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Abstract 11 

There is a continued need to monitor the environmental impacts of agricultural systems while 12 

also ensuring sufficient agricultural production. However, it can be difficult to collect relevant 13 

environmental data on a large enough number of farms and studies that do so often neglect to 14 

consider the financial drivers that ultimately determine many aspects of farm management and 15 

performance. This paper outlines a methodology for generating environmental indicators from 16 

the Farm Business Survey (FBS), an extensive annual economic survey of representative farms 17 

in England and Wales. Data were extracted from the FBS for a sample of East Anglian cereal 18 

farms and south western dairy farms and converted where necessary to use as inputs in 19 

‘Farmscoper’; farm-level estimates of nitrate, phosphorus and sediment loadings and ammonia 20 

and greenhouse gas emissions were generated using the Farmscoper model. Nitrate losses to 21 

water, ammonia and greenhouse gas emissions were positively correlated with food energy 22 

production per unit area for both farm types; phosphorus loading was also correlated with food 23 
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energy on the dairy farms. Environmental efficiency indicators, as measured by either total 24 

food energy or financial output per unit of negative environmental effect, were calculated; 25 

greenhouse gas emission efficiency (using either measure of agricultural output) and nitrate 26 

loading efficiency (using financial output) were positively correlated with profitability on 27 

cereal farms. No other environmental efficiency measures were significantly associated with 28 

farm profitability and none were significant on the dairy farms. These findings suggest that an 29 

improvement in economic performance can also improve environmental efficiency, but that 30 

this depends on the farm type and negative environmental externality in question. In a wider 31 

context, the augmentation of FBS-type data to generate additional environmental indicators 32 

can provide useful insights into ongoing research and policy issues around sustainable 33 

agricultural production. 34 

Keywords: Farm level modelling, Sustainable Intensification, Farm Accountancy Data 35 

Network, Profitability, Environmental impacts  36 



1. Introduction 37 

Contemporary agricultural production systems face a significant challenge if an acceptable 38 

balance between production and environmental impact is to be achieved (Foley et al., 2011). 39 

To gain some sort of level of acceptable ‘food security’, agriculture needs to provide for both 40 

a growing and increasingly affluent global population (Godfray et al., 2010). However, security 41 

of food supply is increasingly threatened by environmental challenges and competition for 42 

resources, particularly land for non-food uses such as biomass for fuel (Tilman et al., 2011). 43 

These production challenges must therefore be met at the same time as managing the 44 

environmental impacts of farming. The significant negative environmental effects of 45 

agriculture, such as greenhouse gas emissions and nutrient loss to water, must be limited to 46 

some extent (Balmford et al., 2012), while provision of beneficial ecosystem services, for 47 

example supporting and regulating services such as soil formation and pollination, must be 48 

enhanced (Firbank, 2009). 49 

Addressing these challenges requires consideration of multiple effects that act on multiple 50 

components of complex agricultural systems: systems that also involve people – farmers, 51 

advisors and other stakeholders – who have economic and other objectives that they wish to 52 

fulfil. In order to assess these integrated impacts and appraise changes in agricultural practices 53 

or policy interventions, quantitative metrics or indicators are needed, for all outcomes of 54 

interest - for example, greenhouse gas emissions as a measure of environmental impact. Direct 55 

on-farm measurement on a sufficient number of farms would require significant financial and 56 

technological investment in monitoring equipment and is especially difficult for non-point 57 

source environmental pollutants, such as those associated with agricultural inputs like nitrogen 58 

(nitrous oxide, nitrate, ammonia). To overcome these difficulties, mechanistic modelling of 59 

agricultural systems can be used to estimate values of important pollutant loads from available 60 

farm information. In the UK, the decision support tool ‘Farmscoper’ (Farm SCale Optimisation 61 



of Pollutant Emission Reductions) uses farm structure and physical input information to 62 

estimate production of a range of pollutants at individual farm level from a range of mechanistic 63 

models (Gooday and Anthony, 2010). 64 

The mechanistic modelling approach is dependent on the quality and availability of direct (on-65 

farm), or secondary information sources. Collection of on-farm information through surveys 66 

or other approaches tailored to specific model requirements will generate a richer dataset for 67 

modelling (Firbank et al., 2013), but can be time consuming for the assessor and/or farmer and 68 

presents challenges in ensuring sufficient scope in farm types and farm locations visited. 69 

Furthermore, it is difficult to collect realistic and comprehensive economic information without 70 

access to – what are from the farmer’s perspective – sensitive farm financial records. As noted 71 

above, agents involved in agriculture, most notably farmers, will have economic (and social 72 

objectives) that will influence their willingness to adopt practices that have the potential to 73 

enhance or mitigate the positive and negative effects of agriculture on the environment. Thus, 74 

the environmental enhancement of an existing, economically rich data set is an attractive 75 

option. 76 

The Farm Accountancy Data Network (FADN) was launched in 1965, following EU Council 77 

Regulation 79/65, to provide business information on European agricultural holdings and 78 

assess the effects of the Common Agricultural Policy (CAP) on farm incomes: of the five 79 

original objectives of the CAP, the main social objective was and in practice continues to be 80 

“to ensure a fair standard of living for farmers” (European Parliament, 2017). To these ends, 81 

FADN data are collected at the individual farm level and are primarily composed of 82 

accountancy records, but some physical information and details of farm structure are also 83 

available. FADN now represents a large resource of agricultural information, with almost 50 84 

years of economic data. The consistency of the FADN dataset allows assessment over time and 85 

between different EU member states. Data collection is handled by liaison agencies within each 86 



state. In the United Kingdom this organisation is the Department for Environment, Food and 87 

Rural Affairs, and in England and Wales FADN data is collected through the Farm Business 88 

Survey (FBS). The FBS surveys circa 2300 farms every year, covering a representative sample 89 

of farm types and sizes, providing an excellent agricultural data resource. 90 

A great advantage of generating environmental indicators using the FBS and more widely, 91 

FADN or other accounting data, is that it enables both economic and environmental 92 

performance to be measured. This is particularly helpful as it helps to operationalise concepts 93 

such as ‘Sustainable Intensification’ (SI). SI has been interpreted in different ways, but a useful 94 

definition from the perspective of potential users of the concept – most obviously farmers and 95 

extension agents - is given by the RISE Foundation: “Sustainable Intensification means 96 

simultaneously improving the productivity and environmental management of agricultural 97 

land” (Buckwell, 2014). Although measurement of productivity is in principle straightforward 98 

– the change over time in output per unit of agricultural resources used to produce that output 99 

– in agriculture this is quite difficult to achieve in practice.  Indeed, the fundamental concept 100 

driving FADN is the difficult task of relating inputs to their specific outputs on farms with 101 

mixed enterprises and production periods that span months, in the case of poultry, or years, in 102 

the case of more extensive beef production systems. Measurement of the effect of 103 

environmental management - across a wide enough range of environmental impacts - is more 104 

difficult without some form of modelling approach. Therefore, it would be attractive if the 105 

mechanistic modelling described above could be used to enhance or ‘augment’ the quality of 106 

the environmental information available for individual farms within the FADN and FBS 107 

databases and this is the approach that we use here, using the Farmscoper tool as an example. 108 

If the resulting information is sufficiently reliable, farmers, extension agents or other 109 

stakeholders can assess the extent to which performance is improving across both 110 

environmental and economic performance measures. 111 



Most farmers in the UK are familiar with the idea of benchmarking performance through what 112 

are termed ‘unit costs of production’ – cost per tonne of wheat or litre of milk for example. 113 

Expressing environmental impact per unit of output is thus an attractive way of presenting 114 

environmental information to farmers. This also captures the spirit of SI as described by 115 

Buckwell et al., 2014: an improvement in SI can be achieved through either an increase in 116 

output for a given environmental impact; or a reduction in environmental impact for a given 117 

output. Furthermore, by comparing these environmental efficiency indicators with farm 118 

structural information, economic performance or social factors such as membership of buying 119 

groups or level of education, we can begin to grasp why some farms may perform better than 120 

others, in order to highlight the ways in which SI might be improved, through policy 121 

instruments or knowledge exchange programmes.  122 

The aim of this study was therefore to develop a methodology for using available farm 123 

management data in mechanistic environmental impact models and to demonstrate how the 124 

results can be used as environmental efficiency metrics. To this end, we describe a 125 

methodology for using FADN as a source of secondary data for an external environmental 126 

model, Farmscoper, with example FBS data for a subset of cereal and dairy farms. While 127 

FADN data have been used in environmental impact analysis, a novel aspect of our approach 128 

is that we adapt FADN-type data for use with mechanistic models, rather than e.g. using 129 

nutrient balance approaches (e.g. Dalgaard et al., 2006; Buckley, 2015). Farmscoper is 130 

restricted to generating results for agricultural diffuse pollutants (‘negative externalities’) and 131 

we do not consider positive impacts of agricultural management, such as biodiversity 132 

provision, that are not covered by Farmscoper. Results obtained through this methodology are 133 

linked with agricultural output, both physically (total food energy from a farm) and financially 134 

(the value of farm physical output at market prices), to derive what Jan et al. (2012) refer to as 135 

‘partial environmental efficiency’ indicators: that is, we generate a range of indicators, rather 136 



than a composite, single index of sustainability. Partial environmental efficiency indicators are 137 

also compared to farm profitability, as reported in the FBS, through the Management and 138 

Investment Income (MII) measure of business performance. Our emphasis is on demonstrating 139 

the approach with the example dataset; however, we consider the extent to which the results 140 

can inform farmers on how to achieve SI objectives, particularly through improving their own 141 

production efficiency. We conclude by discussing the potential utility and limitations of the 142 

approach and make suggestions for improving the type of data collected through FADN and 143 

the FBS.  144 

2. Methods 145 

 146 

2.1 Farmscoper 147 

Farmscoper is a Microsoft Excel-based decision support tool, developed for the United 148 

Kingdom Department for Environment, Food and Rural Affairs (Defra) to estimate multiple 149 

diffuse pollutant losses and assess potential mitigation methods (Gooday and Anthony, 2010). 150 

Farmscoper calculates pollutant loads through a number of mechanistic models simulating farm 151 

systems and agricultural practices, including interactions with climate and soil type. The 152 

mechanistic models used within Farmscoper are themselves validated methodologies which 153 

have been employed in previous studies: PSYCHIC (Davison et al., 2008; Strömqvist et al., 154 

2008), NEAP-N (Anthony et al., 1996), NARSES (Webb and Misselbrook, 2004), MANNER 155 

(Chambers et al., 1999), and the IPCC methodologies for methane and nitrous oxide emissions 156 

from agriculture (IPCC, 2006). 157 

This study focuses on the use of Farmscoper to demonstrate appraisal of current farm 158 

performance, rather than potential mitigations; thus, only current pollutant load and emissions 159 

estimates were generated. The outputs were: nitrate loading, phosphorus loading, sediment 160 



loading, ammonia emissions, methane emissions, nitrous oxide emissions, plus greenhouse gas 161 

emissions associated with energy use and total farm greenhouse gas emissions. Loadings are 162 

defined as kg of pollutant lost from farm to local water bodies annually. Emissions are defined 163 

as kg of pollutant lost from farm to atmosphere annually, with greenhouse gases converted to 164 

CO2 equivalents assuming a Global Warming Potential (GWP) of 25 for methane and 298 for 165 

nitrous oxide (as used in the most recent UK National Inventory Report). Further details on the 166 

construction and operation of Farmscoper can be found in Gooday and Anthony, 2010 and 167 

Gooday et al., 2014. 168 

2.2 Farm data 169 

Farm data were obtained from the 2012 Farm Business Survey. In order to demonstrate the 170 

utility of using FBS data in an external model, the concept must be shown to work for distinct 171 

farm types; to this end, dairy and cereal farms were therefore selected as two contrasting types 172 

of farm system. Within each farm type, a set of similar farms within the same area were 173 

compared to increase the probability that estimated pollutant loads result from farm-specific 174 

circumstances and management decisions and are not simply a reflection of farm type and 175 

region. Cereal farms were selected from the eastern England counties of Norfolk, Suffolk and 176 

Cambridgeshire, and dairy farms were taken from the south-western counties of Devon and 177 

Somerset. To simplify data processing and ensure that reliable, standardised data were 178 

available, farms with atypical arable crops or non-cattle livestock systems were excluded. 179 

These conditions resulted in 38 predominantly cereal farms, covering nine different arable 180 

enterprises (winter wheat, spring wheat, winter oilseed rape, triticale, winter barley, spring 181 

barley, field beans, peas and potatoes) and 29 predominantly grass- and maize-based dairy 182 

farms. 183 



Three different approaches were employed to generate Farmscoper input data from the FBS 184 

dataset depending on the data availability and model requirements: 1) extraction of physical or 185 

structural farm data directly from the FBS; 2) conversion of indirect FBS data (from financial 186 

or other indirect data sources) to an appropriate format for model input; and 3) use of additional 187 

data from external geo-referenced datasets. Table 1 summarises these inputs. A number of 188 

assumptions were made where data limitations became apparent. Most wheat in England is 189 

winter sown; however, there was a small proportion of land on the FBS farms that was sown 190 

to spring wheat: Farmscoper does not distinguish between winter and spring cropping for 191 

wheat, and therefore all wheat was assumed to be winter sown. The FBS category ‘other silage 192 

cereals’ does not record the type of grain; this was assumed to be whole crop wheat, the most 193 

common form of whole crop cereal silage in England. The Farmscoper categories of 194 

‘permanent pasture’ and ‘rotational grassland’ were assigned following FBS conventions 195 

whereby any grass present for five years or more is considered permanent pasture. Electricity, 196 

fuel, oil and water use were all estimated from expenditure as recorded in the FBS, using 197 

relevant coefficients from contemporary agricultural advisory publications, as shown in Table 198 

1. Electricity consumption was calculated by assuming a standard metered rate of £0.0069 per 199 

kilowatt hour (SAC Consulting, 2012). The FBS data for ‘machinery and vehicle fuels’ was 200 

assumed to represent agricultural (‘red’) diesel at a cost of £0.63 per litre, while ‘heating fuels’ 201 

were assumed to be kerosene at a cost of £0.53 per litre (SAC Consulting, 2012). Metered water 202 

use was calculated from FBS water costs at a rate of £0.95 per metre3 (AHDB, 2011). Imported 203 

(i.e. from off-farm) fertiliser applications were extracted directly from the FBS in the form of 204 

N, P and K inputs in kilograms per hectare, while animal manure production and transfers 205 

between farm enterprises were handled within Farmscoper as part of the MANNER sub-model. 206 

Physical fertiliser import data were not collected for approximately 50% of farms in the 2012 207 

FBS sample (data were not available for 11 of the cereal farms and 14 of the dairy farms); 208 



however, value data were available for expenditure on fertiliser with no breakdown on 209 

individual nutrients; furthermore, these data are available as a panel, opening up the potential 210 

to track fertiliser related impacts over time, even when physical data are not available. A 211 

methodology was therefore devised to convert expenditure data to physical data for use in 212 

Farmscoper; this was used for N, P and K bought onto the farm, where fertiliser quantities were 213 

not recorded. Total fertiliser expenditure for each enterprise was directly extracted from the 214 

FBS; this was then divided by the area of that land use category to convert to expenditure per 215 

unit area and subsequently scaled according to typical fertiliser costs for each enterprise. It was 216 

assumed that individual N, P and K applications were applied in the same proportion as 217 

standard rates (Agro Business Consultants, 2012; SAC Consulting, 2012) with these rates being 218 

used to allocate N, P and K from the total fertiliser expenditure value. A similar approach was 219 

used to convert expenditure on crop protection products to physical values. Analyses and 220 

results presented thus use the whole sample of farms. 221 

There are a number of farm business profitability measures within the FBS. For this study we 222 

use ‘Management and Investment Income’ (MII) - this is the total value of all trading farm 223 

outputs within a year, less total costs of production, including an imputed rent for owner-224 

occupied farms and an imputed cost for the manual labour of the farmer and spouse. It 225 

represents the return to the farmer and spouse for their management of ‘tenants’ capital’: this 226 

excludes landlord-type capital such as land and buildings. The measure is before interest – 227 

either earned or charged - of the business and allows a meaningful comparison to be made 228 

between tenanted and owner-occupied farms. A useful heuristic for interpreting MII is that a 229 

value of zero implies that an owner-occupied farm business would be no worse off if the farmer 230 

and spouse were to realise their opportunity costs, i.e. to rent out their land and labour at going 231 

market rates. 232 

2.3 External geo-referenced data 233 



Farmscoper incorporates local rainfall and soil type to model the movement of pollutants. This 234 

data is not recorded in the FBS, and was therefore derived by correlating approximate farm 235 

location with external geo-referenced datasets using ESRI ArcGIS desktop 10 (ESRI, 2014). 236 

An illustration of the geo-referencing for the south-west farms is shown in Figure 1.  237 

Long-term annual precipitation was derived using the Met Office UKCP09 gridded observed 238 

climate dataset (UKCP09, 2015). A long-term average (average annual precipitation between 239 

2002 and 2011) was used as 2012 precipitation data were not available when the study began, 240 

and also to establish a precipitation map that could be used for future work exploring potential 241 

mitigations and changes in management that were not tied to a specific year. 242 

Dominant soil type for a farm’s location was derived using the British Geological Survey Soil 243 

Parent Material Model (British Geological Survey, 2011). Soil types classified as light or light 244 

to medium under the Soil Parent Material Model were entered as ‘permeable free draining 245 

soils’ in Farmscoper. Medium soils were entered as ‘impermeable soils where artificial 246 

drainage required for arable cultivation’, and heavy soils as ‘impermeable soils where artificial 247 

drainage required for arable cultivation or grassland’. 248 

 249 

(Figure 1 here) 250 

 251 

2.4 Environmental efficiency indicators 252 

Environmental efficiency was explored for each farm type using efficiency indicators 253 

expressing each negative environmental impact generated per unit agricultural production, at 254 

the whole farm level (an inverse approach following that of Jan et al., 2012). Individual, rather 255 

than aggregate, indicators were used as only a subset of negative environmental impacts were 256 



generated here and food production is only one of several potential multifunctional benefits 257 

provided by agriculture. Furthermore, some form of weighting would be needed if an aggregate 258 

indicator were to be constructed and ‘trade-offs’ between different environmental outcomes 259 

would be masked. Two different measures were used in order to capture different attributes of 260 

agricultural production: total food energy of all agricultural outputs (in gigajoules, GJ) and the 261 

value of these outputs (in £). The latter measure effectively weights different physical outputs 262 

by their price: this reflects different nutritional contents to an extent (e.g. protein and oil in 263 

oilseed rape) and also consumers’ willingness to pay for different outputs. Food energy output 264 

was calculated by extracting agricultural production data from the FBS and converting using 265 

energy content coefficients following Firbank et al. (2013). Gross output (£) was taken directly 266 

from the FBS, across all farm enterprises. Adjustments made for disposal of the previous year’s 267 

crop output were excluded so that only outputs generated within a given year (and hence 268 

associated with the environmental impacts modelled) were included in the analysis. As 269 

efficiency indicators based on food financial output and energy content still do not necessarily 270 

take into account important nutritional and other aspects of food production, direct comparisons 271 

between the two contrasting farm system types were not made. 272 

2.5 Statistical analyses 273 

The environmental impacts derived from Farmscoper were described using summary statistics 274 

expressed per hectare, per GJ food energy and per £ of gross output. Following Jan et al., 2012, 275 

the relationship between per hectare farm environmental impact and food production was tested 276 

using the Spearman’s rank correlation coefficient. The relationship between the environmental 277 

efficiency indicators (i.e. environmental impact per unit food production or gross output) was 278 

then compared with farm financial performance, as measured by MII per hectare, also using 279 

Spearman’s rank correlation coefficient. All analyses were performed in R (R Core Team, 280 

2016). 281 



(Table 1 here) 282 

 283 

3. Results 284 

 285 

3.1 Summary of environmental impacts 286 

The FBS-derived data were successfully run through Farmscoper and indicators for 287 

environmental pollutants were estimated for individual farms where no data were previously 288 

available. A summary of pollutant loadings and greenhouse gas emissions for the sample is 289 

shown in Table 2 below. The broad range in results shown by the standard deviation for each 290 

indicator, for both system types, suggests that the estimates derived from the FBS data were 291 

sufficient to describe important differences in farm structure and management. Although it was 292 

not possible in the scope of this study to validate these results with actual impacts as measured 293 

on-farm, they are within the range of expected values. The average carbon footprint per litre of 294 

milk from our sample was 1.38 kg CO2e per litre, which is similar to the average result of 1.31 295 

kg CO2e per litre demonstrated in a UK dairy foot-printing study, and within the range of values 296 

found (DairyCo, 2012). In a similar modelling study in one specific catchment, Zhang et al. 297 

(2012) estimated slightly greater nitrate loadings than we found, (38 and 40 kg ha-1 year-1 for 298 

cereal and dairy farms respectively), slightly lower phosphorus loadings (0.2 and 0.5 kg ha-1 299 

year-1) and sediment loadings of 159 and 104 kg ha-1 year-1. In a study of agricultural losses to 300 

water from cereal farms in Eastern England, Taylor et al. (2016) presented estimates of annual 301 

nitrate run-off between 3 and 12 kg ha-1 year-1, somewhat lower than our result and highlighting 302 

the variability in estimates. 303 

 304 



(Table 2 here) 305 

 306 

3.2 Environmental efficiency of food production 307 

In order to relate the environmental metrics described above to food production, efficiency 308 

indicators were generated describing the environmental impact per unit food produced (in both 309 

food energy content and food financial output), as shown in Table 3 below. 310 

 311 

(Table 3 here) 312 

 313 

These results are in line with those found in another UK study which demonstrated similar 314 

environmental impacts per unit of food energy produced, in this case using data collected from 315 

individual study farms (Firbank et al, 2013); the authors also report a considerable range in the 316 

metrics within similar farm types. 317 

 318 

3.3 Farm-level production efficiency 319 

The relationship between farm land use productivity, as measured by food energy content per 320 

hectare of farmland and environmental impact per hectare is shown in Figure 2. For cereal 321 

farms, nitrate loading (r = 0.5, P < 0.001), ammonia emissions (r = 0.36, P = 0.03) and total 322 

greenhouse gas emissions (r = 0.5, P < 0.01) were all positively associated with increased 323 

productivity, suggesting that more intensive production, associated with increased nitrogen 324 

inputs, produced more food but at a greater environmental impact per unit area. Using financial 325 

output rather than food energy content as a measure of agricultural production resulted in 326 



similar relationships for nitrate loading (r = 0.46, P < 0.01) and greenhouse gas emissions (r = 327 

0.24, P < 0.01), but ammonia emissions were no longer significant (r = 0.24, P = 0.15). 328 

Sediment loading was not strongly associated with food production (in terms of £ output or GJ 329 

food energy content) for either farm type and appeared more strongly driven by local 330 

environment and climate rather than farm outputs; however, it should be noted that differences 331 

in farm practice with a strong effect on sediment loading (e.g. form of tillage undertaken) were 332 

not available from the 2012 FBS, and hence assumed the same for all farms. 333 

For dairy farms, nitrate loading (r = 0.66, P < 0.001), phosphorus loading (r = 0.53, P < 0.01), 334 

sediment loading (r = 0.40, P = 0.03), ammonia emissions (r = 0.81, P < 0.001) and total 335 

greenhouse gas emissions (r = 0.82, P < 0.001) were associated with greater food energy 336 

output, largely as a result of greater fertiliser application and higher stocking rates. Similar 337 

relationships were seen when using financial output instead of food energy content, with nitrate 338 

loading (r = 0.59, P < 0.001), phosphorus loading (r = 0.48, P < 0.01), ammonia emissions (r 339 

= 0.90, P < 0.001) and total greenhouse gas emissions (r = 0.88, P < 0.001) again showing 340 

significant relationships, although sediment loading was not associated with food financial 341 

output (r = 0.3, P= 0.1). The relatively large and strong correlation between output value and 342 

ammonia and greenhouse gases suggests that dairy farms with higher milk output are more 343 

closely associated with higher emissions. 344 

 345 

(Figure 2 here) 346 

 347 



3.4 Environmental and economic performance of farms 348 

Correlations between the environmental efficiency indicators and farm economic performance 349 

(MII per farm) were mostly negative as shown in Table 4 below; indicating a pattern where 350 

more profitable farms generate lower environmental impacts per unit food output. However, 351 

only cereal farms showed a significant relationship and this only in greenhouse gas emissions 352 

efficiency per unit food energy produced. Results were similar when gross output was used as 353 

the measure of agricultural production instead of food energy content. 354 

 355 

4. Discussion 356 

 357 

4.1 Assessment of FBS (FADN) data in a generic farm mechanistic modelling tool 358 

(Farmscoper) 359 

The approach described in this study resulted in a number of important environmental 360 

indicators for farms where this information had previously been unavailable. The heterogeneity 361 

in performance across all indicators confirms that the farm input data provided are sufficiently 362 

rich to detect differences between farms, as well as implying variation in performance that may 363 

be important in the drive for sustainable intensification, discussed further in section 4.2 below. 364 

The indicators illustrate how the approaches can be used to investigate both the local (e.g. 365 

environmental impact per hectare for local problems such as sediment or nutrient loss) and 366 

global (e.g. greenhouse gas emissions per unit of food produced) implications of SI. As noted 367 

by (Franks, 2014), SI does not imply a uniform approach on all farms: while the primary goal 368 

of sustainable intensification is to minimise the overall negative impacts of agricultural 369 

production, local concerns, for example pollutant loadings entering a given catchment, may 370 

override this objective in some cases. 371 



As the farm input data came from the FBS and FADN, the assumptions made could be extended 372 

to explore more farms and perform comparable analyses, both over time and across other 373 

European nations. Previous studies have explored the use of FADN data to generate 374 

environmental impacts, for example life cycle assessments of Dutch dairy farms (Thomassen 375 

et al., 2009) and nutrient balances for farms in Ireland (Buckley et al., 2015). For the Farm 376 

Business Survey, previous approaches have explored the environmental performance of FBS 377 

farms, as demonstrated in the Agri-Environment Footprint index (Westbury et al., 2011), and 378 

incorporated some elements of environmental performance and sustainable intensification in 379 

economic models (Gadanakis et al., 2015), but this represents, to the knowledge of the authors, 380 

the first use of FBS data to follow through for the specific environmental outputs demonstrated 381 

here. 382 

There are some weaknesses inherent in the approach as a result of FADN data being primarily 383 

focussed on farm finances. Some management details are beyond the scope of standard data 384 

collection and hence were assumed the same for all farms: for example the number and type of 385 

field operations, which will have implications for a number of environmental impacts 386 

(Townsend et al., 2016). The use of geospatial referencing for some data is a convenient means 387 

of acquiring additional data without further on-farm surveying, but may introduce some 388 

inaccuracies due to the limits of resolution possible within farm confidentiality constraints. The 389 

data are also limited to the whole farm level and differences between fields will also exist in 390 

many instances, particularly in some regions of the UK where soil type can vary substantially 391 

even within individual fields. As with all modelling approaches, care must be taken when 392 

making inferences from model estimates, e.g., what seems an ‘unexpected’ result – our dairy 393 

farms show greater sediment loadings than cereal farms, despite the probable greater extent of 394 

tillage operations on the latter – can be explained by other factors, in this case partly by 395 

precipitation differences between western and eastern England. However, we would emphasise 396 



that better data, particularly on soil management, would help to give better results. On balance, 397 

however, the compromises made greatly expands the number of farms available for analysis; 398 

moreover, these farms form part of a representative sample for each EU country and have data 399 

rich information on farm economic performance. The focus on accounts type data also means 400 

that similar approaches could be used where farmers are willing to share data, as the 401 

information required is likely to exist in similar forms in management accounts or other 402 

electronic farm records. The use of FADN data also facilitates comparison with other 403 

approaches that use FBS-type data sets, such as stochastic frontier and data envelopment 404 

analysis. These seek to determine whole farm economic efficiency measures relative to a 405 

feasible production ‘frontier’ - that is, feasible under existing technological conditions (see, for 406 

example, Wilson et al., 2001; Thirtle et al., 2004; Barnes et al., 2009; Gadanakis et al., 2015). 407 

The data extracted and generated from the FBS sample were demonstrated with the Farmscoper 408 

tool as it provides a comprehensive range of outputs based on well-validated sub-models. 409 

However, the approach shown here emphasises the use of generic data, so that alternative 410 

models could also be employed, appropriate to specific policy issues or research questions. 411 

Emerging topics of interest may require additional data collection where the current FBS 412 

dataset cannot provide reliable estimates (for example, on management information for 413 

biodiversity indicators) and these could be included in the future. The great advantage of 414 

building on the existing dataset is that it contains detailed and accurate economic information 415 

from a robust, representative sample of farms. This also allows scaling, for example, scaling 416 

up representative farm-type impacts to catchment and national scales (e.g. Glithero et al., 417 

2013). Furthermore, the methodology presented here could readily be applied to alternative 418 

farm accountancy or management data, and is not exclusive to the FBS or FADN. The main 419 

data inputs, as listed in Table 1, could readily be obtained from typical farm records and used 420 

in Farmscoper or alternative tools by researchers, farm advisors or individual farmers, either 421 



directly (where sufficiently detailed data are already available) or following similar 422 

assumptions and conversions to this study. We also suggest that the environmental efficiency 423 

relationships demonstrated provide useful metrics that practitioners could use to benchmark 424 

performance across farms, or for the same farm attempting to improve production practices 425 

over time. 426 

 427 

4.2 Implications for sustainable intensification 428 

The concept, practicality and aims of sustainable intensification have prompted much debate 429 

since its emergence as an important part of agricultural policy in the UK (Mahon et al., 2017). 430 

This paper demonstrates approaches and indicators that can contribute to the arguments 431 

surrounding sustainable intensification by linking measures of farm productivity and 432 

environmental impacts. 433 

The correlations between food production and several environmental impacts highlight some 434 

of the concerns around intensive agricultural production (Struik et al., 2014), but provide useful 435 

insight into the concept of sustainable intensification. Changes in the strength of these 436 

relationships can be used to demonstrate levels of achievement towards the goal of sustainably 437 

increasing production (or reducing environmental impact for existing levels of production) at 438 

the farm level. The heterogeneity among farms in terms of environmental performance relative 439 

to food production also suggests opportunities for some farms to sustainably intensify, with 440 

different farms showing diverse levels of environmental pollution for the same output of food 441 

energy. Further investigation of on-farm activities could identify which practices or biophysical 442 

features make certain farms more or less environmentally efficient. This information could then 443 

be used to highlight where technological or management interventions are of value for 444 

enhancing sustainable intensification, as well as highlighting potential spatial differences and 445 



ensuring appropriate production and environmental aims are sought for different farm 446 

locations. 447 

In addition to farm production and environmental impacts, it is important to consider economic 448 

performance in assessing sustainable intensification, as without the economic pillar, it cannot 449 

be claimed that farms are managed sustainably. Management practices and technologies 450 

proposed for sustainable intensification will also only be widely taken up if individual farmers 451 

can see the economic merit for their business, or at least that employing a given intervention 452 

will not come at a significant cost. The extensive and robust economic data available within 453 

the FBS therefore presents an additional advantage in using this dataset to assess sustainable 454 

intensification. This study highlighted the relationship between cereal farm profitability and 455 

increased greenhouse gas emission efficiency (represented by both the emissions per unit food 456 

energy produced or financial output of crop production) and nitrate loadings (when measuring 457 

emissions per unit agricultural financial output), demonstrating sustainable intensification 458 

‘win-wins’, whereby more efficient nitrogen and fuel use results in greater farm incomes and 459 

reduced emissions per food output. However, it is difficult to draw firm conclusions from the 460 

limited dataset used here; as emphasised our main intention has been to demonstrate the 461 

combined use of mechanistic models with FBS data to provide policy relevant metrics. 462 

It is interesting to note that there were some differences in environmental efficiency indicators 463 

depending on whether food energy or gross output was used as a measure of agricultural 464 

production. As discussed by Elliott et al. (2013), food energy content is a useful indicator for 465 

unifying different agricultural outputs, and can be considered as representing net contributions 466 

to human food security. However, energy content also omits important differences between 467 

food attributes, including further nutritional aspects or consumer preferences. Financial output 468 

can be used to indicate overall societal valuation of different products, as distinct from human 469 

dietary needs; however, this valuation will also be affected by non-consumer effects, including 470 



‘shocks’ caused by e.g. weather events. Neither indicator fully captures the full range of 471 

important food attributes, and so it is important to highlight this and consider the implications 472 

of which indicator is used.  It should be noted that although this study used food energy and 473 

financial value to describe agricultural output, other metrics could also be used as appropriate 474 

for future research questions or farm assessments, e.g. physical outputs of individual food 475 

products (e.g. litres of milk produced or kg wheat yields).”. Given the large number of farm 476 

structural and management factors embodied in these indicators, the sample size examined here 477 

was too small to reliably apply multivariate techniques in order to identify important drivers of 478 

the environmental efficiency relationships, or explore differences between them. However, the 479 

methodologies presented can be used in future work, on larger FBS and FADN datasets, over 480 

time, to further investigate these important components of the sustainable intensification 481 

debate. 482 

Despite the positive relationship between emissions efficiency and profitability on cereal 483 

farms, it is interesting to note that environmental efficiency was not associated with 484 

profitability for any other indicator, including greenhouse gas emissions on dairy farms. This 485 

is in contrast to some studies which found, for example, that economic performance was 486 

correlated with environmental efficiency in a range of impacts (e.g. on Swiss dairy farms - Jan 487 

et al., 2012), and that carbon footprint of milk was associated with profitability (e.g. on Irish 488 

dairy farms -  O’Brien et al., 2015). The Irish study, however, also demonstrated a considerable 489 

range in carbon footprint across all levels of profitability, and further work across a wider 490 

sample of farms would be required to confirm whether this relationship differs in the UK. 491 

There are mixed implications for the results on our study farms with respect to achieving 492 

sustainable intensification. On the one hand, it implies a lack of situations where farms show 493 

both greater environmental and economic efficiency: as we would expect, there are trade-offs. 494 

The environmental indicators under consideration are largely externalities, and if not associated 495 



with increased profitability will offer no economic incentive for farmers to improve 496 

environmental performance. At the same time, if there is also no economic disadvantage to 497 

increasing environmental efficiency of food production, farmers may be willing to implement 498 

sustainable intensification measures based on personal preference, policy tools or quality 499 

assurance and marketing initiatives. There are a range of options for how sustainable 500 

intensification could be practically achieved on farm (Franks, 2014), yet there is not currently 501 

a clear overall policy strategy. Furthermore, the future of agri-environmental policy is 502 

particularly uncertain in the United Kingdom as a result of the decision to leave the European 503 

Union (Baldock et al., 2016). Regardless of the route taken in agricultural policy, the 504 

environmental and economic indicators as presented here remain a valuable means of assessing 505 

the efficiency and impacts of the sector. 506 

The establishment of a suite of environmental indicators derived from the Farm Business 507 

Survey is especially valuable as the data is collected annually, allowing progress to be tracked 508 

over time. It is important to note that each farm is a bio-physically unique unit, and therefore 509 

has individual production possibilities that will relate to local environmental and economic 510 

conditions. Furthermore, individual farms also differ in their social and management 511 

dimensions based on their role within the local community, the individual farmer’s objectives, 512 

and the willingness and ability of the farm manager to invest in or change farm practices. These 513 

can also be explored through the FBS (Wilson, 2014). A true measure of sustainable 514 

intensification, over time, can be gained by revisiting these indicators to assess movement 515 

across the various dimensions of farm performance. 516 

5. Conclusion 517 

This paper demonstrates a methodology for augmenting an economically rich dataset, using 518 

sample farms from the 2012 English Farm Business Survey (FBS), to generate environmental 519 



indicators for agricultural pollutants. These are compared to food production and farm 520 

profitability measures, also derived from the FBS, to assess the sustainability of agricultural 521 

production on the sample farms. Although this paper is primarily concerned with demonstrating 522 

the approach, results show that there is wide variability across farms for all pollutants when 523 

measured per hectare, per gigajoule of food energy and per £ value of agricultural output. There 524 

was no significant relationship between environmental efficiency and profitability on the dairy 525 

farm sample. Cereal farm profitability, as measured by the income generated by farm 526 

management and investment, was positively and significantly correlated with better 527 

greenhouse gas emission efficiency, as measured by both emissions per unit food energy and 528 

per unit gross output; and nitrate loading when measured per unit of agricultural gross output. 529 

The relationship between production, profit and environmental efficiency does not therefore 530 

appear to apply to all farms; nor will it apply to all indicators - in particular, we have not 531 

considered methods of quantifying biodiversity in this paper. However, there is evidence that 532 

improved agricultural management in crop production, particularly of nitrogen fertilisers, can 533 

generate both environmental and financial benefits to farmers, a message that will help 534 

facilitate knowledge exchange activities. Finally, there are some limitations to the approach, 535 

most notably the extent of the data available for modelling: this could be addressed in the future 536 

through the collection of appropriate input data, through FADN and the FBS, for use in the 537 

type of environmental models considered here, as well as other approaches to capturing the 538 

environmental effects of 21st century agriculture.  539 
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