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Major improvements in crop yield are needed to keep pace with population 6 

growth and climate change. While plant breeding efforts have greatly benefited 7 

from advances in genomics, profiling the crop phenome (i.e., the structure and 8 

function of plants) associated with allelic variants and environments remains a 9 

major technical bottleneck. Here, we review the conceptual and technical 10 

challenges facing plant phenomics. We first discuss how, given plants’ high levels 11 

of morphological plasticity, crop phenomics presents distinct challenges 12 

compared with studies in animals. Next, we present strategies for multi-scale 13 

phenomics, and describe how major improvements in imaging, sensor 14 

technologies and data analysis are now making high-throughput root, shoot, 15 

whole-plant and canopy phenomic studies possible. We then suggest that 16 

research in this area is entering a new stage of development, in which phenomic 17 

pipelines can help researchers transform large numbers of images and sensor 18 

data into knowledge, necessitating novel methods of data handling and 19 

modelling. Collectively, these innovations are helping drive the selection of the 20 

next generation of crops more sustainable and resilient to climate change, and 21 

whose benefits promise to scale from physiology to breeding and to deliver real 22 

world impact for ongoing global food security efforts. 23 

 24 

Introduction  25 

Genetic improvement of crop resilience to abiotic stresses and new pests arising from climate 26 

change is imperative to ensure future food security [1,2]. The increasing use of gene editing 27 

[3,4] and continued exploitation of natural genetic variability [5,6] provide invaluable 28 

opportunities for generating novel alleles and selecting natural sources of genetic variation 29 

for crop improvement [2]. This requires analysis of hundreds of lines grown under diverse 30 

environmental scenarios. While genotyping has reached this throughput at a relatively low 31 

cost through advances in DNA marker assays and sequencing technologies [7], equivalent 32 



improvements to generate high-throughput and valuable phenotypic information are urgently 33 

needed [8]. This is the object of the field of (au:ok?)plant phenomics, which we define here 34 

as the suite of tools and methods used for three major goals (au:ok?) — capturing 35 

information on structure, function and performance of large numbers of plants, together with 36 

their environment; analysing, organizing and storing the resulting datasets; and developing 37 

models able to disentangle and simulate plant behaviour in a range of scenarios. 38 

Over the past decade, plant phenomics has made impressive progress, developing novel 39 

sensors and imaging techniques for a wide range of traits, organs and situations [8–10]. 40 

However, data handling and processing remain major challenges when translating sensor 41 

information into knowledge. This Review focuses on that translation. We first discuss the 42 

reasons why the challenges differ between plant and animal phenomics, which are largely 43 

due to the strong interaction between environmental conditions and plant structure, function 44 

and metabolism. We suggest the need for a multi-scale strategy that links physiological 45 

mechanisms with plant performance across genotypes and environments from the molecular 46 

to field scales, based on a series of novel approaches and techniques. We then discuss the 47 

challenges of studying these processes in the naturally fluctuating conditions in the field 48 

versus controlled environment conditions [11–14]. Finally, we suggest that phenomics is 49 

entering a new stage of development, necessitating novel methods for data handling, 50 

statistical approaches and modelling to connect and interpret the knowledge generated at 51 

different scales.  52 

One Genotype, Many Phenotypes in Plants  53 

Plant phenomics does not consist of solely associating a genotype to one phenotype in a 54 

given condition (e.g., in a controlled environment), but rather in characterizing the plasticity 55 

of the plant phenome when exposed to a range of environmental conditions. In contrast to 56 

most animals, which essentially retain the same structure regardless of their environment, a 57 

plant can form very different architectures depending on environmental conditions. For 58 

example, the same variety of Arabidopsis thaliana can exhibit a large 30-leaf plant or a small 59 

8-leaf plant, after being exposed to either short or long day conditions, respectively (Figure 60 

1A,B) [15]. Similarly, water deficit, nitrogen deprivation and low light have major effects on 61 

the number and size of plant organs (Figure 1B,C). As a consequence, plant phenomics 62 

research dedicates a large amount of effort to the study of variation in organism structure, 63 

whereas animal phenomics essentially focuses on metabolism.  64 

Plant water status, temperature, fluxes or growth rate vary within minutes. Indeed, unlike 65 

mammals and birds, plants are not homoeostatic for temperature and water under rapidly 66 



fluctuating environmental conditions. Plants transpire 50–200% of their own weight daily (vs. 67 

1–2% for humans) [16], while their temperature follows their energy balance, resulting in 68 

rapid variations [17]. During a summer day, a plant can be at 11°C with a favorable water 69 

status in the early morning, but then experience 36°C and suffer severe water stress six 70 

hours later (Figure 1E), triggering spectacular changes in plant morphology (Figure 1D–F). 71 

Displacement transducers reveal that, under these conditions, plants exhibit rapid 72 

fluctuations in growth [18]. Leaf elongation can occur at a rate of 4 mm per hour at dawn 73 

versus 0 at 2pm [18]. Hence, although some degree of homeostasis exists at the cellular 74 

level [19,20], this is not the case at the organism level. Many molecular events occur during 75 

transitions between different environmental conditions [21], so phenomic analysis of non-76 

stable states is essential. The low degree of homeostasis in plants also results in large 77 

functional consequences of the spatial variability of conditions a plant is exposed to [17]. For 78 

example, root system architecture exhibits large spatial variation reflecting local adaptation 79 

to highly heterogeneous soil water content [22,23]. Hence, the analysis of phenotypic 80 

datasets needs consistent time course information on environmental conditions as sensed by 81 

plants and organs, together with growth and physiology-related processes. 82 

Because there is no central ‘orchestrator’ organ (au:ok?) in plants [24], the control of most 83 

functions relies on feedback loops involving different organs that exchange information 84 

through, for example, hormonal or hydraulic messages [25–27]. Such exchanges of 85 

information operate at short-term scales at the cell or organ levels, and translate into long-86 

term plant or canopy behaviours through whole-plant mechanisms that are highly non-linear. 87 

Hence, plant phenomics requires analyses at spatial scales ranging from single cell to 88 

canopy, and temporal scales ranging from minutes (for metabolism and hydraulics) to 89 

months (for yield) (Table1). Modelling is, therefore, an intrinsic part of plant phenomics, 90 

aimed at connecting these scales. Indeed, while non-intuitive, feedback mechanisms are 91 

predictable using mathematical models [28].  92 

 93 

Analysing the Plant Phenome Across Spatial and Temporal Scales  94 

Given the issues raised above, plant phenomics needs to capture and interpret a multi-95 

dimensional matrix of functional and architectural variables measured at different scales 96 

(organ, plant, canopy), developmental stages and environmental scenarios. To address this 97 

inherent complexity, researchers have developed three categories of phenotyping platforms 98 

that have distinct objectives and employ different approaches and methods (Table 1).  99 

High-Precision Platforms  100 



These platforms operate at the organ level, most often over short time scales (Table 1). 101 

They aim at the identification of physiological mechanisms allowing plants to respond to 102 

changes in environmental conditions, leading to the elucidation of their genetic control. 103 

Profiling organ growth and architecture is used in high-precision platforms to uncover 104 

adaptive mechanisms associated with environmental signals. For example, X-Ray micro 105 

computed tomography (µCT; Figure 2A–D) of roots growing in soil macropores revealed the 106 

importance of direct contact with soil water to determine where new lateral root branches 107 

are positioned (Figure 2E) [23]. This translates into improved water and nutrient uptake 108 

(Figure 2F). Similarly, time-lapse 3-D imaging of leaves combined with computational 109 

modelling allows identification of where and when tissue expansion and cell division occur 110 

[29]. In the case of leaves or sepals, this approach has revealed how new buds with few 111 

cells result in reproducible shapes through feedback between patterns of oriented growth 112 

and tissue deformation (Figure 3A) [30,31]. Analyzing leaf elongation rate of maize plants 113 

with displacement transducers at high temporal resolution (i.e., minutes) in contrasting and 114 

fluctuating conditions allowed identification of a novel mechanism of drought adaptation. 115 

This mechanism involves regulatory interactions between circadian control of plant hydraulic 116 

properties, daily time course of evaporative demand and hydraulic properties of the 117 

rhizosphere (i.e., roots and the adjacent soil) [32].  118 

The composition of plant tissues and the fluxes of substances (au:ok?) through organs can 119 

be characterized in 'omics-based' platforms for thousands of plants [33]. For instance 120 

Ionomics employs ICP-MS to perform elemental profiling [34]. This has allowed identification 121 

of Arabidopsis mutants whose leaves have altered elemental composition. Many of these 122 

mutants were later shown to be defective for an impermeable barrier in roots, termed the 123 

Casparian strip, that regulates loading of elements into vascular tissues [35]. Metabolomic-124 

based methods profile the compounds involved in major metabolic pathways. This approach 125 

has helped discover how different genotypes cope with environmental cues, uncovering the 126 

dialogue between the circadian clock and changes in light availability that allow plants to 127 

optimize the use of starch reserves [36]. Fluxomics (i.e., in situ imaging of the concentration 128 

and fluxes of elements [37]) have provided important insights about where, when and how 129 

water and nutrients are transferred in the plant [38]. For example, MRI-PET-based imaging 130 

has enabled researchers to map carbon flow from leaves to individual roots [39]. Imaging-131 

based phenomic approaches can also be employed for cell-scale profiling studies. For 132 

example, eGFP- and FRET-based sensors have proved highly effective for monitoring the 133 



spatio-temporal dynamics of hormones and elements like zinc in Arabidopsis root cells [40–134 

42] (Figure 3D) and uncover new mechanistic insights into their homeostatic regulation. 135 

The examples above highlight how high-precision platforms are effective for discovering new 136 

physiological mechanisms, but also for upscaling them from organ to plant level. 137 

Nevertheless, at their current stage of development, these platforms cannot analyse the 138 

many thousands of plants needed to perform genetic studies across a range of environments 139 

over a whole life-cycle timescale. Hence, they are not directly relevant for upscaling 140 

mechanisms to predict important traits such as yield (Table 1).  141 

Field Multi-Environment Networks 142 

At the other extreme of plant phenomics, 'field multi-environment networks' (Table 1) are 143 

series of field experiments distributed in a geographical region, aimed at uncovering the 144 

genetics of yield stability. They probe the genetic control of plant performance in a range of 145 

environmental scenarios, without pre-conceived reference to a particular mechanism.  146 

The yield of a given genotype often differs between field sites, as does the ranking of 147 

genotypes (genotype by environment interactions; GxE) [43,44]. Indeed, the relationship 148 

between yield and environmental conditions results from trade-offs between mechanisms 149 

that have distinct optima [45]. The relationship between genotype and phenotype therefore 150 

needs to be analysed in clusters of microclimatic conditions referred to hereafter as 151 

environmental scenarios [46,47]. For example, a network of 29 field experiments across 152 

Europe was used to grow a maize diversity panel and identify genomic regions associated 153 

with yield (quantitative trait loci, QTLs) under heat or water stresses [48]. Nearly all QTLs 154 

had conditional effects, positive, negative or null, depending on environmental scenarios. For 155 

instance, an allele at one QTL that controls the biosynthesis of the stress hormone abscisic 156 

acid (ABA) was favourable in drought but detrimental in well-watered situations. Hence, a 157 

large number (typically 20–40) of experiments needs to be conducted under diverse 158 

environmental conditions to explore such allelic effects. Genomic selection (GS) extends the 159 

former approach to establish predictions of the best combinations of alleles for yield [49]. GS 160 

requires phenotyping of hundred/thousands of genotypes (the 'training population'), in some 161 

cases, with the effects of environmental conditions [50]. The best combinations of alleles are 162 

then used to select, in silico, tens of thousands of plants, thereby avoiding direct 163 

phenotyping of these plants [50].  164 

Whole-Plant, Multi-Environment Platforms 165 



Given the complex interactions between QTL and environment and between QTLs [51], the 166 

interpretation of results generated by networks of field experiments is most often 167 

challenging, making it difficult to relate gene alleles with physiological mechanisms. To 168 

achieve this goal, a third category of plant phenomic platforms, ‘whole-plant, multi-169 

environment platforms’, has been developed. These platforms are highly instrumented 170 

greenhouses or fields allowing one to follow and dissect variables such as the growth or 171 

transpiration of thousands of plants or small canopies, thereby allowing their genetic analysis 172 

(Table 1).  173 

Highly automated platforms in greenhouses enable researchers to perform 4-D 174 

characterisation of the architecture of shoot, root or canopy systems of hundreds of 175 

genotypes (Figure 3B,E; Figure 4A). They allow genetic analyses of traits such as shoot 176 

topology, angles, branching and growth rate as a function of environmental conditions [52–177 

56]. More elaborate traits such as the utilisation efficiency of water, light or nutrients can be 178 

calculated from these data using functional/structural plant models (Figure 2F; Figure 4J) 179 

[57–59]. This is illustrated in Figure 4, in which 4-D imaging of whole plants and the 180 

mapping of incident light in a greenhouse makes it possible to disentangle the biomass 181 

accumulation of 1000s of plants into well-defined processes, such as the amount of light 182 

intercepted by each plant (a function of leaf area and geometry) and the photosynthetic 183 

ability of each plant [58]. Crop models can then be used to connect the genetic variability of 184 

these processes to yield [60]. 185 

High-throughput field phenotyping has progressed rapidly in the last five years, based on the 186 

use of multi spectral 4-D analyses with sensors mounted on mobile systems such as gantries 187 

[61,62], ground vehicles or drones [63,64] (Figure 3C,F). They offer the possibility of 188 

estimating the genetic variability of yield, biomass accumulation and underlying processes in 189 

a variety of environmental scenarios. For example, canopy temperature provides a proxy for 190 

genetic differences in transpiration, which is often due to variation in root system 191 

architecture [63,64] (Figure 2F).  192 

 193 

Cross-Scale Meta Analyses  194 

Currently, joint analyses of field experiments have been performed across years and sites 195 

[43,65]. While cross-scale approaches are also beginning to appear [66], they need to be 196 

developed further.  197 



No single plant phenomic platform can analyse every scale, throughput or environment. For 198 

example, it would be misleading to measure yield in greenhouse experiments, as the amount 199 

and spectrum of light available to plants in a greenhouse and the distribution of roots in the 200 

soil in pots would make any attempt irrelevant [11]. Reciprocally, phenotyping of thousands 201 

of varieties in tens of field experiments is not compatible with costly and labour-intensive 202 

methods. A combination of approaches is therefore necessary, which we term ‘cross scale 203 

meta-analyses’. For instance, the plasticity of yield can be analysed in 'field multi-204 

environment networks'. The underlying genetic variability of trait adaptation can then be 205 

analysed in 'whole-plant, multi environment' platforms for the same panels of genotypes, 206 

thereby associating QTLs affecting yield in specific environments to allelic variations of traits. 207 

The resulting alleles can be tested for their effects on mechanisms of plant adaptation in 208 

'high precision' platforms [67]. Such meta analyses are particularly vital in the case of root 209 

studies, in which the root architecture or growth can only be analysed in 'high precision' or 210 

'whole plant multi environment platforms', whereas only consequences can be observed in 211 

the field, for instance through differences in canopy temperature (Figure 3D–F).  212 

Employing Trans-Scale Analyses to Link Sensors with Knowledge 213 

Cross-scale meta analyses, as defined above, require consistent methods for recovering data 214 

across all platforms, time scales and levels of plant organization (Table 1; Figure 3). We 215 

discuss below the major challenges researchers face to achieve this ambitious, yet essential, 216 

next step in plant phenomic research.  217 

Environmental Characterization, Sensor Networks 218 

In our own experience, the analysis of datasets originating from different experiments and 219 

groups faces a lack of consistent environmental information, which makes it impossible to 220 

analyse and model the differences in plant behaviour between experiments. To that end, 221 

several research consortia have proposed ‘minimum environmental datasets’ with the 222 

necessary environmental variables and protocols for data analysis and modelling at any scale 223 

[68,69]. Furthermore, a full environmental characterisation is now being facilitated by rapid 224 

progress in sensor technology. Cost-effective sensors can now be placed in wireless 225 

networks to characterize the micro-environment of many organs in a plant and many plants 226 

in a canopy (Figure 5, arrows 1 and 2). This progressively applies to the characterization of 227 

the soil environment by combination of soil sensors with modelling [70]. This local 228 

information can be scaled up at whole-platform, field or regional levels using local, UAV or 229 

satellite imaging, respectively. This allows efficient mapping of environmental variables, 230 



thereby characterizing and capturing the effects of the spatial and temporal variation of 231 

growth conditions sensed by individual plants or fields (Table 1).  232 

Consistent Analysis of Images and Time Series. 233 

Imaging systems have progressed exponentially in recent years, with a variety of non-234 

invasive and information-rich techniques (e.g., laser microscopy and rangefinders, X-ray 235 

µCT, multi- and hyper-spectral cameras, isotope tracing methods). These techniques have 236 

recently been reviewed in detail [8,71] and can be used at a variety of scales to support the 237 

4-D functional analysis of root or shoot systems, and capture the structure and physiological 238 

status of plants (Figure 3). However, imaging devices and protocols perform photography, 239 

not phenotyping: traits need to be recovered from raw image data via image analysis (Figure 240 

5, arrows 1 and 2). We discuss some of the key issues and solutions below. 241 

 Many software tools dedicated to image analysis of shoots [72], roots [73,74], canopies 242 

[75], leaves [76], seeds [77] and fruit [78] have been developed in recent years. An 243 

increasing number of these tools offer realistic and non-invasive 3-D reconstructions of plant 244 

organs [79], based on the combination of multi-view stereo [80] and modelling [81,82], or 245 

use laser-scanning systems [83,84], time-of-flight sensors [85,86], X-ray [74,87] or magnetic 246 

resonance imaging [88]. Because plants are structurally complex and highly variable, a given 247 

set of sensor or camera viewpoints at fixed positions cannot provide all the data needed to 248 

reconstruct a complete 3-D model of a plant or a canopy. Partial descriptions recovered from 249 

an initial set of camera views can be used, by solving a next-best-view problem, to guide a 250 

robot to acquire the data needed to complete the model. Indeed, robot-assisted imaging 251 

allows a loop to be established between image acquisition, analysis and de novo positioning 252 

of sensors at the most insightful places in plants [61,83,89]. This opens the way for a 253 

dialogue between models, sensors and imaging, enabling high-throughput, high-performance 254 

phenotyping of plants or canopies.  255 

 Interpretation of sensor or camera outputs requires the millions of raw data points to be 256 

organized into environmental or phenotypic time courses. This first requires the identification 257 

of dubious points due to sensor malfunction or computational errors, inevitable when 258 

thousands of sensors are involved, or when thousands of images are automatically 259 

processed. Such data cleaning can now be performed based on statistical or machine-260 

learning methods for the large datasets originating from high-throughput platforms [90].  261 

Data Analysis and Reproducibility Tests  262 



Making reproducible measurements of the same plants or accessions over time and across 263 

platforms requires standardized protocols, including camera calibration, careful selection of 264 

number and position of viewpoints and the time of day at which images are acquired. This 265 

was done with success in a multi-laboratory study using Arabidopsis thaliana accessions 266 

grown in controlled chambers [91], but requires further attention. A phenotyping platform 267 

might give different assessments of the same genotype at two different sites, either because 268 

of environmental changes or as the result of variations in the phenotyping process. Image 269 

analysis methods in particular need to be both understood [92] and evaluated by comparing 270 

their results with pre-obtained ground truth data [93], allowing identification of the limitation 271 

of each method [94]. 272 

The wealth of methods used in phenomics (Figures 3–4) raises the question of how to jointly 273 

analyse image and sensor outputs (Figure 5, arrows 3 and 4). Mixed model approaches have 274 

progressed rapidly, allowing genetic analysis of datasets involving different sources of 275 

information [95,96]. Novel developments allow identification of genotypic means of any 276 

variable, from omics to yield, which are isolated from the noise created by the spatial 277 

variability in field or platform experiments (Figures 3C,F; Figure 4E), the effect of 278 

experimental co-variables (e.g., site, or persons who performed experiments) and 279 

environmental variables [97]. These 'best linear unbiased estimates' (BLUEs) are then 280 

analysed individually or in multi-trait analyses [98]. 281 

Model-Assisted Phenotyping: Connecting Scales  282 

Models naturally partner with phenotyping (Figure 5, arrow 7). For example, dynamic models 283 

offer the possibility of scaling up the effects of a short-term mechanism at the organ scale, 284 

identified in ‘high-precision platforms’, to biomass accumulation after several time steps in  285 

‘whole-plant, multi environment platforms’, or to yield in field networks. Dynamic models are 286 

based on the discretization of a process into time steps (e.g., minutes or days). Calculations 287 

are iterative, with short-term effects taken into account at each time step (e.g., the effect of 288 

light on photosynthesis, with different effects between genotypes), and long-term effects 289 

emerging from feedback (e.g., the uptake of water or nutrients by the plant at a given time 290 

step reduces their availability for the next time step) [99]. Models have been used in plant 291 

phenomics in two ways [60].  292 

 Firstly, the dissection of a phenotype observed on a given day into the most likely set of 293 

mechanisms (model inference; Figure 5, arrows 5,7). For example, the biomass on a given 294 

day can be dissected into the amount of light received by the plant, multiplied by the 295 

proportion of light intercepted by plants every day, multiplied by the efficiency with which 296 



intercepted light is converted into biomass (Figure 4). Similarly, leaf area can be analysed as 297 

the result of time courses of leaf growth over time, resulting from environmental conditions 298 

and intrinsic traits of the considered genotype [100].  299 

Secondly, the prediction of a given phenotype from environmental conditions and 300 

hypothetical mechanisms observed in high-precision or whole-plant platforms’ (Figure 5, 301 

arrow 7). Model prediction operates in the opposite direction compared with dissection, and 302 

serves as a test for the proposed mechanisms based on their ability to account for an 303 

observed phenotype. The set of mechanisms taken into account are written as equations 304 

which result in a phenotype after several time-steps [101].  305 

Hence, modelling is an essential tool for phenomics because it helps to develop hypotheses 306 

allowing multi-scale interpretations of results obtained in the three types of phenotyping 307 

infrastructures presented in Table 1. Reciprocally, multi-scale phenomics represents a major 308 

challenge for modelling. Indeed, phenomic technology allows multiple traits that contribute 309 

to yield to be measured at high temporal resolution, providing a rich data set against which 310 

models can be tested [101]. This avoids compensation of errors associated with each trait 311 

underlying yield, a common feature of many current crop models that are parametrized 312 

based on yield only [102].  313 

Tracing and Storing All Steps from Data to Knowledge in Information Systems. 314 

Phenomic experiments are not directly reproducible because of the variability of 315 

environmental conditions. It is essential that any scientist, including those in 30 years, can 316 

re-use phenotypic data and reproduce the data-flows presented above to perform meta-317 

analyses of the effects of alleles or mechanisms in a range of environmental conditions. This 318 

has led to the definition of new norms named FAIR (findable, accessible, interoperable and 319 

reusable) [103], primarily for tracing data, but also protocols, methods and workflows. They 320 

involve information systems capable of managing thousands of data points and images 321 

captured during an experiment, together with the necessary metadata, parameters and 322 

methods of data analysis (Figure 5). Such information systems serve three distinct purposes 323 

with different requirements [104–107]. 324 

The first purpose is for real-time management of the dataflow to optimise data quality. Real-325 

time access to images, environmental conditions and metadata is required when managing 326 

the quality of an experiment, in particular for testing (typically every day) the validity of 327 

outputs. This may seem trivial in small-scale experiments but it is not when thousands of 328 

plants and hundreds of sensors are involved. Protocols [108,109] and management tools 329 



[90] have been developed to visualize large volumes of temporal data in real-time, thereby 330 

allowing one to detect potentially incorrect sensors and to act accordingly.  331 

Secondly, these information systems help organize datasets in such a way that they can be 332 

re-analysed by different groups. Data identification and annotation involves organizing 333 

outputs in such a way that a scientist not involved in the original experiments can trace the 334 

history of plants, re-analyse images with new methods of his/her own and a posteriori 335 

check the calibration of each sensor in case of inconsistencies, possibly years after that the 336 

experiment has been performed.  337 

 338 

This requires protocols describing content and format of phenotypic information [110], and a 339 

formalised description of all involved objects (i.e., plants, organs, sensors, phenotyping 340 

facilities) using ontologies [111,112]. Such ontologies may seem un-necessary in simple 341 

experiments where unique correspondences exist between, for example, each plant and its 342 

position in a greenhouse. They become indispensable, however, when plants are 343 

transferred from one platform to another during an experiment for better multi-scale 344 

characterization. In the same way, sensors are replaced, so calibrations of devices located 345 

at a given position change with time. Keeping track of these changes requires open and 346 

extensible database schemas based on ontologies and semantics [111].  This also requires 347 

keeping track of all operations, including parameters, used in analyses that produce an 348 

elaborate result from raw data. Such scientific workflows are being developed [110], 349 

thereby allowing any user to perform the same analysis and obtain the same results as 350 

those published.  351 

 352 

Finally, these systems help organise data to facilitate genetic analyses. Correspondence 353 

between phenotype and genotype requires connection of matrices of genotypic data, 354 

consisting of millions of marker data items or genomic sequences, with associated 355 

phenotypic data that synthesize time courses or spatial variation into single figures 356 

supporting the genetic analyses [113]. Because of the complexity of the information 357 

systems reviewed above, and of the need for high calculation power, this is performed in 358 

dedicated information systems that are physically distinct from those managing dataflow 359 

and object identification. Hence, maintaining consistency of information across multiple 360 

information systems will remain a major issue.  361 

The ‘Big-Data’ Challenge of Plant Phenomics  362 



Big data approaches can enhance phenotyping pipelines. Image analysis methods have 363 

typically employed fixed sequences of image processing and measurement processes, 364 

crafted by their designers to suit specific procedures. As a result, moving a given tool to a 365 

slightly different problem or environment often requires a near-complete rewrite of the 366 

software. Recently, deep machine-learning methods, and particularly convolutional neural 367 

networks (CNNs) have produced impressive results and been widely adopted in the computer 368 

vision community [114,115]. CNNs offer the potential to provide generic solutions to plant 369 

image analysis problems [116] and, rather than requiring tuning to their environment, 370 

benefit most from access to training data spanning multiple environments. This brings its 371 

own challenges — maximum benefit can only be gained from deep-learned tools if large-372 

scale datasets (input images and required outputs) capturing shared problems are made 373 

available. 374 

In addition, hundreds of experiments with thousands of accessions are carried out each year. 375 

The formalized meta-analysis of phenotypic data, allowed by the pipelines reviewed above, is 376 

critical to the pathway from sensors to knowledge, and would be a huge source of 377 

information if data were open, with all necessary meta-data and environmental conditions 378 

included [117]. Indeed, the discussion above suggests that the combination of datasets 379 

collected by distinct groups from different phenotyping platforms and fields could result in 380 

unprecedented information that may build up year after year. Recent papers present ‘proofs 381 

of concept’ of the meta-analysis of large datasets combining environmental and phenotypic 382 

data [118–120], and discuss their role in multi-environment quantitative genetics [121].  383 

Finally, combining large-scale environmental characterization with data collected by farmers 384 

and advisors in the context of precision agriculture. The sensor networks that are appearing 385 

in farmer's fields, multi-layer maps of climate and soil characteristics and progress in remote 386 

sensing may soon provide the environmental data necessary to interpret the diversity of yield 387 

corresponding to each variety in each field. If large-scale collections of yield and 388 

environmental conditions in farmer's fields were organized, association genetics at the level 389 

of countries or continents would become possible. This type of approach is already 390 

operational in big-data analyses of, for example, human social media behaviour, and its 391 

adoption in phenomics is of interest to a range of stakeholders. 392 

Concluding Remarks  393 

Plant phenomics research faces a conceptual challenge. To date, researchers have focused 394 

on employing and/or developing novel sensors and imaging techniques [8–10]. However, 395 



methodological advances in terms of data acquisition, handling and processing are becoming 396 

increasingly important. Indeed, the challenges of translating sensor information into 397 

knowledge have been grossly underestimated during the first years of plant phenomics 398 

research (au:ok?). Facing this challenge involves taking into account the intimate 399 

interaction between environmental conditions and plant structure, functions and metabolism, 400 

which require environmental characterization to be part of all steps of phenotyping, from 401 

data collection to meta-analyses. It also requires the use of both dynamic and statistical 402 

models allowing multi-scale analyses across experiments and platforms, which are essential 403 

to deal with the plant peculiarities reviewed at the beginning of this paper. Finally, the most 404 

recent advances in information technology must be employed to face the big-data challenge 405 

associated with multi-image processing, of meta-analysis of heterogeneous data and of the 406 

deployment of phenomics beyond the strict world of research. For obvious budget issues, it 407 

will not be possible to monitor all temporal and organization scales in every environment, but 408 

we believe that the rapid progress in modelling and information systems will allow 409 

identification of adequate cocktails of equipment, methods and meta-analyses allowing 410 

optimization of resources.  411 

Hence, we propose that phenomics has reached a stage at which the limiting step is the 412 

design of methods and approaches allowing one to take into account different temporal and 413 

spatial scales and perform meta-analyses for addressing the challenges of plant adaptation 414 

to changing environments and underpin secure food security efforts. 415 
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Figure 1. Illustrations of phenotypic plasticity. 431 

 Arabidopsis plants under low evaporative demand with short (A) or long (B) day, or under 432 

high evaporative demand(C) [15]. Note the differences in leaf number and leaf size. (D,E) 433 

Maize plants in the morning and early afternoon and time courses of leaf temperature (T, 434 

from 11 to 36°C) and leaf water potential (�, MPa) during the day. A leaf water potential of 435 

0 MPa means free water, whereas -1.5 MPa is close to lethal values in many species. In the 436 

lower panel of E, symbols are measurements, lines are an interpolation using a model. In 437 

(F), the change in canopy aspect is due to leaf rolling, a symptom of water stress. Panels 438 

(D), (F) kindly provided by C. Fournier, INRA LEPSE Montpellier France. 439 

Figure 2. Plant root phenotyping pipeline using X-ray micro computed tomography (µCT). 440 

 (A) µCT scanning system to non-invasively image columns of soil-grown plants (ranging in 441 

resolution from 0.5µm–150µm). (B) Example 2-D cross-sectional image generated with µCT 442 

scanner showing root material (in red) and the heterogeneous structure of soil (soil and 443 

water in grey, air spaces in black). (C) Image analysis software [74] can be used to recover 444 

root system of maize from the µCT volume data after segmenting roots from thousands of 2-445 

D image slices, (D) and quantify root system traits, (E) to discover new root responses to 446 

environmental signal, like how soil water distribution patterns the positioning of lateral root 447 

branches [23], and (F) parameterise models to simulate growth and foraging for natural 448 

resources by root systems.  449 

 Figure 3. Novel imaging techniques at organ scale with high-precision (HP) platforms, at 450 

plant scale with whole-plant multi environment platforms and at canopy scale.  451 

(A) Heat map denoting areal rates of leaf growth using time-lapse imaging and computer 452 

modelling (red to green, rapid to slow growth) [30]. (B) 3-D representation of a maize plant 453 

from multiple images, at a throughput of 1000s plants/day. Colors indicate the amount of 454 

light received by each pixel of plant. (C) Multi-spectral (NDVI) image of a canopy; 455 

increasingly red colors represent increasing leaf area per unit m2 of soil. (D)   Image of an 456 

auxin biosensor in the Arabidopsis primary root obtained by confocal imaging [122]. (E) 457 

Whole-plant root system imaged in a rhizotron at throughput of 1000s plants/day. Inset, 458 

zoom on root nodules [53]. (F) Image of a canopy in the thermal infrared; increasingly red 459 

colors indicate lower transpiration rate, often linked to an unfavorable root system. 460 

Horizontal regions with distinct colors: (i) non-irrigated plot, (ii) irrigated plot. Note in (i) the 461 

superposition of spatial patterns with specific effects of genotypes in different plots. Panel B 462 



kindly provided by C. Fournier, INRA LEPSE Montpellier France. Panels (C) and (F) kindly 463 

provided by F. Baret, INRA CAPTE Avignon France. 464 

Figure 4. Light interception, photosynthesis and radiation use efficiency, from images to 465 

function. [58]  466 

(A) Phenotyping platform (PhenoArch) where 1680 plants can be grown in controlled 467 

conditions of soil water status and temperature, imaged and assessed for transpiration rate. 468 

Sensors measure light, relative humidity and air and leaf temperature and transpiration. (B) 469 

Twelve images per plant are captured every day allowing 3-D reconstruction. (C) Time 470 

courses of leaf area and biovolume are calculated in real time. (D) Spatial distribution of 471 

incident light. Images are captured every m2 in the greenhouse, oriented to the vertical. 472 

Blue, sky; black, obstacles (lamps, beams, etc.). The path of sunbeams is modelled every 473 

day of the year (yellow line). This allows calculation of direct and diffuse light in every 474 

position of the greenhouse. (F) Virtual digital plants are placed at their positions in a virtual 475 

greenhouse. (G) This allows calculation of light interception by competing plants, in the 476 

whole greenhouse. (H) The above steps allow dissection of biomass accumulation into 477 

incident light on day i (PPFDi), the proportion of light intercepted by plants (��) and radiation 478 

use efficiency (RUEi, ratio of biomass production to intercepted light). (i) RUE is presented 479 

for three plants in (F), pink, green and black. Bars near the x and y axes represent the 480 

amounts of cumulated biomass and intercepted light, the slope of regression lines is RUE. (J) 481 

RUE closely correlates with photosynthesis rate in a series of genotypes denoted by different 482 

colors. Note that it would be impossible to directly measure gas exchanges for 1680 plants. 483 

Figure 5. Flow chart of operations during phenotyping; roles of information systems and 484 

modelling.  485 

The left panel represents steps from image/sensor to knowledge; the right panel represents 486 

the rationale for information systems at each step (green: tools). Red text represents 487 

questions at each step. Dark blue arrows and text: modelling tools. Purple arrows: 488 

connection between steps. (1) Transforming raw data into time courses for environmental 489 

data, fluxes, growth rates etc. (2) Image analysis to transform a series of images into a 490 

phenotype. (3) and (4) Data analysis with statistical and modelling tools, reproducibility. (5) 491 

Extraction of mechanisms or composite variables encapsulating the genotype x environment 492 

interaction, genetic analysis (6) association of yields to environmental scenarios, genetic 493 

analysis. (7) Prediction and inference of mechanisms vs scenario-dependent yields using 494 

models. (8) Theory, test using meta-analysis and/or new experiments. 495 
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In Brief 869 

In this Review, Tardieu et al. discuss the techniques, challenges, and potential of the 870 
field of plant phenomics (au:ok?) 871 

 872 

Box 1  873 

Glossary of Terms. 874 

Convolutional neural nets (CNNs): CNNs are a variant of traditional artificial neural 875 

networks (ANNs), machine-learning methods inspired by biological neuronal systems. 876 

Traditional neural nets take a pre-determined set of measurements or features as their 877 

input and learn to perform various tasks; classification is by far the most common. CNNs 878 

extend scope of ANNs, learning both how to achieve the task and what measurements 879 

are needed. CNNs operate over raw sensor data, and learn how to extract the necessary 880 

features. 881 

Genome-wide association studies (GWAS): this consists in associating markers in 882 

the genome with phenotypes (omic, traits or yield) through a statistical analysis. The 883 

values of alleles at one genome position are associated with a quantitative increase or 884 

decrease of phenotypic values. 885 

Genotype x environment interaction (GxE) : the ranking of a set of genotypes 886 

differs between experiments for every trait or yield. GxE can be extracted from a 887 

statistical model, or can be analysed in detail using regressions of the considered trait 888 

with environmental variables. GxE is therefore analysed through the variability of slopes 889 

of these regressions.  890 

Genomic  selection  (GS):  represents  a  novel  approach  to  marker-­‐assisted  breeding  where,  891 
rather  than  attempting  to  identify  individual  loci  significantly  associated  with  a  trait,  GS  uses  892 
all  marker  data  as  predictors  of  performance  to  deliver  more  accurate  predictions.    893 
 894 
Laser scanning systems: A 3-D reconstruction method in which a known pattern of 895 

light (a line, grid or array of dots) is projected onto the target object by a laser light 896 

source. A camera, often fitted with a filter making the laser pattern easier to detect, 897 

views the reflected pattern. 3-D is recovered from differences in the projected and 898 

viewed patterns of light. 899 

Magnetic resonance imaging (MRI): MRI is a 3-D imaging modality in which the 900 

target sample is placed in a strong magnetic field. Under these conditions some atomic 901 



nuclei, particularly hydrogen nuclei, absorb and emit radio frequency energy. Pulses of 902 

radio waves excite the hydrogen atoms, which emit signals that are detected by nearby 903 

antenna. The magnetic field allows these signals to be localised, mapping hydrogen 904 

atoms and so water. 905 

Multi-view stereo: a 3-D reconstruction technique in which multiple, usually colour, 906 

images are taken of a target object from different viewpoints. Features of interest are 907 

identified by independent analysis of each, individual image. These features are then 908 

matched between images — features are matched if they are considered to depict the 909 

same point on the target object. The cameras’ viewpoints are obtained by calibration 910 

and the 3-D location of each object feature is recovered by triangulation. 911 

Phenotype: here, we mean the profiling of the structures and functions associated with 912 

allelic variants, at the scales of cells (omic phenotyping), organs (main plant functions), 913 

whole plant (controls of these functions) and canopy (plant performance).  914 

Quantitative trait loci (QTL): QTLs are regions of the genome containing one or 915 

more genes, associated to variation with a quantitative trait (phenotype). QTLs are 916 

identified by showing a statistical association between polymorphic markers and the 917 

measured phenotype. 918 

Unmanned airborne vehicle (UAV): Helicopters, drones or small planes able to fly 919 

over a field experiment, carrying a diversity of sensors. Their trajectory is programmed 920 

using GPS.  921 

X-ray micro-computed tomography (µCT): X-ray CT produces a 3-D image in which 922 

each element (voxel) contains a value proportional to the density of the imaged object. 923 

The target object is placed on a rotating stage inside the imaging device. An emitter 924 

projects X-rays through the rotating sample to a detector on the other side of the device. 925 

The detector records the X-ray energy passing through the object. Density can be 926 

estimated from the difference in projected and detected X-ray energy. 927 
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Table  1.  Phenotyping  at  different  scales  of  organization  935 
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