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Abstract

Recent years have seen a research revival in structural stability analysis. This renewed interest stems from a paradigm shift
regarding the role of buckling instabilities in engineering design—from detrimental sources of catastrophic failure to novel
opportunities for functionality. Novel nonlinear structures take the form of optimised thin-walled structures that operate safely in
the post-buckling regime; shape-morphing structures that exploit multi-stability to snap and pop between different configurations;
and meta-materials that derive novel material properties from a cascade of choreographed instabilities. Hence, elastic instabilities
are no longer considered as structural failures but rather exploited for repeatable well-behaved adaptations. In this article we
focus on shape-morphing—a bio-inspired design strategy that intends to conform structures to different operating conditions.
Computational tools that integrate easily with established methods used in industry, and that are capable of capturing the full phase
diagram of compound instabilities and entangled post-buckling paths typical of these structures, are limited. Such a capability is
crucial, however, as confidence in predictive tools can be key in enabling non-conventional designs. One potential candidate in this
regard is generalised path-following, which combines the computational robustness of numerical continuation algorithms with the
geometric versatility of the finite element method. In this paper we collate an array of successful computational tools introduced
by other researchers, and introduce our own developments, to present a modelling framework fit for analysing and designing with
well-behaved nonlinear structures in industry and academia. Particularly, we show that the full complexity of multi-snap events
of morphing composite laminates is robustly captured by generalised path-following algorithms, and that the ability to determine
loci of singular points with respect to a set of parameters is especially useful for tracing the boundaries of bistability in parameter
space. Furthermore, we shed new insight into the mechanics of multi-stable laminates, showing that the multi-stability and snapping
behaviour of these structures is much richer than previously assumed, featuring many unstable post-buckling branches and localised
regions of stability.
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1. Introduction

To deliver the next generation of lightweight engineering structures, researchers and engineers are hoping to exploit,
rather than avoid, elastic instabilities. Such designs could take the form of optimised thin-walled structures that operate
safely in the post-buckling regime [1,2]; shape-morphing structures that snap between different configurations [3–11];
advanced meta-materials with innovative properties constructed from multi-scale arrangements of mechanically multi-
stable components [12–18]; and other diverse applications such as self-encapsulating structures [19] and fluidic soft
actuators [20].

Indeed, there is an ongoing trend of shifting our intuitions about structural instabilities as sources of catastrophic
failure to opportunities for functionality [21]. It is well known that efficient and lightweight structures are prone to
structural instabilities and collapse [22,23]. In this case, the predominant design philosophy is to prevent buckling or
at least make its effects benign. On the other hand, when reconfigurations in shape or large elastic displacements are
required, buckling is often encouraged [24]. Reis [21] recently reviewed the burgeoning research effort focusing on
exploiting instabilities to enable novel designs, and therefore provided a new perspective on buckling, namely from
buckliphobia to buckliphilia.

In the aerospace industry, shape-morphing structures are viewed as a promising technology to enable more
structurally efficient designs [3–11]. The premise behind this idea is simple—if structures can be designed to adapt
their shape to more optimally conform to different loading conditions, then structural efficiency is improved as a result.
In fact, this multi-functionality has a very strong empirical proponent: nature. Birds, for example, can adapt the camber
and angle of attack of their wings to different flight scenarios. Even though some of the concepts found in nature are
already being exploited in aircraft structures, such as slats and flaps, they often rely on rigid load-bearing components
connected to heavy hydraulic or electric actuators. This is where multi-stable structures are particularly attractive. By
applying a suitable force, a multi-stable structure can be snapped from one stable state to another, thereby considerably
reconfiguring its shape. Because each stable state is self-equilibrated, it does not require external energy to hold its
shape, and additionally, the sensing, actuation and control functions are embedded within the nonlinear mechanics of
the structure (passive control) without adding additional mass via ancillary devices.

The uptake of these novel designs in industry is partly hampered by a lack of robust computational tools tailored
to the design of structures whose characteristic feature is a form of spatial chaos [25], i.e. equilibrium manifolds
featuring an entire series of bifurcations that give rise to many equilibrium branches and possible loading histories,
especially in cases where dynamic snap-buckling is exploited for shape adaptation. Predicting these features reliably
is pushing well-established finite element techniques to their limit, and is creating an acute requirement for new
computational approaches for analysis and design [21,26]. In recent years the focus has been on analytical and
computational techniques constrained to the analysis of very specific morphing problems with particular load cases
and geometries [27–36]. A drawback of these tailored approaches is that simplifying assumptions are often made,
which prevent applicability to a wider range of problems. Examples include restrictions on the geometric nonlinearity
to von Kármán strains (small strains, small displacements and moderate rotations); posing the problem on a domain
that is cumbersome to extend beyond simple geometries; and using nonlinear stability analyses without robust branch-
switching.

Due to its geometric versatility and developmental maturity, the finite element method is the preferred technique
for modelling complex structural problems. Commercial finite element packages may be used to analyse multi-stable
structures [37–39], but most of the time, these analyses are rather ad hoc, because the full taxonomy of stable and
unstable equilibria cannot be revealed robustly using the quasi-static implicit solvers implemented in these codes.
Rather, the engineer needs to be aware of possible bifurcation points a priori, and then “coax” the algorithm to land
on a specific post-buckling mode shape using initial imperfections. Such an approach is cumbersome and requires
user intervention, such that it becomes difficult and inefficient to explore the entire design nonlinear space.

To illustrate this point, an example is shown in Fig. 1, which describes a typical snap-through load–displacement
path. The behaviour is complicated by the presence of a secondary equilibrium path branching from the unstable
region of the equilibrium curve. In a physical experiment under rigid loading, this hypothetical structure would snap
to point (c) upon reaching limit load (a). A path-following solver without the ability to pinpoint singular points and
then branch-switch when needed, would generally pass the bifurcation (b) and continue to traverse along the unstable
fundamental path. Not being aware of the existence of point (c), an engineer interpreting the results would then
suggest that the structure snaps from point (a) to point (d), rather than from point (a) to point (c). To path-follow
along the secondary equilibrium path by means of the often-used imperfection method, the analyst needs to be aware
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Fig. 1. Hypothetical example structure with typical snap-through equilibrium path illustrating the necessity for robust branch-switching. Without
the ability to detect bifurcations and branch-switch, an engineer would not be aware of point (c) and presume that the structure snaps to point (d).
Source: Adapted from [33].

of the existence of bifurcation point (b), stop the path-following algorithm before reaching it, run a linear eigenvalue
analysis and then apply the lowest eigenmode as an imperfection. Such a procedure is cumbersome to implement and
restricted to simple bifurcation points (for compound bifurcations there is little control over which branch the solver
will converge to). Finally, when conducting design sensitivity studies, the full equilibrium paths of different design
iterations need to be traced, when the designer is, in fact, only interested in how certain points, e.g. critical points (a)
and (b), vary with a particular design parameter.

Thus, the ideal computational framework for structures exploiting instabilities includes, but is not limited to, the
following characteristics:

1. Applicable to arbitrary (thin-walled) geometries.
2. Applicable to large displacements and rotations, e.g. total Lagrangian framework, such that a large variety of

structural instabilities are accounted for.
3. Able to detect singular points and branch-switch onto secondary paths without recourse to initial imperfections.
4. Allows for rapid parametric studies of critical points with respect to any geometric, constitutive or secondary

loading parameter.
5. Is readily integrated with accepted computational methods used in industry, predominantly, the finite element

method.

One possible framework that addresses all of these points is the so-called generalised path-following method,
which provides the means to systematically explore the design space of multi-stable structures with respect to a given
parameter set. The term generalised path was probably coined by Eriksson [40], where it referred to a multi-parametric
setting of static equilibrium problems that extends the notion of applied load as the only active control parameter,
and it is this definition that we refer to herein. Historically, generalised path-following has been used extensively in
the fields of applied mathematics and physics [41–46], where the term numerical continuation is a more common
designation. In engineering applications, however, path-following in load–displacement space, typically a variant of
the Riks method [47], is a familiar term, such that generalised path-following is an intuitive extension to a multi-
parametric setting.

In the 1960’s, Sewell introduced the notion of the “equilibrium surface” [48,49] – a surface whose shape could
be used to identify the stability of a structure with respect to changes in the governing parameters (see Fig. 2) –
to structural mechanics. With the advent of catastrophe theory [51], interest in applying the topological concept
of an equilibrium surface to elastic stability intensified, mostly in an analytical setting [52–54], but a generalised
computational framework was not introduced until the seminal papers by Rheinboldt [55–57] in the 1980’s. These
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Fig. 2. An equilibrium surface for the snap-through behaviour of an elastic arch. In a generalised path-following algorithm different paths on this
equilibrium surface can be traced by defining particular auxiliary equations. For example, the figure shows a fundamental path in load–displacement
space (height held constant), a parametric path in height–displacement space (load held constant), and a singular path in load–height–displacement
space connecting the limit points for different arch heights.
Source: Adapted from [50].

concepts allowed pinpointing of singular points (bifurcation and limit points); branch-switching at bifurcation
points; path-following with respect to any parameter, e.g. load, thickness, Young’s modulus, dimensions, etc.; and
tracing loci of bifurcation and/or limit points in multi-parametric space (see Fig. 2). In this sense, generalised
path-following extends concepts from computational bifurcation theory [58–60], such as path-tracing, pinpointing
of singular points and branch-switching, from a single- to a multi-parametric setting. Starting from the mid-1990’s,
Eriksson and co-workers [40,61–65] established themselves as the main developers of generalised path-following,
presenting numerous examples in structural engineering where the approach proved to be of great benefit, while
also providing details on how the technique could be incorporated into commercial nonlinear finite element codes.
Similarly, within the broader applied mathematics community, the Library of Continuation Algorithms (LOCA)
was developed by Sandia National Laboratories to deal with large degree-of-freedom problems, typically arising
from the discretisation of partial differential equations but not necessarily restricted to finite elements, to be run on
parallel computing platforms [44]. In engineering, numerical continuation has also been successfully applied to study
nonlinear phenomena in the fields of aerodynamics [66–68], aeroelasticity [69–71] and the analysis of cylindrical
shells [33,72–74].

The purpose of this paper is to adapt the ideas and concepts presented particularly by Eriksson [40] and Salinger
et al. [44] to the thermo-mechanical setting typical of many multi-stable structures; especially, for laminated
orthotropic structures used for shape-morphing in the aerospace industry [75]. As such, the current work is an
amalgamation of computational techniques that have either been adapted or developed further to suitably apply them to
the design of thermo-mechanical multi-stable structures. Section 2 provides the theoretical background in terms of the
general setting (Section 2.1), together with implementation details for following paths with one changing parameter
(Section 2.2), and its extension to two simultaneously varying parameters (Section 2.3). As a canonical example,
Section 3 demonstrates the general capabilities of the algorithm using a simple problem. In Section 4 we show
that generalised path-following is particularly well-suited to modelling morphing structures. This is demonstrated
by means of two classical example problems from the literature—a flat nonsymmetric cross-ply laminate that is
cooled-down from cure to room temperature and then snapped between two stable states (Section 4.1), and the effect
of initial curvature on the bistable behaviour (Section 4.2). We provide new physical insight into the mechanics of the
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snap-through phenomenon, showing that the snapping behaviour is much richer than previously assumed, featuring
many entangled secondary post-buckling paths with localised regions of stability, and using the bifurcation-tracking
capability to delineate regions of bistability in parameter space.

2. Theory

A generalised path-following algorithm combines the mathematical domains of finite element analysis and
numerical continuation. The mathematical methods used in numerical continuation are well established [41–43,45,56],
but are not classically used for structural mechanics applications, where specialised arc-length techniques are
predominant [47,76]. The present formulation considers a discretised model of a slowly evolving, conservative and
elastic structure, where the internal forces and tangential stiffness are uniquely defined from the current displacements
by means of the first and second variations of an energy potential. Thus, non-conservative loading and history-
dependent problems such as plasticity are not included in the current formulation.

In Section 2.1 we proceed with the general framework and then discuss implementation-specific details in
Sections 2.2–2.3. The interested reader is also especially encouraged to consult the excellent expositions by
Eriksson [40,61,62] which form the basis of the theory. Finally, an accurate analysis using these numerical methods
depends on suitable choices of nonlinear beam and shell elements that have sufficient fidelity to capture the full
complexity of nonlinear instability phenomena (see [77,78]).

2.1. The general setting

In classical structural mechanics applications, equilibrium is expressed as a balance between internal and external
forces, where, in a displacement-based finite element setting, this balance is written in terms of n discrete displacement
degrees-of-freedom, u, and a scalar loading parameter, λ,

F(u, λ) = f (u) − p(λ) = 0. (1)

The vectors p(λ) and f (u) are the external (non-follower) load and internal force, respectively. In the case of linear and
proportional loading we have p(λ) ≡ λp,λ

1
= λp̂, where p̂ is a constant reference loading vector (dead loading). This

system of n equations in (n + 1) unknowns – n displacement degrees-of-freedom and one loading parameter – is then
solved for a solution point, x = (u, λ), by defining an additional scalar arc-length constraint, N (x) = n⊤

u u + nλλ − σ ,
such that

FN (x) ≡

(
F(x)
N (x)

)
= 0, (2)

where nu and nλ take different forms depending on the nature of the arc-length constraint. By linearising about the
current equilibrium state, x, and applying Newton’s method for the iterative correction, δx,

FN (x + δx) = FN (x) + FN
,x(x)δx + O(δx2) ≡ 0

⇒ δx = −
(
FN

,x(x)
)−1FN (x), (3)

we can find a set of solution points that describes a continuous equilibrium curve. Note that the partial derivative of
the residual with respect to the displacement vector, F,u = f,u(u), is equal to the tangential stiffness matrix KT(u).

For generalised path-following, Eq. (1) is adapted to incorporate any number of additional parameters,

F(u,Λ) = f (u,Λ1) − p(Λ2) = 0, (4)

where Λ = [Λ⊤

1 ,Λ⊤

2 ]⊤ = [λ1, . . . , λp]⊤ is a vector containing p control variables. Λ1 corresponds to parameters that
influence the internal forces (e.g. material properties, geometric dimensions, temperature and moisture fields) and Λ2

relates to externally applied mechanical loads (e.g. forces, moments, tractions).
The n number of equilibrium equations in Eq. (4), correspond directly to the n number of displacement degrees-of-

freedom in the system. Because the structural response is parametrised by p additional parameters, a p-dimensional
solution manifold in R(n+p) exists—the so-called equilibrium hypersurface [48]. By defining additional auxiliary

1 The comma notation is used throughout to denote differentials with respect to subscripted variables.
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equations, g, specific solution subsets on this p-dimensional solution manifold are defined. Hence, we wish to evaluate
solutions to the augmented system

G(u,Λ) ≡

(
F(u,Λ)
g(u,Λ)

)
= 0. (5)

When r auxiliary equations are defined, the solution to Eq. (5) is (p − r )-dimensional. Hence, r = p − 1 auxiliary
equations are required to define a one-dimensional curve, or so-called subset curve [62], in R(n+p).

Posing the problem in this manner allows the structural response to be viewed not only as a function of a varying
load but also as a function of other parameters that define the structure. By treating these additional parameters
as “forcing” variables in an arc-length solver, the effect of these parameters on the structural response can be
obtained. Hence, the computationally expensive approach of studying variations in geometry and material properties,
by evaluating full load–displacement equilibrium curves for each additional model, is avoided. Instead, different
load–displacement or parameter–displacement paths are described as cutsets of a higher-dimensional solution surface
(see Fig. 2).

This treatment naturally leads to the notion of tracing loci of singular points in parameter space, such as the
maxima and minima shown in Fig. 2. As the designer of multi-stable structures is predominantly interested in critical
instability points, e.g. limit points that initiate snap-through or symmetry-breaking bifurcations, these singular curves
are invaluable for rapidly exploring the design space. To constrain the system of n equilibrium equations to a locus
of singular points, we simultaneously enforce the fulfilment of a criticality condition, for example KTφ = 0, i.e. at
least one eigenvector φ of the tangential stiffness matrix KT spans the nullspace. In the most general form, not limited
to but including the previous criticality condition, a vector of q auxiliary variables, v, may be added to the auxiliary
equations g,

G(u,Λ, v) ≡

(
F(u,Λ)

g(u,Λ, v)

)
= 0. (6)

Hence, Eq. (6) describes n equilibrium equations and r auxiliary equations in (n + p + q) unknowns leading to a
(p + q − r )-dimensional solution. To determine a one-dimensional subset curve of singular points, we thus require
r = p+q −1 auxiliary equations to constrain the system. Following the example from above, when the n-dimensional
null vector at the critical state is introduced as the auxiliary variable, v, a singular subset curve in two parameters,
p = 2, is appropriately constrained by the associated r = n + 1 auxiliary equations KTv = 0 and ∥v∥2 = 1, where the
scalar equation restricts the magnitude of the eigenvector.

When evaluating one-dimensional subset curves (r = p + q − 1), one additional constraining equation is needed
to uniquely solve the system of equations for a solution point y = (u,Λ, v) on the curve described by G(y).
Hence,

GN (y) ≡

⎛⎝ F(u,Λ)
g(u,Λ, v)
N (u,Λ)

⎞⎠ = 0, (7)

where N is a scalar equation that plays the role of a multi-dimensional arc-length constraint along a specific direction
of the subset curve. Note that the system of equations for classical load–displacement equilibrium paths can be
recovered by setting p = 1 and q = r = 0. A solution to Eq. (7) is determined by a consistent linearisation coupled
with Newton’s method,

y j+1
k = y j

k −

(
GN

,y (y j
k )

)−1
GN (y j

k ) ≡ y j
k + δy j

k , (8)

where the superscript denotes the j th equilibrium iteration and the subscript the kth load increment. The iterative
correction cycle is typically started by a predictive forward Euler step. For most problems, the inversion of the iteration
matrix,

GN
,y =

⎡⎣F,u F,Λ 0n×q

g,u g,Λ g,v
N⊤

,u N⊤

,Λ 01×q

⎤⎦ , (9)

is significantly simplified by partitioning the system into blocks such that only the symmetric tangential stiffness
matrix KT ≡ F,u needs to be factorised in the solution process (see Appendix and e.g. [79–81]).
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Within this framework, the meaning of the term generalised path-following becomes clear. It refers to the fact that
any arbitrary curve can be traced on the equilibrium surface, as long as a pertinent auxiliary equation is defined that
constrains the equilibrium equation to the locus of points required. These auxiliary equations can define, but are not
necessarily limited to, the following interesting paths:

• Classic equilibrium paths in load–displacement space (a loading parameter is varied).
• Parametric paths in parameter–displacement space (a geometric, constitutive or secondary loading parameter is

varied).
• Pinpointing singular points (bifurcation and limit points) on either of the two paths mentioned above.
• Bifurcated branches emanating from a bifurcation point.
• Singular paths that describe a locus of bifurcation and/or limit points in load–parameter–displacement space.
• Branch-connecting paths that connect points on distinct equilibrium curves.

Furthermore, auxiliary equations have also been devised to define optimality criteria [82] and to directly evaluate
the imperfection mode shape that leads to the greatest knock-down in the buckling load of compressed cylindrical
shells [83].

2.2. Path-following in one parameter

The parameters Λ = (λ1, . . . , λp) can be any set of p parameters that affect the equilibrium of the structure.
In a structural engineering context, it is pertinent to treat parameter λ1 as the fundamental loading parameter, here
mechanical or thermal in nature, such that path-following in λ1 traces the fundamental load–displacement equilibrium
path of an idealised baseline model. Parameters Λs = (λ2, . . . , λp) are then added as secondary parameters that
perturb this idealised baseline problem, e.g. variations in geometry, changes to constitutive properties or the addition
of secondary loadings. Any saved equilibrium solution on the fundamental path then serves as a starting point for
path-following in a secondary parameter, λs ∈ Λs, thereby tracing a parametric path of perturbed equilibrium points
with λ1 constant.

Due to the practical limitation of visualising results in three dimensions, the present implementation is posed in
terms of the displacement degrees-of-freedom, u, the fundamental loading parameter, λ1, and a secondary parameter,
λs ∈ Λs, such that a pertinent norm of the displacement vector, e.g. ui for i = 1 . . . n, can be plotted against (λ1, λs).
The results for different combinations of (λ1, λs) are therefore plotted in succession. For clarity, fundamental and
parametric paths are first discussed individually in Sections 2.2.1 and 2.2.2, respectively, with all equations expressed
in terms of (λ1, λs) only, and all other parameters removed from consideration (kept constant at baseline values).
Section 2.2.3 then generalises the notation to any non-critical subset path with only one varying parameter. The topic
of pinpointing singular points on these paths is then discussed in Section 2.2.4.

2.2.1. Fundamental paths
The system of equations for classical load–displacement equilibrium paths can be recovered by setting p = 1 and

q = r = 0 such that λ1 becomes the fundamental loading parameter. In the case of linear and proportional mechanical
loading,

F(u, λ1) = f (u) − λ1p̂1 = 0. (10)

In the case of thermal loading, λ1 affects the internal force vector and p̂1 = 0, such that

F(u, λ1) = f (u, λ1) = 0. (11)

Introducing the scalar arc-length constraint N (u, λ1), as defined in Eq. (2), and applying Newton’s method[
F,u F,λ1

N⊤

,u N,λ1

] {
δu
δλ1

}
= −

{
F(u, λ1)
N (u, λ1)

}
, (12)

where δu and δλ1 are iterative corrections of the nodal displacements and loading parameter, respectively. F,u ≡ KT is
the tangential stiffness matrix and F,λ1 = −p̂1 is the reference loading vector for linear and proportional mechanical
loading. When mechanical loading is applied in terms of nodal forces and moments or element-wise tractions, the
reference force vector p̂1 is readily assembled from the input data. In the case of non-zero prescribed displacements,
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the reference force vector is derived from p̂1 = −KCuc, i.e. the constrained portion of the tangential stiffness matrix
multiplying the non-zero prescribed displacements. As the tangential stiffness matrix is generally a function of current
displacements, the reference force vector p̂1 derived from prescribed displacements needs to be updated for every
iteration of the solution scheme.

In the case of thermal loading, the effective strain method described by Parente Jr et al. [84] is applied. The effective
strain is given by the difference between the classic geometric strain, here the Green–Lagrange strain, ϵGL, and the
free thermal strain, ϵth. The thermal strain,

ϵth = α∆T, (13)

represents the strain induced when thermal expansion of the material is not constrained, with α representing the
thermal expansion coefficient vector and ∆T the change in temperature. For linear elastic materials, the stress–strain–
temperature relation can be written as

σ (u, λ1) = CT (ϵGL(u) − ϵth(λ1)) = CT

(
ϵGL − αλ1∆T̂

)
, (14)

where σ is the energetically conjugate second Piola–Kirchhoff stress tensor and ∆T̂ is a temperature change from a
given strain-free reference temperature. In general, the tangent constitutive tensor, CT, is temperature dependent.

In the context of the principle of virtual displacements the internal force vector, used in Eqs. (10)–(11), is given by

δu⊤f =

∫
V

δϵ⊤σdV =

∫
V

δ
(
ϵGL − αλ1∆T̂

)⊤

σdV =

∫
V

δϵ⊤

GLσdV . (15)

By assuming a general relation between the virtual geometric strain and the virtual displacements, δϵGL(u) = B(u)δu,
and substituting Eq. (14) for σ , the internal force vector for a thermal loading problem is

f (u, λ1) =

∫
V

B⊤σdV =

∫
V

B⊤CT

(
ϵGL − αλ1∆T̂

)
dV . (16)

The precise definition of the kinematic matrix, B, depends on the chosen finite element implementation and shape
function interpolation, and is therefore not discussed in detail herein. The tangential stiffness matrix, KT, and the
thermal load vector, p̂th, are derived from the variation of Eq. (11):

δF(u, λ1) = F,uδu + F,λ1δλ1 = f,uδu + f,λ1δλ1 = KTδu + p̂thδλ1. (17)

In particular, the variation of Eq. (16) with respect to u gives:

f,uδu ≡ KTδu =

∫
V

B⊤CTδϵGLdV +

∫
V

δB⊤CT

(
ϵGL − αλ1∆T̂

)
dV

=

∫
V

B⊤CTBdV δu +

∫
V

δB⊤CT

(
ϵGL − αλ1∆T̂

)
dV =

[
Ke + Kg

]
δu. (18)

Eq. (18) shows that the elastic stiffness matrix, Ke, is unchanged from the classical linear stiffness matrix and not
affected by temperature changes. Even though the geometric stiffness matrix, Kg, always depends on the particular
element formulation chosen, Eq. (18) shows that Kg is a function of temperature changes via the current stresses, σ .
This means that the tangential stiffness matrix is only affected by temperature changes through the geometric stiffness
component.

Similarly, the thermal load vector is given by the variation of Eq. (16) with respect to λ1,

f,λ1δλ1 = p̂thδλ1 = −

∫
V

B⊤CTα∆T̂ dV δλ1, (19)

where we have assumed that the tangential constitutive tensor CT does not vary with temperature. If the constitutive
tensor does vary with temperature then the term CT,λ1 needs to be computed. In this case it is most convenient to
evaluate an approximation to p̂th using a forward difference scheme,

p̂th = f,λ1 ≈
f (u, λ1 + ε|λ1|) − f (u, λ1)

ε|λ1|
, (20)

where ε is a small perturbation parameter typically in the range of 10−5 to 10−8. The default choice of ε in Eq. (20),
and many later forward difference approximations herein, is 10−8. In the authors’ experience, the particular choice
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of ε within the range
[
10−5, 10−8

]
is robust, meaning that the convergence of Newton’s method is not sensitive to

changes in ε. Even though the accuracy of this numerical approach depends on the choice of ε, and is computationally
less efficient than a direct approach, it has the advantage of being valid for all element types, and is therefore readily
implemented in existing codes. In either case, it is important to remember that the thermal load vector needs to be
iteratively updated during the entire thermal loading process, because B is a function of the current displacements u.

Finally, the form of the arc-length constraint depends on the particular method chosen, although in our experience,
the planar constraint by Riks [47] and the cylindrical constraint by Crisfield [76] work most robustly. The details of
different arc-length constraints are covered extensively in textbooks and many publications (see e.g. [84–87]), and are
therefore not elucidated in further detail here. Some implementation-specific comments are nevertheless warranted.

• Given the quadratic nature of Crisfield’s cylindrical arc-length constraint [76], two roots for the iterative
correction δλ

j
1k (of the j th equilibrium iteration and the kth load increment) arise, and if both of these are

imaginary, or real and negative, it is easiest to repeat the current load increment with a reduced incremental
arc-length.

• When both roots are real and positive, the root that is closest to the root of an analogue linear system (simply
ignoring the quadratic term) is chosen. When one of the real roots is positive and the other negative, the positive
real root is chosen.

• The sign of δλ1
1k , i.e. the load predictor in the first iteration of each increment k, is readily determined by

taking the dot product between the total incremental displacement of the previous step, ∆uk−1, and δu1
k , i.e. the

displacement predictor in the first iteration of the current step calculated from the unit load vector 1 · p̂1 or 1 · p̂th .
If δλ1

1k is defined to take the sign of this dot product, then limit points are easily traversed.

Noting these caveats, Crisfield’s cylindrical arc-length constraint [76] performs very robustly for both fundamental
and parametric paths, including the traversal of turning and snap-back points, and is therefore explicitly used for the
problems studied in Section 3 and in Section 4.

2.2.2. Parametric paths
Any equilibrium solution on a fundamental path can be used as a starting point for path-following in one of the

secondary parameters, λs ∈ Λs. In this manner, the sensitivity of the baseline design to variations in λs is assessed.
For example, if the basic topology of the problem is to be kept constant we may parametrise a specific geometric
dimension as L(λs) = L0 (1 + cλs), which can be used to analyse the effects of thickness, length or height on the
structural behaviour. Equally, we may add a mode shape, β, to the nodal coordinates of the basic geometry, x0,
such that x0(λs) = x0 + cλsβ, which can be useful for imperfection sensitivity studies or parametrically varying the
topology of the problem. Similarly, we may study the effects of constitutive properties, such as Young’s modulus
E(λs) = E0 (1 + cλs). Finally, a secondary loading ps = cλs p̂s may be added to study the combined load case
p = λ1p̂1 + cλs p̂s, which may be interpreted as studying the effect of either loading under the perturbing influence of
the other. In all cases, it may be necessary to scale the secondary parameter, λs, by a factor, c, such that the order of
magnitude of the two parameters is similar, i.e. O(λ1) ≈ O(λs).

The methods introduced in the previous section can readily be adapted to parametric paths. In the current notation
there are three different combinations of λ1 and λs, with λ1 held constant in each case. For combined mechanical
loading

F(u, λ1, λs) = f (u) − λ1p̂1 − λs p̂s = 0. (21)

Alternatively, for fundamental mechanical loading with secondary thermal loading, geometrical changes or constitu-
tive variations

F(u, λ1, λs) = f (u, λs) − λ1p̂1 = 0. (22)

Finally, for fundamental thermal loading with secondary thermal loading, geometrical changes or constitutive
variations

F(u, λ1, λs) = f (u, λ1, λs) = 0. (23)

Introducing the scalar arc-length constraint N (u, λs) and applying Newton’s method[
F,u F,λs

N⊤

,u N,λs

] {
δu
δλs

}
= −

{
F(u, λ1, λs)

N (u, λs)

}
, (24)
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where δu and δλs are iterative corrections of the nodal displacements and secondary parameter, respectively. For
secondary linear and proportional mechanical loading F,λs = −p̂s. Otherwise, F,λs is calculated from a forward
difference scheme,

F,λs = f,λs ≈
f (u, λ1, λs + ε|λs|) − f (u, λ1, λs)

ε|λs|
, (25)

where ε is a small perturbation parameter typically in the range of 10−5 to 10−8. Finally, the caveats regarding
Crisfield’s cylindrical arc-length constraints raised in the previous section are equally valid here.

2.2.3. Single-parameter non-critical subset paths
To illustrate the general concepts of continuing in load–displacement and parameter–displacement space, the

equations in the previous two sections are purposely restricted to fundamental parameter λ1 and secondary parameter
λs. These concepts are now combined to generalise the notation to any path with only one varying parameter
(fundamental or parametric), also known as a non-critical subset paths in one parameter [40]. Hence,

F(u, λ1,Λ
i
s,Λ

e
s) = f (u,Λi

s) − λ1p̂1 − P̂sΛ
e
s = 0, (26)

for fundamental mechanical loading, and

F(u, λ1,Λ
i
s,Λ

e
s) = f (u, λ1,Λ

i
s) − P̂sΛ

e
s = 0, (27)

for fundamental thermal loading. P̂s is a matrix of column-wise secondary load vectors, and Λi
s and Λe

s parametrise
internal and external force vectors, respectively. Each parameter takes the value that describes a baseline design and
then one target parameter, λt ∈ (λ1,Λ

i
s,Λ

e
s), is varied to trace a particular equilibrium path, while all other parameters

Λc ⊂ (λ1,Λ
i
s,Λ

e
s), λt ̸∈ Λc are held constant. Hence,

GN (u, λt,Λc) ≡

⎛⎝F(u, λt,Λc)
Λc − Σ
N (u, λt)

⎞⎠ = 0, (28)

where Σ is the set of prescribed constant parameters and N (u, λt) = n⊤
u u+nλtλt−σ is a general arc-length constraint.

Linearisation yields⎡⎣ F,u F,λt F,Λc

0(p−1)×n 0(p−1)×1 1(p−1)×(p−1)

n⊤

u nλt 01×(p−1)

⎤⎦ ⎧⎨⎩ δu
δλt
δΛc

⎫⎬⎭ = −

⎧⎨⎩F(u, λt,Λc)
Λc − Σ
N (u, λt)

⎫⎬⎭ (29)

where 1 is the identity matrix. The 2nd row and 3rd column of the iteration matrix can generally be omitted as
δΛc = 0 by definition. Similar to classical arc-length methods [76], the iteration matrix in Eq. (29) is never inverted
in its entirety but split into the blocks shown, and then solved via a partitioning procedure and back-substitution such
that only F,u ≡ KT needs to be inverted [76] (see Appendix).

2.2.4. Pinpointing singular points
Pinpointing singular points is useful for evaluating the exact value of snap-through loads (to within a certain

tolerance) and for ascertaining the existence of bifurcations onto other branches. Furthermore, unfolding of these
singular points with respect to other parameters can provide invaluable insights into imperfection and design parameter
sensitivity.

Remark (Singular Points). Using a Taylor series expansion, a small change in the energy potential, Π (u,Λ), of a
conservative elastic system is

δΠ =
∂Π

∂u
δu +

1
2
δu⊤

∂2Π

∂u2 δu + O(δu3) = F⊤δu +
1
2
δu⊤KTδu + O(δu3), (30)

with all parameters Λ held constant. By definition, F(u,Λ) = 0 for equilibrium, such that the sign of δu⊤KTδu
is a sufficient condition for ascertaining the stability of the equilibrium state for small perturbations, δu. Assuming
a symmetric tangential stiffness matrix, KT, a singular point on an equilibrium path with target parameter λt ∈ Λ
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and unvaried parameters Λc, may thus be determined by δu⊤KTδu = 0 for all arbitrary δu. This coincides with the
condition that

det KT(u∗, λ∗

t ,Λ
∗

c ) = 0 ⇒ KT(u∗, λ∗

t ,Λ
∗

c )φ = µφ = 0. (31)

Here, µ = 0 is the eigenvalue that corresponds to the critical eigenvector φ at the singular point (u∗, λ∗
t ,Λ

∗
c ).

Parametrising the equilibrium equations further in terms of an arc-length parameter, s, and differentiating with respect
to this curve parameter gives

Ḟ(u(s), λt(s),Λc(s)) = F,uu̇ + F,λt λ̇t + F,ΛcΛ̇c = KTu̇ + F,λt λ̇t = 0, (32)

where a superimposed dot denotes differentiation with respect to s. Given the symmetry of KT and the singularity
condition Eq. (31), pre-multiplication of Eq. (32) by φ⊤ at a singular point yields[

φ⊤F,λt (u
∗, λ∗

t ,Λ
∗

c )
]
λ̇t = 0. (33)

Hence, on an equilibrium path in one parameter (fundamental or parametric) there can only be two types of singular
points—a limit point, i.e. a local extremum with λ̇t = 0 and φ⊤F,λt ̸= 0, or a bifurcation point, i.e. an intersection
between two or more distinct equilibrium curves with φ⊤F,λt = 0. For numerical consistency, the latter condition is

typically implemented as φ⊤F,λt
∥φ∥2·∥F,λt ∥2

< ε with 10−5 < ε < 10−2. The choice of ε is not calculated automatically
but from experience based on a “good guess” of 10−3. From the equilibrium curve, it is typically straightforward to
ascertain if a critical point should be a limit point or not, and in the rare cases where the choice of ε = 10−3 is not
sufficient, the tolerance can be reduced ad hoc.

The second derivative F̈ = 0 can be used to determine the two tangent vectors at a simple bifurcation point – one
tangent to the primary path and the other tangent to the secondary bifurcated path – and also to classify the type
of bifurcation—pitchfork, transcritical, isola formation point or cusp point. The disadvantage is that the derivative
KT,u needs to be computed approximately via finite differences, with an associated penalty in computational cost.
For computational efficiency, these calculations are not performed herein and the interested reader is directed to
Refs. [84,88].

To pinpoint singular points, an augmented system of the form described in general by Eq. (7) is formulated. A
number of different auxiliary equations are defined in the literature for this purpose, e.g. g = µ = 0, g = det(KT) = 0,
g = KTφ = 0, etc., as outlined in the comparative review by Melhem & Rheinboldt [89]. The advantage of this
method is that the singularity condition forces Newton’s method to converge to the singular point directly in a single
increment. Although bisection techniques have also been developed [59,88], they require the calculation of multiple
intermediate equilibrium points to hone in on the singularity and are thus computationally more expensive.

In the present finite element setting, the nullvector approach described by Wriggers et al. [80,81] – generally first
presented by Seydel [90] and Moore & Spence [91] – and the minimally augmented method introduced by Griewank
& Reddien [92], and further developed by Eriksson [61] and Battini et al. [93], are used. The minimally augmented
technique is chosen by default in the developed computer program, and the nullvector method used as an alternative
option when the former has trouble converging.

The nullvector method is based on the fact that the tangential stiffness matrix, F,u ≡ KT, has at least one zero
eigenvalue, µ = φ⊤KTφ, at a singular point. Therefore, the associated eigenvector, φ, is in the nullspace of KT. Thus,
the augmented system is written as

G(u, λt,Λc, φ) ≡

⎛⎝ F(u, λt,Λc)
KT(u, λt,Λc)φ

∥φ∥2 − 1

⎞⎠ = 0, (34)

where the norm of the nullvector is required to eliminate the trivial solution φ = 0. Eq. (34) features (2n+1) equations
in (2n + p) variables, and the (p −1) extra equations required to solve the system are implicit in the definition that the
added control parameters in Λc are held constant, i.e. Λc j = Σ j for j = 2 . . . p (see Eq. (29)). The resulting system of
equations can therefore be solved in the usual manner via Newton’s method for a singular point, (u∗, λ∗

t ,Λ
∗
c ), as well

as the associated nullvector, φ. The nullvector can then be used to distinguish between limit and bifurcation points via
Eq. (33). The solution process follows the typical predictor–corrector scheme with the iteration matrix derived from
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the linearisation of Eq. (34),⎡⎢⎢⎢⎣
KT F,λt 0

(KTφ),u (KTφ),λt KT

01×n 0
φ⊤

∥φ∥2

⎤⎥⎥⎥⎦
⎧⎨⎩δu

δλt
δφ

⎫⎬⎭ = −

⎧⎪⎨⎪⎩
F(u, λt,Λc)

KT(u, λt,Λc)φ
∥φ∥2 − 1

⎫⎪⎬⎪⎭ . (35)

Following the reasoning by Wriggers & Simo [81], approximate directional derivatives of the tangential stiffness
matrix can be computed as follows,

(KTφ),u ≈
KT(u + ε∥u∥2φ, λt,Λc) − KT(u, λt,Λc)

ε∥u∥2
, (36)

(KTφ),λt ≈
KT(u, λt + ε|λt|,Λc) − KT(u, λt,Λc)

ε|λt|
φ, (37)

with ε in the range of 10−5 to 10−8. As noted before, a seemingly robust default choice is ε = 10−8, although it is
possible that at some bifurcation points Eqs. (36)–(37) may become sensitive to changes in ε, and in these cases a
central difference scheme may be more appropriate for good convergence of Newton’s method.

When λt is a primary or secondary displacement-independent mechanical loading parameter, (KTφ),λt vanishes
and F,λt equals −p̂1 or −p̂s. Otherwise, F,λt is approximated by

F,λt = f,λt ≈
f (u, λt + ε|λt|,Λc) − f (u, λt,Λc)

ε|λt|
. (38)

When solving the system of equations in Eq. (35), the iteration matrix is not inverted in its entirety, but split into
individual blocks (as shown), and solved by a partitioning procedure in such a manner that only the symmetric
tangential stiffness matrix needs to be factorised (see Appendix and Wriggers & Simo [81] for the general algorithm).
This means that the computational cost of pinpointing is similar to that of a standard arc-length continuation step,
especially for large degree-of-freedom systems, where the factorisation of KT dominates.

The present computer implementation proceeds as follows. While continuing along a fundamental or parametric
equilibrium path, the 20 smallest magnitude eigenvalues of the tangential stiffness matrix are monitored. This can
be done efficiently for large yet sparse tangential stiffness matrices by using the FORTRAN Arnoldi package
ARPACK [94], embedded in many popular numerical computing environments such as MATLAB and SCIPY. When
the number of negative eigenvalues between two consecutive converged equilibrium solutions changes, a singular
point must exist between these two converged equilibria and the pinpointing procedure is started. The number of
singular points present depends on the change in the number of negative eigenvalues, N ∗. The set of eigenvectors, Φ,
associated with the smallest N ∗ eigenvalues at the last converged equilibrium state, (ul, λl

t,Λ
l
c), are then extracted,

and each φ j
∈ Φ for j = 1 . . . N ∗ consecutively seeded alongside (ul, λl

t,Λ
l
c) as the starting point for the iterative

pinpointing procedure. In our experience, this eigenmode seeding procedure works reliably for one singular point, as
well as multiple distinct or coincident (compound) singular points. If the solver does not converge, then an additional
equilibrium point between the two previously determined equilibria is determined and the process is repeated. This is
typically the case when the nonlinearity between the last converged equilibrium state, i.e. the starting point, and the
singular point is too high.

In the minimally augmented method [92], the vector equation KTφ = 0 is replaced by the scalar equation

µ = φ⊤KTφ = 0, (39)

where µ is an eigenvalue of the symmetric tangent stiffness matrix, KT, and φ the associated eigenvector. By definition,
µ must vanish at a singular point such that φ becomes a nullvector of KT. The scalar equation (39) is derived by
pre-multiplying the eigenvalue problem, KTφ = µφ, with φ⊤ and enforcing the normalisation constraint φ⊤φ = 1.

Rather than computing the singular point (u∗, λ∗
t ,Λ

∗
c ) and the associated nullvector φ simultaneously (as is done

in the nullvector method), µ and φ are determined separately. Thus, as a first step the eigenvalue problem is written
as an iterative problem [93]

KTφk+1 = µk+1φk, (40a)

φ⊤

k+1φk = 1, (40b)
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where the latter equation (40b) now constrains the updated eigenvector to be parallel to the previous one with
∥φk+1∥2 = ∥φk∥2 = 1. Note, by pre-multiplying Eq. (40a) with φ⊤

k+1 and heeding Eq. (40b), we recover the scalar
condition µk+1 = φ⊤

k+1KTφk+1. Eqs. (40a)–(40b) are rearranged into matrix form as follows:[
−KT φk

φ⊤

k 0

] {
φk+1
µk+1

}
=

{
0
1

}
. (41)

Eq. (41) is solved efficiently using a partitioning procedure by first computing an immediate vector ϕ = K−1
T φk , and

then back-substituting to find µk+1 = 1/(φ⊤

k ϕ) and subsequently φk+1 = µk+1ϕ. With an arbitrary random starting
vector, φ0, the iteration scheme converges to the smallest magnitude eigenvalue and associated eigenvector typically
within 2–3 iterations. When starting the algorithm with an informed, non-arbitrary approximation of a particular
eigenvector, the solver refines the eigenvector and returns the associated eigenvalue often within a single iteration.

As a second step, the equilibrium equations are augmented with the scalar singularity condition of Eq. (39),

G(u, λt,Λc) ≡

(
F(u, λt,Λc)
µ(u, λt,Λc)

)
= 0. (42)

Eq. (42) features (n+1) equations in (n+ p) variables, and the (p−1) extra equations required to solve the system are
again implicit in that parameters Λc take prescribed values. A singular point (u∗, λ∗

t ,Λ
∗
c ) is calculated via Newton’s

method using the iteration matrix[
KT F,λt

µ⊤

,u µ,λt

] {
δu
δλt

}
= −

{
F(u, λt,Λc)
µ(u, λt,Λc)

}
. (43)

The differentials of the scalar singularity condition are computed via finite difference approximations,

µ,u ≈ φ⊤
KT(u + ε∥u∥2φ, λt,Λc) − KT(u, λt,Λc)

ε∥u∥2
, (44)

µ,λt ≈ φ⊤
KT(u, λt + ε|λt|,Λc) − KT(u, λt,Λc)

ε|λt|
φ, (45)

with ε in the range of 10−5 to 10−8. As mentioned previously, if the choice of ε = 10−8 does not provide good
convergence for some bifurcation points, then a central difference scheme may be used for better results. When λt is a
primary or secondary displacement-independent mechanical loading parameter, µ,λt vanishes and F,λt equals −p̂1 or
−p̂s. Otherwise, F,λt is approximated by Eq. (38). Eq. (43) is solved in a typical manner using a partitioning procedure

by first determining δu1 = −K−1
T F and δu2 = −K−1

T F,λt , and then back-substituting to find δλt = −
µ+µ⊤

,uδu1

µ,λt +µ⊤
,uδu2

and
subsequently δu = δu1 + δλtδu2.

The minimally augmented method therefore requires two iteration steps to be performed in succession—the main
iteration loop performed on Eq. (43) to converge the solution (u, λt) closer to a singular point, followed by an
embedded iteration loop via Eq. (41) to update the eigenvalue and eigenvector for each iteration of (u, λt). The
pinpointing algorithm is again initiated by consecutively seeding a particular eigenvector φ0 = φ j

∈ Φ, j = 1 . . . N ∗

in the set of eigenvectors, Φ, associated with the smallest N ∗ eigenvalues of KT that changed sign between the
last two converged equilibrium solutions (see description for the nullvector method on page 13). Hence, the N ∗

eigenvalues and eigenvectors at the last converged equilibrium state, obtained in a computationally efficient manner
from ARPACK [94], serve as starting points for pinpointing a set of N ∗ singular points.

2.2.5. Branch-switching at bifurcations
There are many ways of branch-switching between two equilibrium paths that intersect at a bifurcation point

(see [59]). In the case of a simple degeneracy, i.e. exactly one zero eigenvalue with two paths intersecting at a
bifurcation point, switching from one path to the other is relatively straightforward. The simplest method, based
on the notion of the nullvector,2 is to inject the critical eigenvector into the displacement field at the bifurcation

2 If the eigenvector φ spans the nullspace of the tangential stiffness matrix, i.e. KTφ = 0, and an arbitrary load vector f is in the columnspace of
KT such that KTu = f has a solution u = ū, then u = ū + αφ is also a solution for any α ∈ R.
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point [58]. Thus, the critical eigenvector at the bifurcation point, φ, is used as a perturbation to the solution, u∗, at the
bifurcation point as follows:

up
= u∗

+ ζ
φ

∥φ∥2
, (46)

such that the perturbed configuration up is now used as the predictor (with δΛ = 0) for the first step on a new path
starting from the bifurcation point. The magnitude of the scaling factor, ζ , is determined from

ζ = ±
∥u∗

∥2

ρ
, (47)

where the sign of ζ controls the direction of path-following along the bifurcated path, and ρ is a problem-specific
constant in the range of 1–100. If ρ is too small, then the algorithm may continue on the primary path, and if ρ is too
large, then the solution may not converge. Thus, it is beneficial to implement a restarting function into the algorithm
that varies the magnitude of ρ for certain scenarios, although in our experience, ρ = 100 works reliably for most
cases.

At a compound singularity, i.e. exactly two or more zero eigenvalues, the situation is more complicated. Within the
framework of the eigenvector insertion method, Wagner & Wriggers [58] propose a linear combination of the critical
eigenvectors to perturb the known equilibrium state,

up
= u∗

+

N∗
c∑

j=1

ζ j
φ j

∥φ j
∥2

, (48)

where φ j is the j th eigenvector of a total of N ∗
c compound/coincident critical eigenvectors. The drawback of this

approach is that there is no general method for determining different combinations of the scaling factors, ζ j , such that
the solver lands on all paths branching from the bifurcation point. Numerous methods for dealing with compound
bifurcations have been proposed [95–97], although the perturbation method by Huitfeldt [98] seems to be the most
promising, as it can determine the full set of equilibrium states in the vicinity of a bifurcation point by means of a
simple algorithm that integrates nicely into the generalised path-following framework (see Section 2.3.1).

2.3. Path-following in two parameters

Section 2.2 restricted the notation to a single varying parameter, λt, such that path-following was only possible
along fundamental or parametric paths. It is often useful and/or computationally efficient to vary two parameters
simultaneously. The example of a branch-connecting path, alluded to in the previous Section 2.2.4, is particularly
useful for determining all bifurcation branches at compound bifurcation points, but can also be used to uncover
adjacent equilibrium paths such as broken pitchforks. Evaluation of a branch-connecting path, described in
Section 2.3.1, requires continuation in two parameters simultaneously—a fundamental and a perturbing load.
Furthermore, computing the sensitivity of singular points with respect to a second parameter, be it a secondary loading,
geometry or constitutive property, is achieved more efficiently by tracing the locus of singular points with respect to the
secondary parameter, than by evaluating a set of full fundamental paths for different values of the secondary parameter.
Such curves are known as foldlines or critical subset paths [61], and the exposition here distinguishes between tracking
general singular points in Section 2.3.2, valid for both limit and bifurcation points, and bifurcation points only in
Section 2.3.3. Finally, the theory concludes in Section 2.3.4 with the computation of tangent spaces needed for the
predictor step of Newton’s method, which is trivially done for non-singular problems, such as branch-connecting
paths, but more intricate for foldlines. The following sections on foldlines follow closely from Eriksson [61], although
more recently Moghaddasie & Stanciulescu [99] and Rezaiee-Pajand & Moghaddasie [100] have proposed similar
algorithms using different auxiliary singularity conditions.

2.3.1. Branch-connecting paths
Huitfeldt [98] introduced the notion of using a perturbing load vector to search for adjacent equilibrium states

of a baseline system. This approach is very useful for determining all secondary bifurcation paths branching from a
compound bifurcation, but can equally be used to determine non-trivial solutions that are not connected to a known
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Fig. 3. Two equilibrium surfaces parametrised by a fundamental loading parameter, λ1, and a perturbing loading parameter, λs, intersecting to
produce a simple bifurcation. All equilibrium states of the unperturbed system within the vicinity of the bifurcation point, y∗, are determined by
tracing the intersection of the solution manifold and a hypersphere describing a region around the bifurcation point.

primary path. For the simple case of a fundamental mechanical loading parameter, λ1, and a perturbation parameter,
λs, a perturbed equilibrium state is defined as follows:

F(y) ≡ F(u, λ1, λs) = f (u) − λ1p̂1 − λs p̂s = 0, (49)

where p̂s is an arbitrary perturbing vector, not in the same direction as the fundamental loading vector, i.e. p̂1·p̂s
∥p̂1∥2·∥p̂s∥2

̸=

1. It is obvious from Eq. (49) that the unperturbed equilibrium equation is recovered for λs = 0. The intersection of the
two-dimensional solution manifold, described by Eq. (49), and a hypersphere of radius γ centred around a bifurcation
point, y∗

= (u∗, λ∗

1, 0), is a closed one-dimensional curve (see Fig. 3). This curve can be traced by defining the
hypersphere as an auxiliary equation,

G(y) ≡

(
F(y)(

y − y∗
)⊤ (

y − y∗
)
− γ 2

)
= 0. (50)

This system can be solved via Newton’s method once a pertinent arc-length constraint, N (u, λ1, λs) = n⊤
u u+nλ1λ1 +

nλsλs − σ , is defined. Hence, by linearising Eq. (50)⎡⎢⎣ KT −p̂1 −p̂s

2
(
u − u∗

)⊤ 2
(
λ1 − λ∗

1

)
2λs

n⊤

u nλ1 nλs

⎤⎥⎦
⎧⎨⎩ δu

δλ1
δλs

⎫⎬⎭ = −

⎧⎪⎨⎪⎩
F(u, λ1, λs)(

y − y∗
)⊤ (

y − y∗
)
− γ 2

N (u, λ1, λs)

⎫⎪⎬⎪⎭ . (51)

As this curve is followed, additional equilibrium solutions of the unperturbed system, either on a fundamental or
bifurcated equilibrium path, are determined every time λs changes sign (an approximate solution to λs = 0 can
be determined by linear interpolation). Due to the fact that this curve connects solutions on adjacent, yet distinct
equilibrium curves, it is often called a branch-connecting path.

In an analogous way to Crisfield’s spherical and cylindrical arc-length constraints [76], Eriksson [40] reports that
the simplified cylindrical auxiliary equation g = (u − u∗)⊤ (u − u∗) − γ 2 performs more robustly than the spherical
equation. Eriksson [40] further recommends choosing one of the critical eigenvectors at the bifurcation point as the
perturbing vector, p̂s, and taking a value γ ≈ 0.1∥u∗

∥2 as the radius.
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The advantage of the branch-connecting approach is that the computational expense is basically the same no matter
how many additional equilibrium paths exist. Furthermore, the same algorithm can also be used to determine the
broken-away curve of a broken pitchfork bifurcation. In fact, the method can generally be used to uncover adjacent
equilibrium paths that do not intersect with a primary loading path.

2.3.2. General foldlines
Path-following of foldlines could be posed as a general two-parameter problem with target parameters Λt =

(λt1, λt2), Λt ⊂ Λ. In a structural mechanics setting, however, our main interest is to compute the sensitivity
of critical points on a fundamental load–displacement path with respect to an added parameter. The equilibrium
equations, F(u, λ1, λs,Λc) = 0, are therefore written in terms of the active parameters λ1 and λs—the former being
a fundamental loading parameter (thermal or mechanical), and the latter parametrising a secondary loading, a change
in geometry or a variation in constitutive properties. The baseline problem corresponds to the baseline secondary
parameter, λs = λb

s , and all other parameters, Λc ⊂ Λ, that define the problem are held constant at their baseline
values. The choice of secondary parameter, λs ∈ Λs, can be changed one at a time, such that a system with parameters
p > 2 is framed as a collection of individual problems, each with p = 2.

Depending on the nature of λ1 (mechanical or thermal loading) and λs (secondary loading or changes to the
structure), the equilibrium equations can be written in one of three forms as defined by Eqs. (21)–(23). The foldline
algorithm then constrains the equilibrium equations to a curve that unfolds a baseline singular point with respect to
another parameter, i.e. a curve describing λ∗

1 = λ∗

1(λs). The unfolding of limit and bifurcation points often results in a
sequence of singular points of the same nature, limit and bifurcation, respectively. For the classic pitchfork bifurcation
of the elastica, however, small geometric imperfections can break the pitchfork, thereby transforming the bifurcation
point into a limit point. This means that for specific values of the secondary parameter, the unfolding of limit and
bifurcation points can lead to sequences of singular points of the opposite nature. The foldline algorithm presented in
this section can handle both types of singular points, such that sequences of limit points only, bifurcation points only
and combinations of limit and bifurcation points can be traced.

In the present computational implementation both the nullvector and minimally augmented methods (see
Section 2.2.4) are used to formulate the auxiliary singularity condition required to trace along a foldline. The difference
to the pinpointing procedure for individual singular points is that λs is now introduced as a second parameter to be
varied. This means that an additional equation needs to be specified to uniquely solve the system. As with all path-
following techniques, this equation takes the form of a path-following constraint, and either Crisfield’s cylindrical [76]
or Riks’ hyperplane constraint [47] may be used for this purpose. In general, the arc-length constraint may be written
as N (u, λ1, λs) = n⊤

u u + nλ1λ1 + nλsλs − σ , where σ is a constant that constrains the arc-length.
For the nullvector method, the general augmented system of Eq. (7) reduces to

GN (u, λ1, λs,Λc, φ) ≡

⎛⎜⎜⎜⎝
F(u, λ1, λs,Λc)

KT(u, λ1, λs,Λc)φ
∥φ∥2 − 1

N (u, λ1, λs)

⎞⎟⎟⎟⎠ = 0. (52)

Eq. (52) features (2n +2) equations in (2n + p) variables, and the (p −2) extra equations required to solve the system
are implicit in the definition that the parameters Λc are held constant, i.e. Λc j = Σ j for j = 3 . . . p. Starting from a
singular state, (u∗, λ∗

t ,Λ
∗
c ), with associated critical eigenvector, φ, on a fundamental equilibrium path of the baseline

problem, λs = λb
s , a locus of singular points is continued using Newton’s method,⎡⎢⎢⎢⎢⎢⎣

KT F,λ1 F,λs 0
(KTφ),u (KTφ),λ1

(KTφ),λs KT

01×n 0 0
φ⊤

∥φ∥2

n⊤

u nλ1 nλs 01×n

⎤⎥⎥⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

δu
δλ1
δλs
δφ

⎫⎪⎪⎬⎪⎪⎭ = −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(u, λ1, λs,Λc)

KT(u, λ1, λs,Λc)φ
∥φ∥2 − 1

N (u, λ1, λs)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (53)

Approximate directional derivatives of the tangential stiffness matrix, KT, are computed using Eqs. (36) and (37).
If the directional derivatives of the equilibrium equations, F,λ1 and F,λs , are not equal to displacement-independent
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mechanical load vectors, −p̂1 and −p̂s, respectively, then approximate directional derivatives are computed using
Eq. (38).

In the same manner, the secondary parameter, λs, is introduced into the minimally augmented system of Eq. (42),
and the system further augmented using an arc-length constraint. Hence,

GN (u, λ1, λs,Λc) ≡

⎛⎝F(u, λ1, λs,Λc)
µ(u, λ1, λs,Λc)

N (u, λ1, λs)

⎞⎠ = 0, (54)

which defines (n + 2) equations in (n + p) variables with the (p − 2) extra equations being implicit in the definition
that control parameters Λc are constants. Linearisation of Eq. (54) gives⎡⎢⎣KT F,λ1 F,λs

µ⊤

,u µ,λ1 µ,λs

n⊤

u nλ1 nλs

⎤⎥⎦
⎧⎨⎩ δu

δλ1
δλs

⎫⎬⎭ = −

⎧⎨⎩F(u, λ1, λs,Λc)
µ(u, λ1, λs,Λc)

N (u, λ1, λs)

⎫⎬⎭ , (55)

where approximate directional derivatives of the scalar singularity equation are computed using Eqs. (44) and (45).
When either λ1 or λs are displacement-independent mechanical loading parameters, µ,λ1 = 0 and µ,λs = 0,
respectively, and the directional derivatives F,λ1 = −p̂1 and F,λs = −p̂s. Otherwise, F,λ1 and F,λs are approximated
using Eq. (38). As described in Section 2.2.4, the eigenvalue, µ, and eigenvector, φ, need to be updated at the end of
every iteration of Eq. (55) using the iterative eigenvalue problem in Eq. (41).

To solve the nullvector and minimally augmented systems of Eqs. (53) and (55) efficiently, a partitioning procedure
is utilised such that only the tangential stiffness matrix needs to be factorised. The partitioning procedure is entirely
algebraic (as shown in Appendix), and for a more detailed incremental–iterative bordering algorithm the interested
reader is directed to Moghaddasie & Stanciulescu [99] and Rezaiee-Pajand & Moghaddasie [100].

2.3.3. Foldlines of bifurcation points
In some cases, it is useful to constrain the foldline solver purely to bifurcation points, e.g. when foldlines of limit

and bifurcation points intersect and we want to prevent the solver from jumping from one curve to the other. To
explicitly constrain the solver to symmetry-breaking bifurcation points, the equilibrium equations are perturbed by a
vector ϕ that is antisymmetric with respect to the symmetry in the displacement vector u [44]. The perturbing vector
ϕ remains constant throughout the iterations of a foldline increment, and is chosen as the nullvector of the previously
converged increment along the foldline. The magnitude of the asymmetry is controlled by a scalar variable, τ , and the
additional equation h = u⊤φ = 0 enforces orthogonality of the displacement vector and nullvector throughout the
equilibrium iterations. The unperturbed equilibrium equations are recovered for τ = 0, and this is input as an initial
predictor to start the equilibrium iterations. In our experience, τ rarely exceeds 10−7 throughout the iterative corrector
procedure.

The set of coupled equations, describing a foldline of bifurcation points using the nullvector method, is

GN (u, λ1, λs,Λc, φ, τ ) ≡

⎛⎜⎜⎜⎜⎜⎜⎝
F(u, λ1, λs,Λc) + τϕ

KT(u, λ1, λs,Λc)φ
∥φ∥2 − 1

u⊤φ

N (u, λ1, λs)

⎞⎟⎟⎟⎟⎟⎟⎠ = 0, (56)

with the following linearised system used in Newton’s method:⎡⎢⎢⎢⎢⎢⎢⎢⎢⎣

KT F,λ1 F,λs 0 ϕ

(KTφ),u (KTφ),λ1
(KTφ),λs KT 0n×1

01×n 0 0
φ⊤

∥φ∥2
0

φ⊤ 0 0 u⊤ 0

n⊤

u nλ1 nλs 01×n 0

⎤⎥⎥⎥⎥⎥⎥⎥⎥⎦

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩
δu
δλ1
δλs
δφ

δτ

⎫⎪⎪⎪⎪⎬⎪⎪⎪⎪⎭ = −

⎧⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎩

F(u, λ1, λs,Λc) + τϕ

KT(u, λ1, λs,Λc)φ
∥φ∥2 − 1

u⊤φ

N (u, λ1, λs)

⎫⎪⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎪⎭
. (57)
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For the minimally augmented method, both the eigenvalue problem and the augmented equilibrium equations need
to be perturbed. The perturbed iterative eigenvalue problem is⎡⎢⎣−KT φk u

φ⊤

k 0 0

u⊤ 0 0

⎤⎥⎦
⎧⎨⎩φk+1

µk+1
hk+1

⎫⎬⎭ =

⎧⎨⎩0
1
0

⎫⎬⎭ , (58)

where pre-multiplication of the first row, KTφk+1 = µk+1φk + hk+1u, by φ⊤

k+1 and application of the second row,
φ⊤

k φk+1 = 1, and third row, u⊤φk+1 = 0, returns the scalar condition µk+1 = φ⊤

k+1KTφk+1. Eq. (58) is solved
efficiently using a partitioning procedure, by first computing immediate vectors ρ = K−1

T φk and ν = K−1
T u, then

back-substituting to find µk+1 =
1

φ⊤
k (ρ−ν

u⊤ρ

u⊤ν
)

and hk+1 = −
u⊤ρ

u⊤ν
µk+1, and finally computing φk+1 = µk+1ρ + hk+1ν.

Note that u does not change in Eq. (58) because the state, (u, λ1, λs), is updated in a separate iterative procedure of
the augmented equilibrium equations. These augmented equilibrium equations are

GN (u, λ1, λs,Λc, τ ) ≡

⎛⎜⎜⎜⎝
F(u, λ1, λs,Λc) + τϕ

µ(u, λ1, λs,Λc)

u⊤φ

N (u, λ1, λs)

⎞⎟⎟⎟⎠ = 0, (59)

which are solved in the following manner using Newton’s method,⎡⎢⎢⎢⎣
KT F,λ1 F,λs ϕ

µ⊤

,u µ,λ1 µ,λs 0

φ⊤ 0 0 0

n⊤

u nλ1 nλs 0

⎤⎥⎥⎥⎦
⎧⎪⎪⎨⎪⎪⎩

δu
δλ1
δλs
δτ

⎫⎪⎪⎬⎪⎪⎭ = −

⎧⎪⎪⎪⎨⎪⎪⎪⎩
F(u, λ1, λs,Λc) + τϕ

µ(u, λ1, λs,Λc)

u⊤φ

N (u, λ1, λs)

⎫⎪⎪⎪⎬⎪⎪⎪⎭ . (60)

The eigenvalue, µ, and eigenvector, φ, are updated at the end of every iteration of Eq. (60) using the iterative
eigenvalue problem in Eq. (58).

All directional derivatives in the augmented systems Eqs. (57) and (60) are calculated using the expressions
referenced in the previous section, and are again solved efficiently using an algebraic partitioning procedure (see
Appendix). For this purpose, the bordering algorithm presented in Refs. [44,99,100] may also be used as a template.

2.3.4. Tangent vectors to curves
The evaluation of the tangent space is important for predicting the direction of new solutions along a solution path.

In a multi-parametric setting, the tangent space can also be used to determine the direction of greatest descent, i.e. the
parameter or combination of parameters that has the greatest effect on the load-carrying capacity. The tangent space,
T, of the general augmented system, G(y) = 0, as defined in Eq. (6), is given by the nullspace of the differential
matrix,

G,yT = 0. (61)

The dimension of T depends on the number of equations and the number of variables, y, in the augmented system,
G(y). As outlined in Section 2.1, G generally describes a system of n equilibrium equations and r auxiliary equations
in (n + q + p) variables (n degrees-of-freedom, q auxiliary variables and p parameters). In this general setting,
the nullspace is (q + p − r )-dimensional. For the one-dimensional subset curves studied here, however, we define
r = q + p − 1 such that the nullspace is typically one-dimensional and therefore describes the tangent direction to
the subset curve. At a singular point the nullspace may be of higher dimension due to the singularity of KT within G,y,
such that the direction of the curve is not unique, e.g. two or more tangent directions at a bifurcation point.

First, we address the case of non-critical subset curves (q = 0) with possibly more than one parameter (p ≥ 1).
The tangent space is now a function of y = (u,Λ) and defined by the differential matrix of Eq. (5):

G,yT ≡

[
KT F,Λ

g,u g,Λ

] {
τ u

τΛ

}
= 0, (62)
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with a non-singular tangential stiffness matrix, KT, such that a single tangent vector, τ = [τ⊤
u , τ⊤

Λ]⊤, spans the
nullspace, T. Solving the first row of Eq. (62),

τ u = −
(
K−1

T F,Λ

)
τΛ = TuτΛ, (63)

where each of the p columns in Tu corresponds to a displacement vector associated with a specific parameter, Λi ∈ Λ,
set to unity and all other parameters equal to zero. Hence, τΛ = 1i and each column i in Tu describes the displacement
response of the structure to an applied load vector −F,Λi . The relationship between the different parameters in τΛ is
established by solving the second row of Eq. (62) and substituting Eq. (63),

g,uτ u + g,ΛτΛ =
(
g,uTu + g,Λ

)
τΛ = 0. (64)

For one-dimensional subset curves, Eq. (64) defines r = p − 1 equations in p parameters and thus we require one
additional equation to uniquely compute the curve tangent. The simplest solution, and the one implemented here, is to
define a unit value for one of the tangent components in τΛ. This constrains the tangent vector to a unique direction but
leaves its magnitude undefined up to a scalar factor. Many readers will be familiar with the partitioning procedure of
classical arc-length solvers in load–displacement space (r = 0 and p = 1), whereby a solution to KTδu− p̂1δλ1 = −F
is written as δu = δu1 + δλ1δu2, with δu2 = K−1

T p̂1 the tangent displacement vector (the only column of Tu) and δλ1
assigned a value of unity.

For critical subset curves (foldlines), Eq. (63) has no unique solution because the tangent stiffness matrix, KT, is
singular at a limit or bifurcation point. As discussed by Eriksson [61,62], the important consideration then becomes
which columns i of F,Λ are in the range of KT. Returning to Eq. (63), we know that the equation KTτ u = −F,Λi has a
solution, τ u = τ ′

u + αφ for α ∈ R, if F,Λi is in the range of KT, i.e. φ⊤F,Λi = 0. This condition is formally enforced
by subtracting from F,Λi its projection in the direction of the nullvector φ. Hence,

KT

(
τ ′

ui
+ αφ

)
= −

(
1 − φφ⊤

)
F,Λi , (65)

where F′

,Λi
=

(
1 − φφ⊤

)
F,Λi is always in the range of KT because for φ⊤φ = 1 we have

φ⊤F′

,Λi
=

(
φ⊤

− φ⊤φφ⊤
)

F,Λi = 0. (66)

By choosing the particular solution, τ ′
ui

, to be orthogonal to the nullvector, we can combine the condition φ⊤τ ′
ui

= 0
with Eq. (65) to write a system of simultaneous equations[

KT φ

φ⊤ 0

] {
τ ′

ui
Π

}
= −

{
F,Λi

0

}
, (67)

where we have defined the projection of F,Λi on the critical eigenvector as Π = −φ⊤F,Λi , and made use of the
fact that αKTφ = 0. The system in Eq. (67) is invertible because the column- and rowspace of KT are expanded by
the nullvector. By solving this system for each control parameter, i = 1 . . . p, we can assemble each displacement
response, τ ′

ui
, into the i th column of a tangent displacement matrix T′

u such that the tangent displacement vector is,

τ u = T′

uτΛ + αφ. (68)

Naturally, Eq. (68) needs to satisfy the auxiliary equations (second row of Eq. (62)),

g,uτ u + g,ΛτΛ =
(
g,uT′

u + g,Λ

)
τΛ + αg,uφ = 0. (69)

Eq. (69) defines r = p − 1 equations in p + 1 unknowns (p parameters and α), and therefore two more equations are
needed. The first equation is the trivial case of prescribing a unit value for one of the tangent components in τΛ. The
second equation is derived from pre-multiplying the first row of Eq. (62) with φ⊤ and heeding φ⊤KT = 0. Hence,

φ⊤KTτ u + φ⊤F,ΛτΛ ≡ φ⊤F,ΛτΛ = 0. (70)

By introducing a unit value for one of the tangent components in τΛ, Eq. (70) defines a unique proportional relation
between all parameter values.

For most analyses, Eqs. (67), (69) and (70) can be solved for a unique tangent vector. In cases where g,uφ = 0
or φ⊤F,Λ = 0, to within a predefined numerical tolerance, the system of equations is singular (see Eriksson [62]),
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such that the tangent vector is not uniquely defined. In particular, if g,uφ = 0, then α cannot be determined in
Eq. (69). Similarly, when φ⊤F,Λ = 0 we lose Eq. (70) such that there is one free variable in the system. In both
these cases, we set α = 0 and solve for τΛ using Eq. (69) with one parameter component assigned to unity. A
non-unique tangent vector can, for example, occur at a hilltop-branching point, where a limit point and a bifurcation
point coincide (two tangent directions). This is typically the case when a structure has been optimised to fail in
two modes simultaneously. Due to the non-uniqueness of the tangent vector, it is more difficult to trace a locus of
hilltop-branching points accurately, but an approximate method that bounds the foldline within a certain tolerance is
possible (see Eriksson [61]).

When using the augmented system for bifurcation points (see Section 2.3.3), some of the non-uniqueness problems
are eliminated because limit points are excluded explicitly from the tangent space. Considering the relevant augmented
system in Eq. (57), the scalar condition of Eq. (70) is now transformed into

φ⊤F,ΛτΛ + ττφ
⊤ϕ = 0, (71)

which is not trivially satisfied when φ⊤F,Λ = 0 due to the presence of the slack variable tangent component ττ .
Similarly, the auxiliary equation (69) is augmented by the condition that

φ⊤τ u = φ⊤
(
T′

uτΛ + αφ
)

= φ⊤T′

uτΛ + α = 0, (72)

where Eq. (68) has been used for τ u . Thus, even if g,uφ vanishes in Eq. (69), α still features in auxiliary equation (72)
and the system is non-singular.

3. The toggle frame: a canonical example

With the algorithms described above, a comprehensive investigation of structural stability and design parameter
sensitivity can be performed. We start from an idealised model with predefined geometry, material properties and
loading, and evaluate the fundamental load–displacement behaviour, including pinpointing of all relevant singular
points. Additional non-critical and critical subset curves are then traced by starting from a chosen saved solution on
the fundamental path. Hence, in addition to the idealised situation, the sensitivity to variations in certain modelling
assumptions can be investigated, either as small variations of an imperfection sensitivity analysis or as larger variations
to explore the surrounding design space.

As an example, consider the snap-through equilibrium path of a centrally loaded toggle frame, originally analysed
by Eriksson [62], with clamped ends as shown in Fig. 4a, modelled using finite strain Reissner beam elements [101].
Note that no units are provided for this particular example, because they are arbitrary for the purposes of this
illustrative example. The toggle frame initially deforms symmetrically on the fundamental equilibrium path but this
deformation mode becomes unstable at a symmetry-breaking bifurcation just before the maximum limit point on the
curve. Because the connected nonsymmetric bifurcation path, branching from the bifurcation point, is unstable, the
toggle frame snaps dynamically into the inverted stable shape by means of this nonsymmetric mode. As shown in
Fig. 4a, the generalised path-following algorithm detects and then computes the location of all singular points exactly
(to within a predefined numerical precision), and then automatically branches onto the bifurcated path to provide a
complete picture of the nonlinear behaviour.

Fig. 4a restricts path-following to the classical displacement–load space. To illustrate generalised path-following
capabilities, Fig. 4b extends the analysis to changes in the height, H , of the toggle frame. Fig. 4b shows an isometric
view in displacement–load–height space of the fundamental and bifurcation paths discussed above, and two additional
parametric paths. For these parametric paths, the applied load is held constant at P = 37.4 and P = 64.8, respectively,
and the relationship between height (H ) and central displacement (w) traced using an arc-length solver. These
parametric paths can be useful when the design load on the toggle frame is fixed and changes in the displacement
want to be explored as a function of the toggle frame height (or any other parameter).

By imposing a singularity condition in the generalised path-following algorithm, the locus of limit and bifurcation
points can be traced illustrating how changes in the height of the toggle frame affect the load–displacement solution
of these singular points. The utility of these foldlines is threefold. First, they can be used to identify interesting
points such as (i) the coincidence of limit and bifurcation points – the hilltop-branching points at H = 0.567 and
H = 0.581 – or (ii) points where bifurcation and limit points cease to exist—the cusp catastrophes at H = 0.506
and H = 0.346. These points are clearly marked in the orthographic projections of Fig. 4c (w vs. H ) and Fig. 4d
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(a) (b)

(c) (d)

Fig. 4. (a) Fundamental and bifurcation equilibrium paths of load (P) versus central displacement (w) for a toggle frame of height H = 0.65;
(b) Isometric view of the fundamental and bifurcation paths in displacement–load–height space, two additional parametric paths that show the
relationship between height (H ) and central displacement (w) at applied loads of P = 37.4 and P = 64.8, and the locus of limit and bifurcation
points with changing height; (c) and (d) Orthographic projections of (b) in displacement–height and load–height space, respectively, that clearly
denote cusp catastrophes and hilltop-branching points. (Note that no units are defined for this particular example, because they are arbitrary for the
purposes of this illustrative example. Deformation mode shapes are not to scale.)

(P vs. H ). Second, foldlines can be used in design studies to determine the sensitivity of singular points with respect
to design parameters without having to perform computationally expensive parametric studies. Finally, foldlines can
be used for optimisation purposes. For example, the displacement at the first instability load can be maximised by
reducing the height of the toggle frame to coincide with the hilltop-branching point at H = 0.567 (see Fig. 4c).

4. Bistable composite laminates for morphing applications

Fibre-reinforced composite materials play a fundamental role in enabling shape-morphing because their orthotropy
can be exploited to design structures with high stiffness in one direction, typically the loading direction, and low
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Table 1
Typical material properties for a carbon/epoxy composite.

E11 [GPa] E22 [GPa] υ12 [-] G12 [GPa] α11
[
K−1] α22

[
K−1] Ply thickness [mm]

161 11.38 0.32 5.17 −1.810 ×10−8 31.0 ×10−6 0.1311

stiffness in another direction, a potential actuating direction. Modern technology even allows fibres to be steered in
smooth curvilinear trajectories such that high- and low-stiffness regions can be connected seamlessly [6,102]. In this
manner, composites create the opportunity for servo-elastic tailoring. The laminated nature of advanced composites
also facilitates a union of materials with dissimilar thermal expansion coefficients which can be used to build devices
that exhibit large shape changes in response to variations in the surrounding temperature [103]. When layers of
fibre-reinforced plastic are laminated non-symmetrically, e.g. into a laminate of two layers with perpendicular fibre-
directions, and then cooled to room temperature after curing in an oven, differences in thermal expansion between
layers cause warping into curved configurations [104]. At room temperature such non-symmetric laminates are often
cylindrical and can be snapped between two inverted shapes. As such, the nature of laminated composites allows
residual stresses to be coupled conveniently with the geometric nonlinearity of curved shells to design bistable
[105–109] or even tristable shell structures [29,38].

The main aim herein is to show that generalised path-following is particularly well-suited to modelling and
designing morphing structures of arbitrary geometry, loading and constitutive properties. This is illustrated here by
means of a classical example problem from the literature (see Refs. [104,33,110]). A flat nonsymmetric cross-ply
laminate that is cooled-down from cure to room temperature initially deforms into a saddle-like shape but very soon
bifurcates into one of two cylindrical solutions. At room temperature, the ensuing cylindrical panel can be snapped
from one cylindrical shape into its inverted counterpart, thereby creating a bistable plate that is useful for morphing
applications. The associated snap-through behaviour is intricate with multiple instability points, and its full complexity
is exposed here for the first time (Section 4.1). Finally, the phase diagram of bistability can be altered significantly by
introducing initial curvature during curing (Section 4.2).

4.1. The initially flat laminate

Consider a four-layer [902/02] square carbon/epoxy plate with material properties shown in Table 1, generic in-
plane dimensions L = L x = L y and fully clamped at its planar midpoint. As a baseline model, we assume panel
dimensions L x = L y = 0.25 m, although the effect of varying these dimensions is investigated later. The composite
laminate is discretised into a 43 × 43 node mesh of 196 fully integrated 16-node, total Lagrangian shell elements
using the shell director parametrisation of Ramm [111] (two rotations per node, no drilling around director). The
effects of shear and membrane locking is minimised by using cubic isoparametric interpolation and by refining the
mesh sufficiently until convergence with respect to the results by Pirrera et al. [33] is obtained, who used a 51 × 51
node mesh of 2500 reduced integration 4-node S4R elements in the commercial finite element software ABAQUS.

As a first load step, the post-cure cool-down of the originally flat [902/02] laminate from 200 ◦C to room
temperature of 20 ◦C is simulated. Fig. 5a shows the behaviour of the laminate in terms of the absolute value of
the change in temperature |dT | = [0, 180] K and the out-of-plane displacement w of one of the corners of the
laminate. On the fundamental equilibrium path the laminate cools into a saddle shape with zero transverse deflection
of the corners. However, this fundamental saddle shape soon becomes structurally unstable at a temperature change
of dT = −4.15 K. The eigenmode associated with this bifurcation point is cylindrical, meaning that, as cooling
proceeds, the laminate transitions in a structurally stable manner from the initial saddle shape into a semi-cylinder at
room temperature. By nature of being a symmetric pitchfork bifurcation, this cylindrical shape can take one of two
shapes (shown in Fig. 5a), curving up in one direction or curving down in the orthogonal direction. Fig. 5a shows that
there are further bifurcation points on the fundamental saddle-shape path, but because the branches emanating from
these points are all structurally unstable, they are not explored in more detail herein. However, as is shown later, these
additional bifurcation points are important for the snap-through behaviour.

Upon cooling to room temperature (dT = −180 K), snap-through from one cylindrical shape (up or down) to
the other (down or up, respectively, with the curvature rotated through 90◦) is initiated by applying a transverse point
load at each of the four corners of the laminate. In the generalised path-following algorithm this loading is readily
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Fig. 5. (a) Pitchfork bifurcation diagram of an unsymmetric [902/02] laminate. Upon cool-down from cure temperature at 200 ◦C the laminate
initially deforms into a saddle shape, but this deformation mode is structurally unstable beyond a change in temperature of −4.15 K (all mode
shapes not drawn to scale). Beyond this temperature, a symmetry-breaking cylindrical shape is added as a perturbing eigenmode such that at room
temperature of 20 ◦C, the laminate takes one of two cylindrical mode shapes; (b) Snap-through diagram from one cylindrical shape to the inverted
and rotated cylindrical shape at room temperature. As the inset shows, the snap-through event is not governed by a simple limit point. Rather, the
panel loses stability at (L1) and then finally snaps to the inverted and rotated shape at bifurcation point (B1); (c) Snap-through equilibrium path
with additional bifurcation branch connecting bifurcation point (B1) and its symmetrically inverted analogue (B1i); (d) Snap-through equilibrium
path with additional bifurcation branch from (B2) to (B3i). The bifurcation branch includes six localised stable regions with two of the associated
deformation modes shown.

incorporated as an additional parameter such that the load–displacement plot of snap-through can be superimposed
on the previously defined pitchfork diagram. Fig. 5b shows this plot in three dimensions, with the transverse force
F at one corner plotted versus the associated transverse displacement w at room temperature dT = −180 K. The
load–displacement diagram shows the typical characteristics of a bistable structure with three displacement-axis
intercepts, two stable and one unstable, and the necessary limiting maxima where the structure loses stability and
snaps from one stable shape to the other. Inset A of Fig. 5b confirms the computational findings of Pirrera et al. [33],
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and the experimental findings by Potter et al. [107], that snap-through is in this case characterised by a multi-snap
event—the equilibrium path reaches a first limit point (L1) causing it to snap to the adjacent stable region, at which
point the load increases slightly before the structure loses stability entirely and snaps into the inverted and rotated
shape. Contrary to the computational findings by Pirrera et al. [33], this loss of stability does not occur at the second
maximum (L3) but at a preceding bifurcation point (B1). The semi-analytical Ritz model by Pirrera et al. used the
continuation solver EPCONT but bifurcation point (B1) was not recognised by the solver due to symmetry conditions
imposed on computational efficiency grounds. The ABAQUS model used by the same authors simply did not possess
the capabilities to detect this bifurcation point. In fact, inset A of Fig. 5b shows two further bifurcation points (B2)
and (B3) that are here determined for the first time. Finally, inset B shows a fourth limit point (L4) in the region of
the unstable self-equilibrated state of zero applied corner force and zero corner displacement. Due to the symmetry
between the two cylindrical deformation modes, it is no surprise that the snap-through equilibrium path is symmetric
about the origin. Therefore, the four limit points and three bifurcation points have corresponding inverted points, which
in the following are identified by the letter “i”, e.g. (L1i), (L2i), (B1i), etc., and referred to as “inverted analogues”.

The branches emanating from bifurcation points (B1), (B2), (B3) and their inverted analogues are now explored
in detail. Fig. 5c shows the bifurcation branch emanating from (B1), which connects to the corresponding bifurcation
point (B1i) of the inverted and rotated cylindrical shape. This bifurcation path is unstable throughout, apart from a very
localised region close to, but disconnected from, (B1) and (B1i). Furthermore, the regions of the curve close to (B1)
and (B1i) are tangled and punctured by multiple other limit and bifurcation points. It would be possible to explore the
secondary branches emanating from these bifurcation points, but as most of these are likely to be unstable and only
add further complexity to the equilibrium diagrams, they are not continued further in this work. Fig. 5d presents the
path branching from bifurcation point (B2). This branch does not connect to its inverted analogue (B2i) but to (B3i)
instead. An identical path mirrored about the origin (symmetric about both axes) also exists which connects (B2i) with
(B3), thereby maintaining the expected symmetry of the bifurcation points. These bifurcation branches are again quite
tangled close to points (B2) and (B2i), and multiple secondary bifurcation points exist that are not explored further
herein. However, there exist six localised regions that are structurally stable. The mode shapes for the two centrally
located regions on either side of w = 0 are shown and these are rotationally out-of-phase by 180◦. The six localised
regions of stability are surrounded by unstable regions and can, in an experimental setting, not be reached by simply
increasing the applied loading. Instead, a force of 1 N could be applied to all four edges and the laminate then forced
manually into the depicted mode shape by hand or ideally using a mould. Forcing the structure into this shape requires
traversal of an energy hump, but once the required energy threshold has been passed, the laminate should naturally
snap into the envisioned shapes.

Given the unstable nature of the depicted bifurcation paths, the reader might be led to believe that information
regarding these paths is of no use to the practising engineer. However, it is well known that such subcritical bifurcations
can lead to localisation phenomena [72] and/or extreme sensitivity to initial imperfections [52] that can detrimentally
effect the load carrying capability of the structure. Furthermore, the unstable regions can play a crucial role in dynamic
behaviour. Hence, an awareness of the existence of unstable post-buckling branches is necessary if such bistable
laminates are to be used safely and reliably in engineering design.

A pertinent question to ask at this point is how the multi-stability of the laminate changes with temperature. Hence,
if the laminate only cools to 50 ◦C rather than to room temperature, then how is the snap-through behaviour affected?
As the snap-through behaviour is governed by limit and bifurcation points on the snap-through equilibrium path, we
can use the limit point and bifurcation point continuation capability to determine how each of the previously identified
points (L1)–(L4), (B1)–(B3) and their inverted analogues change with temperature. Indeed, Fig. 6a reveals that many
of these points are directly related to bifurcation points on the fundamental cool-down path of Fig. 5a. Individual limit
point and bifurcation point loci are shown in more detail in Fig. 6b–6d.

Fig. 6b shows that limit point (L1) and its inverse analogue (L1i) arise as a direct continuation of the first
bifurcation point on the fundamental cool-down path. This is not surprising as without cooling beyond this first
critical temperature, the two cylindrical shapes do not exist, and hence there is no snap-through between them. It is
also evident that the transverse corner forces at limit loads (L1) and (L1i) increase monotonically in magnitude with
increased post-cure cooling, meaning that the greater the degree of post-cure cooling, the greater the required force
to snap between the two cylindrical shapes. Furthermore, limit points (L1) and (L1i) remain the first singular points
throughout the entire temperature range and are therefore expected to initiate snap-through at all times.

Fig. 6b–6c show that all three bifurcation points (B1)–(B3) and their inverted analogues (B1i)–(B3i) arise as a
result of instabilities on the fundamental cool-down path. What is interesting is that bifurcation points (B2) and (B3)
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(c) (d)

Fig. 6. (a) Locus of all limit points (L1)–(L4), bifurcation points (B1)–(B3) and their inverted analogues with varying cool-down temperature;
(b)–(d) Detailed plots of limit point and bifurcation point loci with individual features of interest.

arise concurrently at a double bifurcation point as shown in the inset of Fig. 6c. On a snap-through diagram (F vs. w)
bifurcation points (B2)/(B3i) and (B3)/(B2i) first appear at the two cusp catastrophes dT = −17.0 K as four unique
points. With further cooling to dT = −17.9 K two of these bifurcation points, (B3) and (B3i), then coincide at a
single point. Note that the connection of (B2) to (B3i) and (B3) to (B2i), depicted in the loci of bifurcation points
of Fig. 6c, mirrors their connection by the bifurcation branches on the snap-through diagram of Fig. 5d. Finally,
bifurcation points (B1) and (B1i) arise on the fundamental cool-down path at dT = −19.8 K such that beyond this
temperature, the snap-through equilibrium path is governed by one pair of limit points, (L1) and (L1i), and three pairs
of bifurcation points, (B1)/(B1i)-(B3)/(B3i).

On the other hand, limit points (L2)/(L2i) and (L3)/(L3i) do not arise because of an instability on the fundamental
cool-down path. Fig. 6d shows that limit points (L2) and (L3) are connected, and by symmetry, so must be their
inverted analogues (L2i) and (L3i). As the extent of post-cure cool-down is decreased, these two pairs of limit points
move closer to each other, finally colliding and vanishing at the cusp catastrophe at dT = −155.1 K. This means
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(a) (b)

Fig. 7. (a) Isometric view of the locus of first instability points on the fundamental cool-down path with changing laminate side length. The plot
also shows that the two cylindrical shapes become shallower with decreasing side length; (b) An orthographic view of figure (a) in side length
versus temperature change space. As the side length decreases, there is an exponential increase in cooling required to induce a bistable laminate.

that the multi-snap event described above does not exist for cool-down temperatures dT > −155.1 K. Fig. 6d shows
another cusp catastrophe, this time involving limit points (L4) and (L4i) which collide at the final bifurcation point on
the fundamental cool-down path dT = −167.7 K. Consequently, the localised feature of the snap-through equilibrium
path defined by limit points (L4) and (L4i) is straightened out for dT > −167.7 K.

Finally, we would like to investigate how the snap-through behaviour evolves with the side length, L , of the
laminate. The baseline design considered above featured a side length of L = L x = L y = 0.25 m and this is
now systematically varied in the generalised path-following algorithm using two possible approaches. From the cool-
down pitchfork diagram (Fig. 5a) we know that snap-through can only occur beyond the first instability point on
the fundamental cool-down path, i.e. when the panel transitions from the saddle-like shape to one of two cylindrical
shapes. Hence, we use the generalised path-following algorithm to trace the locus of this first pitchfork bifurcation
point with decreasing side length. Fig. 7a shows this locus as a three-dimensional view in L vs. dT vs. w space,
whereas Fig. 7b shows the same plot as an orthographic projection in L vs. dT space (w = 0 along the entire
locus). It is clear that the shorter the side length, the greater the degree of cool-down to initiate bistability. In fact, the
relationship between side length and the first critical temperature is exponential. Initially, decreasing the side length
only requires a marginal increase in cooling before the saddle-like shape becomes unstable, but for side lengths smaller
than 0.1 m, the degree of cooling required increases rapidly and approaches infinity as the side length tends to zero. In
a similar manner, we could pose the question of how the two cylindrical shapes at room temperature (dT = −180 K)
evolve with decreasing side length. The V-shaped response in Fig. 7a shows that with decreasing side length the
two cylindrical shapes become shallower until these shapes vanish completely for a side length of 0.038 m, which
incidentally, is the point where this path intersects the locus of bifurcation points. Hence, a representative panel with
side length of 0.035 m is not bistable at room temperature.

4.2. The initially curved laminate

Generally speaking, morphing devices require different snap-through responses and geometries for different
applications. First, curing the laminate on a curved tool plate allows the geometry to be adapted to different scenarios.
Second, by forcing the stress-free curing configuration to be curved the post-cure cooling phase does not lead to two
equal and opposite cylindrical shapes as is the case for a flat laminate. As a result, the snap-through and snap-back
response at ambient temperature can be adjusted to serve specific design requirements. Although the layup of the
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Table 2
Representative material properties for the carbon/epoxy composite studied in [34].

E11 [GPa] E22 [GPa] υ12 [-] G12 [GPa] α11
[
K−1] α22

[
K−1] Ply thickness [mm]

129.55 8.85 0.33 5.28 −2.26 ×10−6 23.4 ×10−6 0.2617

composite may also be changed to influence these characteristics, this approach changes the thickness and stiffness
of the laminate in a manner that may not be beneficial or intended in terms of overall component mass and structural
stiffness.

Previous papers studying the effect of initial curvature on the bistability of laminates, e.g. [34,112,113], have
studied the effect of curvature in a classic parametric manner. Here we show that the sensitivity of important features
– such as initiation of bistability – to initial curvature can be established more efficiently using generalised path-
following.

Consider a six-layer [03/903] square carbon/epoxy laminate with in-plane dimensions L x = L y = 0.23 m and
fully clamped at its planar midpoint. The laminate is cured on a curved tool plate with curvature of κy = −2.5 m−1

in the 90◦ fibre direction and κx = 0 m−1 in the 0◦ fibre direction. This problem is representative of the analytical and
experimental study presented by Eckstein et al. [34] only that in the present study, following Lamacchia et al. [28], the
temperature-independent material properties shown in Table 2 are assumed. The same mesh and elements as described
in the previous section are used to model the structure.

The initially curved plate is cooled through a temperature differential of dT = −180 ◦C from a stress-free curing
temperature of T = 180 ◦C. Because the original unstressed shape of the laminate is not flat the laminate does
not initially deform into a saddle shape upon cooling (see Section 4.1). Rather, as shown in Fig. 8a, the laminate
begins to flatten out its original cylindrical shape until this shape becomes unstable at a symmetry-breaking pitchfork
bifurcation. At this point (dT = −57 K) the laminate bifurcates into one of two twisted mode shapes which is
a transition mode that transforms the negative y-direction curvature at curing temperature into negative x-direction
curvature at ambient temperature. Hence, the second bifurcation point (dT = −126 K) connects the twisted mode with
the second cylindrical mode which is rotated by 90◦ with respect to the original curing curvature. The two bifurcation
temperatures T = 123 ◦C and T = 54 ◦C match closely with the findings of Lamacchia et al. [28] (T = 124 ◦C and
T = 54 ◦C).

By tracing a foldline of these bifurcation points we can establish the range of initial curvatures for which the
twisted transition mode exists. Fig. 8b shows that the two bifurcation points that mark the beginning and end of the
twisting transition mode move closer to each other and then collide at a cusp. For initial curvatures κy > −0.67 m−1,
the twisted transition mode ceases to exist, and for increasing negative curvature κy < −0.67 m−1 the temperature
differential between the two bifurcation points increases.

Fig. 8c shows the cooling behaviour of the flat laminate which, as discussed in the previous section, initially
deforms in a saddle shape and then transitions into one of two cylindrical modes. For the particular material properties
and geometric dimensions assumed here, this occurs for dT = −50 K and no higher-order bifurcations are present in
the temperature range analysed here. Fig. 8c also shows how the bifurcation point that initiates the saddle-to-cylinder
transition unfolds with variations in the initial curvature of the laminate. It is evident that this foldline does not intersect
the configuration κy = −2.5 m−1 in the temperature range considered here, and this is why no saddle-to-cylinder
transition exists for the curved laminate in Fig. 8a. Finally, this foldline is not symmetric with respect to the line
κy = 0 m−1, i.e. the flat laminate, as the non-symmetric stacking sequence of the laminate means that negative and
positive curvatures |κy | lead to different post-cure internal stresses.

The introduction of initial curvature breaks a geometric plane of symmetry such that the perfect pitchfork
bifurcation of the flat laminate is transformed into a broken pitchfork. Fig. 8d shows one of these broken pitchforks
for an initially curved laminate of κy = −0.25 m−1, alongside the perfect pitchfork of the flat laminate. As expected,
unfolding the saddle-to-cylinder bifurcation of the flat laminate with respect to κy (also shown in Fig. 8c) intersects the
broken away equilibrium path at a limit point. In general, Fig. 8 can be used intuitively to determine the combination
of post-cure cooling and initial curvature required to render a bistable structure.

5. Conclusions

Generalised path-following combines a numerical continuation algorithm with the geometrical versatility of
the finite element method. The advantage of this technique over most path-following algorithms in commercial
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Fig. 8. (a) Bifurcation diagram of an unsymmetric [03/903] laminate with initial cylindrical curvature κy = −2.5 m−1. Upon cooling from cure
temperature the laminate flattens out until the initial cylindrical shape becomes structurally unstable and transitions into one of two twisting modes.
These twisting modes connect to a second rotated cylindrical shape at ambient temperature (all mode shapes not drawn to scale); (b) Foldline
describing the variation of the two bifurcation points in (a) with respect to κy . Note that the twisting mode disappears for an initial curvature of
κy > −0.67 m−1; (c) Orthographic projection of (b) in temperature-curvature space. The cool-down equilibrium path and unfolding of the saddle-
to-cylinder bifurcation of the flat laminate are also shown; (d) Broken and unbroken pitchforks of an initially curved laminate (κy = −0.25 m−1)
and an initially flat laminate cooled from curing to ambient temperature.

finite element codes that trace curves in load–displacement space is that any parameter influencing the structure,
be it load, geometrical dimensions or constitutive properties, etc., can be followed on a multi-dimensional
solution manifold. This means that the sensitivity of critical points with respect to design parameters is efficiently
established by bifurcation tracking in parameter space. Hence, computationally expensive parametric studies, that
trace the full nonlinear equilibrium diagrams for many iterations of a baseline design, are replaced by the more
efficient process of tracing the locus of specific design points with respect to potentially any number of varying
parameters.
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Such a capability is especially useful for a new class of well-behaved nonlinear structures that exploit buckling
instabilities for novel functionality and shape adaptation. This is because tracking of the design-driving snap-through
instabilities and bifurcations enables rapid exploration of the design space. The present paper combines, adapts and
extends concepts introduced by Eriksson [40] and Salinger et al. [44] to apply them to the design of thermo-mechanical
multi-stable structures that are especially promising for the aerospace industry. The techniques outlined herein are
efficiently implemented in existing research codes or programming languages that have access to ARPACK [94], and
can even be programmed to function as a wrapper around existing codes [66].

We have shown that a generalised path-following algorithm is ideally suited to the analysis and design of bistable
composite laminates for shape-morphing applications. The results herein show that the full complexity of multi-
snap events is captured robustly by this algorithm, and that the ability to follow loci of singular points with respect
to additional parameters can yield invaluable insights into the underlying physics of multi-stable phenomena. The
bifurcation-tracking capability has been especially valuable to trace the boundary of bistable regions in parameter
space. Finally, the ability to branch-switch to additional bifurcation branches has revealed a number of localised
regions of stability, which could be exploited as intermediate shapes in a multi-event shape-adaptation process. Future
work will focus on exploiting these localised islands of stability for potential multi-shape adaptation.
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Appendix. Path-following

Equilibrium curves are evaluated using typical predictor–corrector schemes of the constrained Newton’s method
[47,76]. The equilibrium curve is “path-followed” by incrementally evaluating different solution points along the
curve. Fig. A.1 illustrates this concept schematically for a curve parametrised by two parameters, λ1 and λs. For such
a curve, the predictor is evaluated using the tangent space formulated in Section 2.3.4. The corrector is computed in
an efficient manner by algebraic partitioning—also known as a block elimination bordering algorithm [44,79].

For the general system defined in Eq. (7) with n displacement degrees-of-freedom, u, p parameters, Λ, and q
auxiliary variables, v, the corrector, δy = (δu, δΛ, δv), is computed from⎡⎢⎣F,u F,Λ 0n×q

g,u g,Λ g,v

N⊤

,u N⊤

,Λ 01×q

⎤⎥⎦
⎧⎨⎩δu

δΛ
δv

⎫⎬⎭ = −

⎧⎨⎩ F(u,Λ)
g(u,Λ, v)
N (u,Λ)

⎫⎬⎭ . (A.1)

The r = p + q − 1 auxiliary equations, g, can generally be split into q equations, gv , that pertain to the auxiliary
variables, v, and p−1 constraining equations, gc, that either constrain the magnitude of v and/or some of the parameters
in Λ. For example, when following foldlines in two parameters (see Section 2.3.2), the auxiliary variable, v, is the
eigenvector of the tangential stiffness matrix, F,u ≡ KT, with gv = KTv = 0 and gc = ∥v∥2 = 1. To reflect this
partitioning of g, we rewrite Eq. (A.1) as⎡⎢⎢⎢⎣

KT F,Λ 0n×q

gv,u gv,Λ gv,v

gc,u gc,Λ gc,v

N⊤

,u N⊤

,Λ 01×q

⎤⎥⎥⎥⎦
⎧⎨⎩δu

δΛ
δv

⎫⎬⎭ = −

⎧⎪⎪⎨⎪⎪⎩
F(u,Λ)

gv(u,Λ, v)
gc(u,Λ, v)

N (u,Λ)

⎫⎪⎪⎬⎪⎪⎭ . (A.2)

Solving the first row of Eq. (A.2) gives

δu = −K−1
T

(
F + F,ΛδΛ

)
≡ δu1 + δu2δΛ, (A.3)
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Fig. A.1. Schematic illustrating path-following along a solution curve using a typical predictor–corrector scheme. The solver starts from a known
equilibrium solution A and iteratively converges to a new solution B along the curve. This procedure is then repeated incrementally to progress
along the curve. The figure shows a spherical arc-length constraint but planar, cylindrical and elliptical constraints are equally possible.

where both δu1 and δu2 are now known quantities. Solving the second row of Eq. (A.2) yields

δv = −g−1
v,v

[
gv + gv,u (δu1 + δu2δΛ) + gv,ΛδΛ

]
= −g−1

v,v
[
gv + gv,uδu1 +

(
gv,uδu2 + gv,Λ

)
δΛ

]
≡ δv1 + δv2δΛ, (A.4)

where Eq. (A.3) has been used to replace δu, and both δv1 and δv2 are computable quantities using the inverse of
gv,v, which has dimensions q × q. In many cases, such as the foldline example given above, gv,v ≡ KT such that
solving Eqs. (A.3) and (A.4) relies on the inversion of the same matrix KT. Finally, the parameter corrections, δΛ, are
determined from the third and fourth rows of Eq. (A.2):[

gc,Λ + gc,uδu2 + gc,vδv2

N⊤

,Λ + N⊤

,uδu2

]
p×p

δΛ = −

{
gc + gc,uδu1 + gc,vδv1

N + N⊤

,uδu1

}
p×1

(A.5)

where Eqs. (A.3) and (A.4) have been used for δu and δv, respectively, and the system in Eq. (A.5) is solvable as
long as the preceding p × p matrix is invertible. In most cases, the system in Eq. (A.5) does not need to be inverted
numerically but can be solved algebraically a priori.
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