technique for volatile compounds, but analysed
samples as bulk roasted coffee, while we analysed almost 250 in-
dividual bean samples. de Toledo et al. (2016) used literature data of

volatile compounds from coffees roasted at different roasting degrees,
to build a discriminant analysis (DA) model to classify for the thermal
treatment applied. The authors standardised the concentrations of vo-
latile compounds between different studies by taking pyridine as a
“reference”, and selected five volatiles, mostly pyrazines, for statistics.
However from our data, it is shown that pyridine is not the compound
with the lowest variation among samples. In our case, the eigenvalues
obtained from the PCA demonstrated that pyridine, 2-methyl-pyrazine,
acetic acid, furfural and 5-methylfurfural were the volatile compounds
explaining most of the observed variance in our dataset.

Our results demonstrate that coffee volatile compounds can be used
as indicators for geographical origin. This information could offer in-
dication that, despite the single bean variability found in terms of vo-
latile compounds, there is still enough compositional difference among
batches coming from different origins. This is not just due to the species
differences, but probably linked to compositional differences arising
from different agronomical and post-harvest processing. In addition,
these results might be useful for authenticity purposes, for example to
identify adulteration, and can be used in addition to rapid methods that
target specific volatile compounds.

Despite the observed intra-batch variability – which is likely to be
due to variations in sunlight, soil characteristics, plant-to-plant differ-
ences, and different ripening degree even on the same plant – it is still
possible to detect significant differences in the volatile profiles of coffee
beans coming from different regions. This study aims to obtain a broad
picture of products available on the market, so that the industry could
benefit from the understanding of the degree of variation in coffee
volatile composition, and also reporting that good geographical dis-
crimination can be achieved by exclusively using volatile compound
analysis.

Considering the high variability found on the market, is it suggested
that future research should be focused on achieving higher product
consistency, starting from optimisation of the agronomic practices to
obtain green beans with lower compositional variability, or to optimise
the processing conditions, when methods able to rapidly discriminate
the coffee beans in a non-destructive manner would be available. In the
latter case, variability of coffee aroma would represent an opportunity
for the coffee industry to expand the range of flavours by obtaining
different aroma profiles starting from the same production batch.

Fig. 5. Classification model for coffee origin using Neural Network (NN). NN score 1 and NN score 2 are extracted features from the neural network model.
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4. Conclusions

This paper reported on the analysis of single coffee beans using
SPME-GC-MS to study the variation of volatile compounds within and
between batches of coffee beans roasted under the same conditions and
analysed individually. This is the first report on the variability of aroma
compounds formed in single coffee beans analysed by SPME-GC-MS.

The inter-batch variability was higher than the intra-batch varia-
bility for all volatile compounds studied, while our results demonstrate
that the single bean variability can reach up to 179% CV for some
compounds. The most variable compounds were 2,3-butanediol, 3-
ethylpyridine and hexanal. As these compounds are potent odorants,
this information might have a practical interest in showing the varia-
tion expected from single beans, with consequences in terms of stan-
dardisation of final coffee aroma. On the contrary, other compounds
such as 2-furanmethanol, 1-(acetyloxy)-2-propanone and 2-formyl-1-
methylpyrrole are the most consistent ones, both within- and among-
batches (CV~ 15–20%). In addition, we found that phenols and het-
erocyclic nitrogen compounds are the chemical groups showing the
highest intra-batch variation, especially in some samples where values
above 100% (CV) were found, while ketones were the most uniform
compounds, with CV below 20% for all 25 batches.

Data on volatile compound variation of commercial samples could
be used to develop a fundamental understanding of the relationship
between green coffee composition and volatile compounds of the re-
sulting roasted coffee, as well as to obtain products with more con-
sistent quality. Despite the high variability found, we have shown that
single bean volatile composition can be effectively used as a valid in-
dicator of the coffee origin to build reliable classification models.

Further research could apply different roasting conditions or could
build prediction models based on specific coffee volatile compounds,
especially targeting select compounds, for example potent odorants.

Supplementary data to this article can be found online at https://
doi.org/10.1016/j.foodres.2018.03.077.
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