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1 Introduction

1.1 Fano 3-folds, Gorenstein rings and P
2×P

2

A Fano 3-fold is a complex projective variety X of dimension 3 with Q-factorial
terminal singularities and −KX ample. We construct several new Fano 3-folds, and
others which explain known phenomena. The anticanonical ring

R(X) =
⊕

m∈N
H0(X,−mKX )

of a Fano 3-fold X is Gorenstein, and provides an embedding X ⊂ wP in weighted
projective space (wps) that we exploit here, focusing on the case X ⊂ wP

7 of codi-
mension 4.

According to folklore, when seeking Gorenstein rings in codimension 4 one should
look to P

2×P
2 and P

1×P
1×P

1. Each embeds by the Segre embedding as a projec-
tively normal variety in codimension4withGorenstein coordinate ring (by [16, Section
5] since their hyperplane sections are subcanonical). We consider W = P

2×P
2,

expressed as

W
∼=−→ V :

⎛

⎝
2∧

⎛

⎝
x1 x2 x3
x4 x5 x6
x7 x8 x9

⎞

⎠ = 0

⎞

⎠ ⊂ P
8, (1)

or, in words, as the locus where a generic 3×3 matrix of forms drops rank. As part
of a more general theory of weighted homogeneous varieties, the case of P2×P

2 was
worked out by Szendrői [32], which was the inspiration for our study here.

The number of deformation families of Fano 3-folds is finite [20,21], and theGraded
RingDatabase (Grdb) [4,6] has a list of rational functions P(t) that includes allHilbert
series PX (t) = ∑

m∈N h0(−mKX )tm of Fano 3-folds with Pic(X) = Z ·(−KX ). (In
fact, we do not know of any Fano 3-fold whose Hilbert series is not on that list, even
without this additional condition.) An attempt at an explicit classification, outlined
in [2], aims to describe all deformation families of Fano 3-folds for each such Hilbert
series. All families whose general member lies in codimension � 2 are known [12],
and almost certainly those in codimension 3 are too [2,6]. An analysis of (Gorenstein)
projections [8,24,34] provides much of the classification in codimension 4, but it is
not complete, and codimension 4 remains at the cutting edge.

We use the methods of [8] freely, although we work through an example in detail
in Sect. 3 and explain any novelties as they arise.

1.2 The aims of this paper

We describe families of Fano 3-folds X ⊂ wP
7 whose equations are a specialisation

of the format (1); that is, they are regular pullbacks, as in Sect. 2. It is usually hard
to describe the equations of varieties in codimension 4—see papers from Kustin and
Miller [22] to Reid [31]—but if we decree the format in advance, then the equations
come almost for free, and the question becomes how to put a grading on them to give
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Fano 3-folds. Our results come in three broad flavours, which we explain in Sects. 4–6
and summarise here.

Section 4: Unprojecting Pfaffian degenerations. We find new varieties in P
2×P

2

format that have the same Hilbert series as known Fano 3-folds but lie in different
deformation families. From another point of view, we understand this as the unprojec-
tion analysis of degenerations of complete intersections, and this treatment provides
yet more families not exhibited by [8]. (The key point is that the unprojection divisor
D ⊂ Y does not persist throughout the degeneration Y � Y0, and so the resulting
unprojection is not a degeneration in a known family.)

For example, No.1.4 in Takagi’s analysis [33] exhibits a single family of Fano
3-folds with Hilbert series

P26989(t) = 1 − 3t2 − 4t3 + 12t4 − 4t5 − 3t6 + t8

(1 − t)7(1 − t2)
= 1 + 7t + 26t2 + 66t3 + · · · ;

this is number 26989 in the Grdb. Our P2×P
2 analysis finds another family with

ρX = 2, and a subsequent degeneration–unprojection analysis of the situation finds a
third family.

Theorem 1.1 There are three deformation families of Fano 3-folds X with Hilbert
series PX = P26989. Their respective general members X ⊂ P(17, 2) all lie in co-
dimension 4 with degree −K 3

X = 17/2 and a single orbifold singularity 1
2 (1, 1, 1),

and with invariants:

ρX e(X) h2,1(X) Construction N

Family 1 [33, 1.4] 1 −14 9 Sect. 3.1: c.i. unprojection 6
Family 2 2 − 16 11 Sect. 3.2: Tom3 5
Family 3 2∗ − 12 9∗ Sect. 3.3: Jer1,3 7

(The superscript ∗ in Family 3 indicates a computer algebra calculation.)

We prove this particular result in Sect. 3; the last two columns of the table refer to the
unprojection calculation (N is the number of nodes, as described in Sect. 3), which is
explained in the indicated sections. The Euler characteristic e(X) is calculated during
the unprojection following [8, Section 7] and the other invariants follow. We do not
know whether there are any other deformation families realising the same Hilbert
series PX = P26989(t).

We calculate the Hodge number h2,1(X) in Family 3 using Ilten’s computer pack-
age [19] for the computer algebra system Macaulay2 [17] following [15]: denoting
the affine cone over X by AX , [15, Theorem 2.5] gives

H2,1(X) ∼= (
T 1
AX

)
−1,

and this is exactly what [19] calculates (compare [5, Section 4.1.3]).
In this case, all three families lie in codimension 4. It is more common that the

known family lies in codimension 3 and we find new families in codimension 4.
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Thus the corresponding Hilbert scheme contains different components whose general
members are Fano 3-folds in different codimensions, a phenomenon we had not seen
before.

Further analysis of degenerations finds yet more new Fano 3-folds even where there
is no P

2×P
2 model; the following result is proved in Sect. 4.2.

Theorem 1.2 There are two deformation families of Fano 3-folds X with Hilbert
series PX = P548. Their respective general members X have degree −K 3

X = 1/15,
and are distinguished by their embedding in wps and Euler characteristics as follows:

X ⊂ wP e(X) # nodes

Family 1 X ⊂ P(1, 3, 4, 5, 6, 7, 10) − 42 8
Family 2 X ⊂ P(1, 3, 4, 5, 6, 7, 9, 10) − 40 9

In this case there is no P
2×P

2 model: such a model would come from a specialised
Tom unprojection, but the Tom and Jerry analysis outlined in Sect. 4.2 rules this out.

Section 5: Second Tom. The Big Table [9] lists all (general) Fano 3-folds in codi-
mension 4 that have a Type I projection. Such projections can be of Tom type or Jerry
type (see [8, 2.3]). The result of that paper is that every Fano 3-fold admitting a Type I
projection has at least one Tom family and one Jerry family. However in some cases
there is a second Tom or second Jerry (or both). Two of these cases were already
known to Szendrői [32], even before the Tom and Jerry analysis was developed.

Euler characteristic is of course constant in families, but whenever there is a second
Tom, the Euler characteristics of members of the two Tom families differ by 2. Theo-
rem 5.1 below says that in this case the Tom family with smaller Euler characteristic
always contains special members in P

2×P
2 format.

Section 6: No Type I projection. Finally, we find some Fano 3-folds that are harder
to describe, including some that currently have no construction by Gorenstein unpro-
jection. Such Fano 3-folds were expected to exist, but this is the first construction of
them in the literature we are aware of. It may be the case that there are other families
of such Fano 3-folds having Picard rank 1, but our methods here cannot answer that
question.

1.3 Summary of results

Our approach starts with a systematic enumeration of all possible P
2×P

2 formats
that could realise the Hilbert series of a Fano 3-fold after appropriate specialisation.
In Sect. 7, following [7,27], we find 53 varieties inP2×P

2 format that have the Hilbert
series of a Fano 3-fold. We summarise the fate of each of these 53 cases in Table 1; the
final column summarises our results, as we describe below, and the rest of the paper
explains the calculations that provide the proof.

The columns of Table 1 are as follows. Column k is an adjunction index, described
in Sect. 7.1, and columns a and b refer to the vectors in Sect. 2 that determine the
weights on the weighted P2×P

2. Column Grdb lists the number of the Hilbert series
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Table 1 53 Fano 3-fold Hilbert series in P
2×P

2 format (number of nodes is given as a superscript to
Tom/Jer)

k a b Grdb c T/J wP in Grdb codim 4 models in this paper

4 000 112 26989 4 P(17, 2) Tom5, Jer7 in P(17, 2)

5 000 122 20652 4 TTJ P(15, 23) Second Tom

5 001 112 20543 3 n/a P(15, 22) Tom7, Jer9 in P(15, 23)

5 001 112 24078 4 TTJ P(16, 2, 3) Second Tom

6 000 222 12960 4 TJ P(13, 25) Subfamily of Tom

6 001 122 16339 4 TTJJ P(14, 23, 3) Second Tom

7 001 123 11436 3 n/a P(13, 23, 3) Tom13 in P(13, 23, 32)

7 001 123 16228 4 TTJJ P(14, 22, 3, 4) Second Tom

7 011 122 11455 4 TTJJ P(13, 23, 32) Second Tom

8 001 223 11157 5 n/a P(13, 22, 32, 42) Bad 1/4 point

8 001 223 6878 4 TTJJ P(12, 23, 33) Second Tom

8 011 123 11125 4 TTJJ P(13, 22, 32, 4) Second Tom

9 001 233 5970 4 TTJJ P(12, 22, 33, 4) Second Tom

9 012 123 11106 4 TTJJ P(13, 22, 3, 4, 5) Second Tom

9 012 123 11021 4 TTJJ P(13, 2, 32, 42) Second Tom

9 012 123 5962 3 n/a P(12, 22, 33) Tom11, Jer13 in P(12, 22, 33, 4)

9 012 123 6860 4 TTJ P(12, 23, 32, 5) Second Tom

10 001 234 5870 4 TTJJ P(12, 22, 32, 4, 5) Second Tom

10 011 233 5530 4 TTJJ P(12, 2, 33, 42) Second Tom

10 012 124 10984 3 n/a P(13, 2, 3, 4, 5) Bad 1/4 point

10 012 124 5858 3 n/a P(12, 22, 32, 5) Tom13, Jer14 in P(12, 22, 32, 4, 5)

11 011 234 5306 4 TTJJ P(12, 2, 32, 42, 5) Second Tom

11 012 134 5302 3 n/a P(12, 2, 32, 42) Tom16 in P(12, 2, 32, 42, 5)

11 012 134 5844 3 n/a P(12, 22, 3, 4, 5) Bad 1/6 point and no 1/5

11 012 134 10985 4 TTJJ P(13, 2, 3, 4, 5, 6) Second Tom

12 012 234 1766 4 no I P(1, 2, 33, 42, 5) Quasismooth P
2×P

2 model

12 012 234 5215 4 TTJJ P(12, 2, 3, 42, 52) Second Tom

12 012 234 2427 4 TTJJ P(1, 22, 32, 4, 52) Second Tom

12 012 234 5268 4 TTJJ P(12, 2, 32, 4, 5, 6) Second Tom

13 001 345 1413 4 TTJJ P(1, 2, 32, 42, 52) Second Tom

13 012 235 5177 4 TJ P(12, 2, 3, 4, 52, 6) Bad 1/5 point

13 012 235 2422 4 TTJJ P(1, 22, 32, 4, 5, 7) Second Tom

14 011 345 5002 4 TTJJ P(12, 3, 42, 52, 6) Second Tom

14 012 245 5163 4 TTJJ P(12, 2, 3, 4, 5, 6, 7) Second Tom

14 012 245 1410 4 TJJ P(1, 2, 32, 42, 5, 7) Bad 1/4 point

14 013 235 4999 3 n/a P(12, 3, 42, 52, 6) Bad 1/4 point

14 013 235 1396 3 n/a P(1, 2, 32, 4, 52) Tom9, Jer11 in P(1, 2, 32, 4, 52, 6)

15 012 345 878 4 no I P(1, 32, 42, 52, 6) Quasismooth P
2×P

2 model
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Table 1 continued

k a b Grdb c T/J wP in Grdb codim 4 models in this paper

15 012 345 4949 4 TTJJ P(12, 3, 4, 52, 62) Second Tom

15 012 345 1253 4 TTJ P(1, 2, 3, 42, 52, 7) Second Tom

15 012 345 1218 4 TTJJ P(1, 2, 3, 4, 53, 6) Second Tom

15 012 345 4989 4 TTJJ P(12, 3, 42, 5, 6, 7) Second Tom

16 012 346 1186 4 TJJ P(1, 2, 3, 4, 52, 6, 7) Bad 1/5 point

17 012 356 648 4 no I P(1, 3, 42, 52, 6, 7) Bad 1/5 point

17 012 356 4915 4 TTJJ P(12, 3, 4, 5, 6, 7, 8) Second Tom

18 012 456 577 4 no I P(1, 3, 4, 52, 62, 7) Quasismooth but not terminal

18 012 456 645 4 TJ P(1, 3, 42, 5, 6, 72) Bad 1/4 point

18 012 456 4860 4 TTJJ P(12, 4, 5, 62, 72) Second Tom

19 012 457 570 4 TJJ P(1, 3, 4, 52, 6, 7, 8) Bad 1/5 point

20 012 467 4839 4 TTJJ P(12, 4, 5, 6, 7, 8, 9) Second Tom

22 012 568 1091 4 TJJ P(1, 2, 5, 6, 72, 8, 9) Bad 1/7 point

22 012 568 393 4 TJ P(1, 4, 52, 6, 7, 8, 9) Bad 1/4, 1/5 points

23 012 578 360 4 no I P(1, 4, 5, 6, 72, 8, 9) Bad 1/7 point

in [6], column c indicates the codimension of the usual model suggested there, and wP

its ambient space. ColumnT/J shows the number of distinct Tomand Jerry components
according to [8]. For example, TTJ indicates there are two Tom unprojections and one
Jerry unprojection in the Big Table [9]. We write ‘no I’ when the Hilbert series does
not admit a numerical Type I projection, and so the Tom and Jerry analysis does not
apply, and ‘n/a’ if the usual model is in codimension 3 rather than 4.

The final column describes the results of this paper; it is an abbreviation of more
detailed results. For example, Theorem 1.1 expands out the first line of the table, k = 4,
and other lines of the table that are not indicated as failing have analogous theorems
that the final column summarises. If the P2×P

2 model fails to realise a Fano 3-fold at
all, it is usually because the general member does not have terminal singularities; we
say, for example, ‘bad 1/4 point’ if the format forces a non-quasismooth, non-terminal
index 4 point onto the variety.

When theGrdbmodel is in codimension 3, we list which Tom and Jerry unprojec-
tions of a degeneration work to give alternative varieties in codimension 4, indicating
the number of nodes as a superscript and the codimension 4 ambient space. (We do
not say which Tom or Jerry since that depends on a choice of rows and columns.) In
each case the Tom unprojection gives the P2×P

2 model determined by the parameters
a and b. The usual codimension 3 model arises by Type I unprojection with number
of nodes being one more that that of the P2×P

2 Tom model.
When theGrdbmodel is in codimension 4with twoTomunprojections, theP2×P

2

alwaysworks to give the secondof theTomfamilies. The furtherTomand Jerry analysis
of the unprojection is carried out in [8] and we do not repeat the result here. When
the Grdb model is in codimension 4 with only a single Tom unprojection, the model
usually fails. The exception is family 12,960, which does work as a P2×P

2 model.
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There is also a case of a Hilbert series, number 11,157, where the Grdb offers a
prediction of a variety in codimension 5, but this fails as a P2×P

2 model.
In Sect. 7.1, we outline a computer search that provides the a, b parameters of

Table 1 which are the starting point of the analysis here. In Sect. 7.2, we summarise
the results of [32] that provide the most general form of the Hilbert series of a variety
in P2×P

2 format; that paper also discovered cases 11,106 and 11,021 of Table 1 that
inspired our approach here. First we introduce the key varieties of the P2×P

2 format
in Sect. 2.

2 The key varieties and weighted P
2×P

2 formats

The affine coneC(P2×P
2) onP2×P

2 is defined by the equations (1) onC9. It admits a
6-dimensional family ofC∗ actions, or equivalently six degrees of freedom in assigning
positive integer gradings to its (affine) coordinate ring. We express this as follows.

Let a = (a1, a2, a3) and b = (b1, b2, b3) be two vectors of integers that satisfy
a1 � a2 � a3, and similarly for the bi , and that a1 + b1 � 1. We define a weighted
P
2×P

2 as

V = V (a, b) =
⎛

⎝
2∧

⎛

⎝
x0 x1 x2
x3 x4 x5
x6 x7 x8

⎞

⎠ = 0

⎞

⎠ ⊂ P
8(a1 + b1, . . . , a3 + b3), (2)

where the variables have weights

wt

⎛

⎝
x0 x1 x2
x3 x4 x5
x6 x7 x8

⎞

⎠ =
⎛

⎝
a1 + b1 a1 + b2 a1 + b3
a2 + b1 a2 + b2 a2 + b3
a3 + b1 a3 + b2 a3 + b3

⎞

⎠ =.. aT+ b. (3)

Thus V (a, b) = C(P2×P
2)//C∗, where the C∗ action is determined by the grading.

We treat V (a, b) as a key variety for each different pair a, b. (Note that the entries of
a and b may also all lie in 1

2 + Z, without any change to our treatment here).

Proposition 2.1 V (a, b) is a 4-dimensional, Q-factorial projective toric variety of
Picard rank ρV = 2.

Proof First we describe a toric variety W (a, b) by its Cox ring. The input data is the
weight matrix (3), which is weakly increasing along rows and down columns. The key
is to understand the freedomone has to choose alternative vectors a(i), b(i), for i = 1, 2,
to give the samematrix. For example, if we choose a(1)

1 = 0, then b(1) is determined by

the top row, and then a(1)
2 and a(1)

3 are determined by the first column. Alternatively,

choosing b(2)
1 = 0 determines different vectors a(2) and b(2). Concatenating the a and

b vectors to give v(i) = (
a(i)
1 , . . . , b(i)

3

) ∈ Q
6 determines a 2-dimensionalQ-subspace

U = Ua,b ⊂ Q
6 together with a chosen integral basis 〈v(1), v(2)〉.

We defineW (a, b) as a quotient ofC6 byC∗×C
∗ as follows. In terms of Cox coor-

dinates, it is determined by the polynomial ring R in variables u1, u2, u3, v1, v2, v3,
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bi-graded by the columns of the matrix (giving the two C
∗ actions)

(
a(1)
1 a(1)

2 a(1)
3 b(1)

1 b(1)
2 b(1)

3

a(2)
1 a(2)

2 a(2)
3 b(2)

1 b(2)
2 b(2)

3

)
. (4)

The irrelevant ideal is B(a, b) = 〈u1, u2.u3〉 ∩ 〈v1, v2.v3〉, and

W (a, b) = (C6\V (B(a, b)))/C∗×C
∗.

If W (a, b) is well formed, then it is a toric variety determined by a fan (the image of
all non-irrelevant cones of the fan of C6 under projection to a complement ofU ). The
bilinear map

�a,b : W (a, b) → P(a1 + b1, a1 + b2, . . . , a3 + b3)
(u1, . . . , v3) 
→ (u1v1, u1v2, . . . , u3v3)

(5)

is an isomorphism onto its image V (a, b), and the conclusions of the proposition all
follow at once. (Q-factoriality holds since the Cox coordinates correspond to the 1-
skeleton of the fan, and so any maximal cone with at least five rays must contain all
ui or all vj , contradicting the choice of irrelevant ideal.)

If W (a, b) is not well formed, then, just as for wps, there is a different weight
matrix that is well formed and determines a toric variety W ′ isomorphic to W (a, b).
(See Iano-Fletcher [18, 6.9–20] for wps and Ahmadinezhad [1, 2.3] for the general
case.) The proposition follows using W ′. �
The well forming process used in the proof is easy to use. For example, if an integer
n > 1 divides every entry of some rowof theweightmatrix (4), thenwemay divide that
row through by n; the subspace U ⊂ Q

6 is unchanged by this. Or if an integer n > 1
divides all columns except one, then the corresponding Cox coordinate u appears only
as un in the coordinate rings of standard affine patches and we may truncate R by
replacing the generator u by un ; this does not change the coordinate rings of the affine
patches, and so the scheme it defines is isomorphic to the original (c.f. [1, Lemma 2.9]
for the more general statement). This multiplies the u column of (4) by n, changing
the subspace U ⊂ Q

6, and then we may divide the whole matrix by n as before. See
[1, 2.3] for the complete process.

Having said that, in practice we will work with non-well-formed quotients if they
arise, since they still admit regular pullbacks that are well formed, and the grading on
the target wps is something we fix in advance. More importantly for us here is that
well forming step u � un destroys the P2×P

2 structure, so we avoid it.

Example 2.2 Consider V (a, b) ⊂ P(26, 33) for a = (1, 1, 1), b = (1, 1, 2). Selecting
a(i) and b(i) as above gives bi-grading matrix

(
0 0 0 2 2 3
2 2 2 0 0 1

)
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on variables u1, u2, u3, v1, v2, v3. (We use the vertical line in the bi-grading matrix to
indicate the irrelevant ideal B(a, b).) The map � of (5) is then

W (a, b) → P(2, 2, 3, 2, 2, 3, 2, 2, 3) = P(26, 33)

(u1, . . . , v3) 
→ (u1v1, u1v2, . . . , u3v3),

since the monomials having gradings
(
2
2

)
and

(
3
3

)
, as necessary. The image V (a, b)

is defined by (2), and we often write the target weights of � in matching array:

⎛

⎝
2 2 3
2 2 3
2 2 3

⎞

⎠ .

In this case V (a, b) is not well formed: the locus V (a, b) ∩ P(26) has dimension 3
(by Hilbert–Burch), so has codimension 1 in V (a, b) but nontrivial stabiliser Z/2 in
the wps. Well forming the gradings using v23, as above, gives a new bi-grading

(
0 0 0 1 1 3
1 1 1 0 0 1

)
.

That process is well established, but has a problem: for this presentation W ′ of W ,
the Segre map is not bi-linear: u1v1 has bidegree

(
1
1

)
, but u1v3 has an independent

bidegree
(
3
2

)
.We could use u21v3 instead, which has proportional bidegree

(
3
3

)
. Taking

V ′ = Proj R, where R is the graded ring of forms of degrees
(
m
m

)
for m � 0, gives

W ′ → V ′ ⊂ P(16, 36), which is now well formed, but we have lost the codimension 4
property of V we want to exploit. In a case like this, we work directly with the non-
well-formed W (a, b) and its non-well-formed image V ⊂ P(26, 33).

We use the varieties V (a, b) as key varieties to produce new varieties from by regular
pullback; see [30, Section 1.5] or [7, Section 2]. In practical terms, that means writing
equations in the form of (1) inside a wps wP

7 where the xi are homogeneous forms
of positive degrees, and the resulting loci X ⊂ wP

7 are the Fano 3-folds we seek.
Alternatively, we may treat X as a complete intersection in a projective cone over

V (a, b), as in Sect. 3.2 below, where the additional cone vertex variables may have
any positive degrees; this point of view is taken by Corti-Reid and Szendrői in [14,
26,29,32]. It follows from this description that the Picard rank of X is 2.

3 Unprojection and the proof of Theorem 1.1

The Hilbert series number 26989 in the Graded Ring Database (Grdb) [6] is

P = 1 − 3t2 − 4t3 + 12t4 − 4t5 − 3t6 + t8

(1 − t)7(1 − t2)
.

In Sect. 3.1 we describe the known family of Fano 3-folds X (1) ⊂ P(17, 2) that realise
this Hilbert series, PX (1) = P . These 3-folds are not smooth: the general member of
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the family has a single 1
2 (1, 1, 1) quotient singularity. We exhibit a different family

in Sect. 3.2 with the same Hilbert series in P
2×P

2 format, and the subsequent “Tom
and Jerry” analysis yields a third distinct family in Sect. 3.3.

Recall (from [8, Section 4], for example) that if X ��� Y ⊃ D is a Gorenstein
unprojection and Y is quasismooth away from N nodes, all of which lie on D, then

e(X) = e(Y ) + 2N − 2. (6)

3.1 The classical 7×12 family

A general member of the first family can be constructed as the unprojection of a
coordinate D = P

2 inside a c.i. Y2,2,2 ⊂ P
6 (see, for example, Papadakis [23]). In

general, Y has six nodes that lie on D: in coordinates x, y, z, u, v, w, t of P6, setting
D = (u = v = w = t = 0), the general Y has equations defined by

⎛

⎝
A1,1 · · · A1,4
A2,1 · · · A2,4
A3,1 · · · A3,4

⎞

⎠

⎛

⎜⎜⎝

u
v

w

t

⎞

⎟⎟⎠ =
⎛

⎝
0
0
0

⎞

⎠ ,

for general linear forms Ai, j ; singularities occur when the 3×4 matrix drops rank,
which is calculated by evaluating the numerator of the Hilbert series of that locus at 1:

Psings = 1 − 4t3 + 3t4

(1 − t)3
= 1 + 2t + 3t2

1 − t
, so there are 1 + 2 + 3 = 6 nodes.

The coordinate ring of X has a 7×12 free resolution. If Ygen is a nonsingular small
deformation of Y , then e(Ygen) = −24 (by the usual Chern class calculation, since
Ygen is a smooth 2, 2, 2 complete intersection) so, by (6),

e(X) = −24 + 12 − 2 = −14.

This family is described by Takagi [33]; it is no. 1.4 in the tables there of Fano 3-folds
of Picard rank 1.

3.2 A P
2×P

2 family with Tom projection

Consider the P
2×P

2 key variety Va,b ⊂ P(16, 23), where a = ( 1
2 ,

1
2 ,

1
2

)
and b =( 1

2 ,
1
2 ,

3
2

)
. We define a quasismooth variety X (2) ⊂ P(17, 2) in codimension 4 as a

regular pullback.
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In explicit terms, in coordinates x, y, z, t, u, v, w, s on P(17, 2), a 3×3 matrix M
of forms of degrees

aT+ b =
⎛

⎝
1 1 2
1 1 2
1 1 2

⎞

⎠

gives a quasismooth X (2) = (
∧2M = 0) ⊂ P(17, 22); for example,

M =
⎛

⎝
x t s
y u x2 − z2 + t2 + v2

z v xt + yu + w2

⎞

⎠

works. Alternatively, note that X (2) may be viewed as a complete intersection

X (2) = C1Va,b ∩ Q1 ∩ Q2 ⊂ P(17, 23),

where C1Va,b ⊂ P(17, 23) is the projective cone over Va,b on a vertex of degree 1
(by introducing a new variable of degree 1), and Qi are general quadrics (which
are quasilinear, and so may be used to eliminate two variables of degree 2). The
general such X (2) is quasismooth (since in particular the intersectionmisses the vertex).
Described in these terms, C1Va,b has Picard rank 2, and so ρX (2) = 2.

Any such X (2) has a single quotient singularity 1
2 (1, 1, 1), at the coordinate point

Ps ∈ X (2) as the explicit equations make clear, since y, z, u, v are implicit functions
in a neighbourhood of Ps ∈ X (2). The Gorenstein projection from this point Ps has
image Y = (Pf N = 0) ⊂ P

6, where

N =

⎛

⎜⎜⎜⎝

0 x y z

t u v

x2 − z2 + t2 + v2 xt + yu + w2

0

⎞

⎟⎟⎟⎠

is an antisymmetric 5×5 matrix, and Pf N denotes the sequence of five maximal
Pfaffians of N . (The nonzero entries of N are those of MT with the entry s deleted.)

This Y contains the projection divisor D = (y = z = u = v = 0) and has five
nodes on D (either by direct calculation, or by the formula of [8, Section 7]). The
divisor D ⊂ Y is in Tom3 configuration: entries ni, j of the skew 5×5 matrix N
defining Y lie in the ideal ID = (y, z, u, v) if both i �= 3 and j �= 3; that is, all entries
off row 3 and column 3 of N are in ID . Thus, in particular, we can reconstruct X (2)

from D ⊂ Y as the Tom3 unprojection. It follows from Papadakis–Reid [25, Section
2.4] that ωX (2) = OX (2) (−1) and so X (2) is a Fano 3-fold.

It remains to show that e(X (2)) = −16, so that this Fano 3-fold must lie in a
different deformation family from the classical one constructed in Sect. 3.1.

The degree of the (1, 2) entry f1,2 of N is in fact zero while the degree of f4,5 is 2,
although each entry is of course the zero polynomial in this case; we denote this by
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indicating the degrees of the entries with brackets around those that are zero in this
case: ⎛

⎜⎜⎝

(0) 1 1 1
1 1 1
2 2

(2)

⎞

⎟⎟⎠ .

We may deform Y by varying these two entries to f1,2 = ε and f4,5 = ε f , where
ε �= 0 and f is a general quadric on P6 (and, of course, the skew symmetric entries in
f2,1 and f5,4). Denoting the deformed matrix by Nε, and Yε = (Pf Nε = 0), we see
a small deformation of Y to a smooth Fano 3-fold Yε ⊂ P

6 that is a 2, 2, 2 complete
intersection. (The nonzero constant entries of Nε provide two syzygies that eliminate
two of the five Pfaffians.) As in Sect. 3.1, the smoothing Yε has Euler characteristic
−24, so by (6) we have that eX (2) = −24 + 10 − 2 = −16.

Note that the Pfaffian smoothing Yε of Y destroys the unprojection divisor D ⊂ Y :
for D to lie inside Yε the entries f3,4 and f3,5 of Nε would have to lie in ID (so Nε

would be in Jer4,5 format with the extra constraint f4,5 = 0), but then Y would be
singular along D since three of the five Pfaffians would lie in I 2D .

3.3 A third family by Jerry unprojection

A Tom and Jerry analysis following [8] shows that varieties D ⊂ Y ⊂ P
6 defined by

Pfaffians as in Sect. 3.2 by the maximal Pfaffians of a syzygy matrix N with weights

⎛

⎜⎜⎝

0 1 1 1
1 1 1
2 2
2

⎞

⎟⎟⎠ .

can also be constructed in Jer1,3 format: that is, with all entries fi, j of N lying in
ID whenever i or j lie in {1, 3}. The general such D ⊂ Y has seven nodes on D.
Unprojecting D ⊂ Y gives a general member X (3) of a third family with e(X (3)) =
−24 + 2×7 − 2 = −12.

This completes the proof of Theorem 1.1.

4 Unprojecting Pfaffian degenerations

4.1 P
2×P

2 models with a codimension 3 Pfaffian component

Each of the Fano Hilbert series 1396, 5302, 5858, 5962, 11436, 20543 is realised
by a codimension 3 Pfaffian model, which is the simple default model presented in
theGrdb. (So too are 4999, 5844 and 10,984, but we do not find newmodels for these.)
We show that they can also be realised by a P2×P

2 model in a different deformation
family (and sometimes a third model too). The key point is that a projection of the
usual model admits alternative degenerations in higher codimension that also contain
a divisor that can be unprojected.
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For example, consider series number 20543

P20543(t) = 1 − 4t3 + 4t5 − t8

(1 − t)5(1 − t2)2
.

There is a well-known family that realises this as X = (Pf M = 0) ⊂ P(15, 22) in
codimension 3, where M has degrees

⎛

⎜⎜⎝

1 1 1 1
2 2 2
2 2
2

⎞

⎟⎟⎠ .

A typical member of this family has a two 1
2 (1, 1, 1) quotient singularities, andmaking

the Gorenstein projection from either of them presents X as a Type I unprojection of

P
2 = D ⊂ Y3,3 ⊂ P(15, 2).

In general, Y has eight nodes lying on D, and it smooths to a nonsingular Fano
3-fold Ygen with Euler characteristic e(Ygen) = −40. Thus a general X has Euler
characteristic e(X) = −40 + 2×8 − 2 = −26.

A quasismooth P
2×P

2 family. We can write another (quasismooth) model X ⊂
P(15, 23) in codimension 4 in P2×P

2 format with weights

⎛

⎝
1 1 2
1 1 2
2 2 3

⎞

⎠ .

Projecting from 1
2 (1, 1, 1) has image Y = (Pf M = 0) ⊂ P(15, 22) where M has

degrees ⎛

⎜⎜⎝

(0) 1 1 2
1 1 2
2 3

(3)

⎞

⎟⎟⎠ , (7)

and Y has seven nodes lying on D; in coordinates x, y, z, t, u, w, v, we may take
D = P

2 to be (t = u = v = w = 0). By varying the (1, 2) entry from zero to a unit,
Y has a deformation to a quasismooth 3, 3 complete intersection Ygen as before, and
so, e(X) = e(Ygen) + 2×7− 2 = −40+ 14− 2 = −28. Thus these P2×P

2 models
are members of a different deformation family from the original one.

More is true in this case: the general member of this new deformation family is in
P
2×P

2 format. Starting with matrix (7) and D = P
2 as above, the (1, 2) entry of the

general Tom3 matrix is necessarily the zero polynomial. In general, the four entries
(1, 4), (1, 5), (2, 4) and (2, 5) of the matrix are in the ideal 〈t, u, v, w〉, and for the
general member these four variables are dependent on those entries. Thus the (4, 5)
entry can be arranged to be zero by row-and-column operations.
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Another family in codimension 4. There is a third deformation family in this case.
The codimension 3 format (7) also admits a Jerry15 unprojection with nine nodes on
D, giving X ⊂ P(15, 23) in codimension 4 with e(X) = −24.

4.2 Pfaffian degenerations of codimension 2 Fano 3-folds

The key to the cases in Sect. 4.1 that the P2×P
2 model exposes is the degeneration

of a codimension 2 Fano 3-fold. More generally, Table 3 of [3] lists 13 cases of Fano
3-fold degenerations where the generic fibre is a codimension 2 complete intersection
and the special fibre is a codimension 3 Pfaffian. In each case, the anti-symmetric
5×5 syzygy matrix of the special fibre has an entry of degree 0, which is the zero
polynomial in the degeneration, but when nonzero serves to eliminate a single variable.
(In fact [3] describes the graded rings of K3 surfaces, but these extend to Fano 3-folds
by the usual extension–deformation method introducing a new variable of degree 1.)

For example, Y12,13 ⊂ P(1, 3, 4, 5, 6, 7) degenerates to codimension 3

Y 0 ⊂ P(1, 3, 4, 5, 6, 7, 9) with syzygy degrees

⎛

⎜⎜⎝

0 3 4 7
5 6 9
9 12
13

⎞

⎟⎟⎠ .

Both of these realise Fano Hilbert series number 547, and the Euler characteristic of
a general member is e(Y ) = −56.

The codimension 2 family has a subfamily whose members contain a Type I unpro-
jection divisor,

D = P(1, 3, 7) ⊂ Y = Y12,13 ⊂ P(1, 3, 4, 5, 6, 7)

on which Y has eight nodes; the unprojection of D ⊂ Y gives the codimension 3
Pfaffian family

Hilbert Series No.548: X12,13,14,15,16 ⊂ P(1, 3, 4, 5, 6, 7, 10). (8)

Imposing the same unprojection divisor D ⊂ Y 0 can be done in two distinct ways,
coming from different Tom and Jerry arrangments. In one way, there are degenera-
tions Y t

12,13 � Y 0 which contain the same D in every fibre Yt . These unproject to a
degeneration of the family (8) by the following lemma: indeed unprojection commutes
with regular sequences by [10, Lemma 5.6], and so unprojection commutes with flat
deformation, if one fixes the unprojection divisor; so the lemma is a particular case
of [10, Lemma 5.6].

Lemma 4.1 Let P = P(a0, . . . , as) be any wps and fix D = P(a0, . . . , ad) ⊂ P, for
some d � s − 2. Suppose Yt ⊂ Y → T is a flat 1-dimensional family of projectively
Gorenstein subschemes of P over smooth base 0 ∈ T, each one containing D and with
dim Yt = dim D+1 = d+1, and withωY = OY (kY ). LetX � Xt ⊂ P(a0, . . . , as, b)
be the unprojection of D×T ⊂ Y, where b = kY − kD = a0 + · · · + ad − 1. Then X
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is flat over T, and for each closed point t ∈ T the fibre Xt ∈ X is the unprojection of
D ⊂ Yt .

But the Jer24 unprojection is different: small deformations of Y 0 do not contain D.
Indeed, in this D ⊂ Y 0 model, Y 0 has nine nodes on D, which is a numerical obstruc-
tion to any such deformation. This D ⊂ Y 0 unprojects to a codimension 4 Fano
3-fold

X0 ⊂ P(1, 3, 4, 5, 6, 7, 9, 10)

with the same Hilbert Series No. 548 as (8) but lying in a different component: it has
Euler characteristic −56 + 2×9 − 2 = −40. This proves Theorem 1.2.

5 P
2×P

2 and the second Tom

The Big Table [9], which contains the results of [8], lists deformation families of
Fano 3-folds in codimension 4 that have a Type I projection to a Pfaffian 3-fold in
codimension 3. The components are listed according to the Tom or Jerry type of the
projection: the type of projection is invariant for sufficiently general members of each
component. The result of this section gives an interpretation of the Big Table of [8],
but does not describe any new families of Fano 3-folds.

Theorem 5.1 For every Hilbert series listed in the Big Table [9] that is realised by
two distinct Tom projections, there is a Fano 3-fold in P

2×P
2 format that lies on the

family containing 3-folds with the smaller (more negative) Euler characteristic.

The theorem is proved simply by constructing each case. There are 29 Hilbert series
that have two Tom families. Using ‘TTJ’ to indicate a series realised by two Tom
components and one Jerry component and ‘TTJJ’ to indicate two of each, they are
(Table 2).

For example, for Hilbert Series No.4839,

P4839(t) = 1 − t11 − 2t12 − 2t13 − 2t14 − t15 − t16 + · · · − t40∏
a∈[1,1,4,5,6,7,8,9] (1 − ta)

,

[9] describes four deformation families of Fano 3-folds

X ⊂ P(1, 1, 4, 5, 6, 7, 8, 9).

A general such X has Type I projections from both 1
5 (1, 1, 4) and 1

9 (1, 1, 8). (It is
enough to consider just one of these centres of projection, but [8] calculates both,
drawing the same conclusion twice.)

We construct aP2×P
2 model for P4839. ConsiderP = P

7(1, 1, 4, 5, 6, 7, 8, 9)with
coordinates x, y, z, t , u, v, w, s. The 2×2 minors of the matrix

⎛

⎝
z u v

t v + x7 − y7 w + z2 + x8

u + x6 + y6 w s

⎞

⎠ of weights

⎛

⎝
4 6 7
5 7 8
6 8 9

⎞

⎠
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Table 2 Hilbert series in P
2×P

2 format that admit a second Tom unprojection

Grdb P
2×P

2 weights T/J families Centre: #nodes

1253

⎛

⎝
3 4 5
4 5 6
5 6 7

⎞

⎠ TTJ 1
7 :6

1218

⎛

⎝
3 4 5
4 5 6
5 6 7

⎞

⎠ TTJJ 1
5 :9

1413

⎛

⎝
3 4 5
3 4 5
4 5 6

⎞

⎠ TTJJ 1
5 :7

2422

⎛

⎝
2 3 5
3 4 6
4 5 7

⎞

⎠ TTJJ 1
7 :5

2427

⎛

⎝
2 3 4
3 4 5
4 5 6

⎞

⎠ TTJJ 1
5 :6

4839

⎛

⎝
4 6 7
5 7 8
6 8 9

⎞

⎠ TTJJ 1
5 :20; 1

9 :13

4860

⎛

⎝
4 5 6
5 6 7
6 7 8

⎞

⎠ TTJJ 1
7 :13

4915

⎛

⎝
3 5 6
4 6 7
5 7 8

⎞

⎠ TTJJ 1
4 :19; 1

8 :11

4949

⎛

⎝
3 4 5
4 5 6
5 6 7

⎞

⎠ TTJJ 1
6 :11

4989

⎛

⎝
3 4 5
4 5 6
5 6 7

⎞

⎠ TTJJ 1
4 :15; 1

7 :10

5002

⎛

⎝
3 4 5
4 5 6
4 5 6

⎞

⎠ TTJJ 1
4 :14; 1

5 :11; 1
6 :10

5163

⎛

⎝
2 4 5
3 5 6
4 6 7

⎞

⎠ TTJJ 1
3 :19; 1

7 :9

5215

⎛

⎝
2 3 4
3 4 5
4 5 6

⎞

⎠ TTJJ 1
5 :9

5268

⎛

⎝
2 3 4
3 4 5
4 5 6

⎞

⎠ TTJJ 1
3 :14; 1

5 :8

5306

⎛

⎝
2 3 4
3 4 5
3 4 5

⎞

⎠ TTJJ 1
3 :13; 1

4 :9; 1
5 :8

5530

⎛

⎝
2 3 3
3 4 4
3 4 4

⎞

⎠ TTJJ 1
3 :11; 1

4 :8
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Table 2 continued

Grdb P
2×P

2 weights T/J families Centre: #nodes

5870

⎛

⎝
2 3 4
2 3 4
3 4 5

⎞

⎠ TTJJ 1
3 :10; 1

5 :7

5970

⎛

⎝
2 3 3
2 3 3
3 4 4

⎞

⎠ TTJJ 1
3 :9; 1

4 :7

6860

⎛

⎝
1 2 3
2 3 4
3 4 5

⎞

⎠ TTJ 1
5 :4

6878

⎛

⎝
2 2 3
2 2 3
3 3 4

⎞

⎠ TTJJ 1
3 :8

10985

⎛

⎝
1 3 4
2 4 5
3 5 6

⎞

⎠ TTJJ 1
2 :23; 1

6 :7

11021

⎛

⎝
1 2 3
2 3 4
3 4 5

⎞

⎠ TTJJ 1
4 :7

11106

⎛

⎝
1 2 3
2 3 4
3 4 5

⎞

⎠ TTJJ 1
2 :15; 1

5 :6

11125

⎛

⎝
1 2 3
2 3 4
2 3 4

⎞

⎠ TTJJ 1
2 :14; 1

3 :7; 1
4 :6

11455

⎛

⎝
1 2 2
2 3 3
2 3 3

⎞

⎠ TTJJ 1
2 :11; 1

3 :6

16228

⎛

⎝
1 2 3
1 2 3
2 3 4

⎞

⎠ TTJJ 1
2 :9; 1

4 :5

16339

⎛

⎝
1 2 2
1 2 2
2 3 3

⎞

⎠ TTJJ 1
2 :8; 1

3 :5

20652

⎛

⎝
1 2 2
1 2 2
1 2 2

⎞

⎠ TTJ 1
2 :6

24078

⎛

⎝
1 1 2
1 1 2
2 2 3

⎞

⎠ TTJ 1
3 :4

define quasismooth X ⊂ P with quotient singularities 1
2 (1, 1, 1),

1
5 (1, 1, 4) and

1
9 (1, 1, 8).

Eliminating either the variable t of degree 5 or s of degree 9 computes the two pos-
sible Type I projections, with image a nodal codimension 3 Fano 3-fold Y containing
D = P(1, 1, 4) or D = P(1, 1, 8) with 20 or 13 nodes lying on D respectively. (Both
t and s appear only once in the matrix, so eliminating them simply involves omitting
that entry and mounting the rest of the matrix in a skew matrix, as usual.)
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6 Cases with no numerical Type I projection

The five Hilbert series 360, 577, 648, 878 and 1766 do not admit a Type I projection,
and so the analysis of [8] does not apply. Nevertheless each is realised by a variety in
P
2×P

2 format exist, although only two of these are Fano 3-folds.
In the two cases 360 and 648 the general P2×P

2 model is not quasismooth and has
a non-terminal singularity, so there is no P

2×P
2 Fano model. (Each of these admit

Type II1 projections, so are instead subject to the analysis of [24]; this is carried out by
Taylor [34].) In the case 577, the P2×P

2 model is quasismooth, but it has a 1
4 (1, 1, 1)

quotient singularity and so is not a terminal Fano 3-fold and again there is no P2×P
2

Fano model.
However, there is a quasismooth Fano 3-fold X ⊂ P(1, 32, 42, 52, 6) in P

2×P
2

format with weights

⎛

⎝
3 4 5
4 5 6
5 6 7

⎞

⎠

realising Hilbert series 878. It has 4× 1
3 (1, 1, 2), 2× 1

4 (1, 1, 3) quotient singularities.
There is also a quasismooth Fano 3-fold X ⊂ P(1, 2, 33, 42, 5) in P2×P

2 format with
weights

⎛

⎝
2 3 4
3 4 5
4 5 6

⎞

⎠

realising Hilbert series 1799. It has 2× 1
2 (1, 1, 1), 5× 1

3 (1, 1, 2) quotient singularities.
Each of these two admit only Type II2 projections, and an analysis by Gorenstein
projection has not yet been attempted. Presumably such an analysis can in principle
work, once we have much better understanding of Type II unprojection, but until then
our models are the only Fano 3-folds known to realise these two Hilbert series.

7 Enumerating P
2×P

2 formats

7.1 Enumerating P
2×P

2 formats and cases that fail

The Hilbert series PX (t) = ∑
m∈N h0(−mKX )tm of such Gorenstein rings R(X)

satisfy the orbifold integral plurigenus formula [11, Theorem 1.3]

PX (t) = Pini(t) +
∑

Q∈B
Porb(Q)(t), (9)

where Pini is a function only of the genus g of X , where g + 2 = h0(−KX ), and Porb
is a function of a quotient singularity Q = 1

r (1, a,−a), the collection of which form
the basket B of X (see [13, Section 9]). When X ⊂ wP is quasismooth, and so is an
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orbifold, the basketB is exactly the collection of quotient singularities of X . Thus the
numerical data g,B gives the basis for a systematic search of Hilbert series with given
properties, which we develop further here.

We may enumerate all P2×P
2 formats V (a, b) and then list all genus–basket

pairs g,B whose corresponding series (9) has matching numerator. This algorithm
is explained in [7, Section 4]. It works systematically through increasing k ∈ N,
where k = 3

(∑
ai +∑

bi
)
, the sum of the weights of the ambient space of the image

of � in (5).
The enumeration does not have a termination condition, even though there can

only be finitely many solutions for Fano 3-folds, so this does not directly give a
classification. Nevertheless, we search for P2×P

2 formats for each k = 1, . . . , 31 to
start the investigation. This reveals 53 cases whose numerical data (basket and genus)
match those of a Fano 3-fold. The number # of cases found per value of k is:

k 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24–31
# 1 3 2 3 3 5 4 4 4 3 5 5 1 2 3 1 1 0 2 1 0

This hints that we may have found all Fano Hilbert series that match some P
2×P

2

format, since the algorithm stops producing results after k = 23. Of course that is not
a proof that there are no other cases, and we do not claim that; the results here only
use the outcome of this search as their starting point, so how that outcome arises is
not relevant.

7.2 Weighted GL(3,C)×GL(3,C) varieties according to Szendrői

The elementary considerations we deploy for the key varieties V (a, b) are part of a
more general approach to weighted homogeneous spaces by Grojnowski and Corti–
Reid [14], with other cases developed by Qureshi and Szendrői [28,29]. The particular
case of P2×P

2 was worked out detail by Szendrői [32], which we sketch here.
In the treatment of [32], G = GL(3,C)×GL(3,C) has weight lattice M =

Hom(T,C∗) ∼= Z
6, for the maximal torus T ⊂ G. The construction of a weighted

P
2×P

2, denoted w�(μ, u), is determined by the choice of a coweight vector μ ∈
Hom(M,Z), in coordinates say μ = (a1, a2, a3, b1, b2, b3) ∈ Hom(M,Z), and an
integer u ∈ Z. These data are subject to the positivity conditions that all ai+bj+u > 0.
The construction of w�(μ, u) is described in [28, Section 2.2]. It embeds in wps

w�(μ, u) ↪→ wP
8(a1 + b1 + u, . . . , a3 + b3 + u), (10)

with image defined by 2×2 minors

w� =
⎧
⎨

⎩

2∧
⎛

⎝
x1 x2 x3
x4 x5 x6
x7 x8 x9

⎞

⎠ = 0

⎫
⎬

⎭ ⊂ wP
8 (11)
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with respect to the weights

deg

⎛

⎝
x1 x2 x3
x4 x5 x6
x7 x8 x9

⎞

⎠ =
⎛

⎝
a1 + b1 + u a1 + b2 + u a1 + b3 + u
a2 + b1 + u a2 + b2 + u a2 + b3 + u
a3 + b1 + u a3 + b2 + u a3 + b3 + u

⎞

⎠ .

The following theorem then follows from the general Hilbert series formula of [28,
Theorem 3.1].

Theorem 7.1 (Szendrői [32]) The Hilbert series of w�(μ, u) in the embedding (10)
is

P(t) = Pnum(t)
∏

i, j

(
1 − tai+bj+u

) ,

where the Hilbert numerator Pnum(t) is

1 −
(∑

i, j

t−ai−b j

)
t2u+s +

(
4 +

∑

i �= j

t−ai+a j +
∑

i �= j

t−bi+b j

)
t3u+s

−
(∑

i, j

tai+b j

)
t4u+s + t6u+2s,

with s = a1 + a2 + a3 + b1 + b2 + b3.

This numerator exposes the 9×16 resolution. The 2×2 minors in (11) are visible
in the first parentheses; for example t−a1−b1 t2u+s = t (a2+b2+u)+(a3+b3+u) carries the
degree of x5x9 = x6x8. First syzygies appear in the second parentheses; for example,
the syzygy

det

⎛

⎝
x4 x5 x6
x4 x5 x6
x7 x8 x9

⎞

⎠ ≡ 0

has degree deg(x4x5x9) = (a2 + b1 + u) + (a2 + b2 + u) + (a3 + b3 + u) =
(a2 − a1) + 3u + s. The additional parameter u ∈ Z in this treatment is absorbed
into the ai in our naive treatment of Sect. 2, so the key varieties we enumerate are the
same.
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