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Abstract: [Fe(dppOH)2]2+ (dppOH = 2,6-di(pyrazol-1-yl)-4-(hydroxymethyl)pyridine) is known
to show spin crossover (SCO) behavior and light-induced excited spin state transitions (LIESST).
Here, we show that the SCO properties of the [Fe(dppOH)2]2+ complex can be altered by a
crystal engineering approach employing counter anion exchange with polyoxometalate (POM)
anions. Using this strategy, two new composite materials (TBA)[Fe(dppOH)2][PMo12O40] (1) and
[Fe(dppOH)2]3[PMo12O40]2 (2) (TBA = tetra-n-butylammonium) have been isolated and studied by
single crystal X-ray diffraction and magnetic susceptibility measurements. 1 was found to be in a
high spin state at 300 K and showed no spin crossover behavior due to a dense packing structure
induced by hydrogen bonding between the hydroxyl group of the dppOH ligands and the POM
anions. Conversely, 2 contains two crystallographically unique Fe centers, where one is in the low
spin state whilst the other is locked in a high spin state in a manner analogous to 1. As a result, 2
was found to show partial spin crossover behavior around 230 K with a decrease in the χmT value of
1.9 emu·mol−1·K. This simple approach could therefore provide a useful method to aid in the design
of next generation spin crossover materials.

Keywords: spin crossover; polyoxometalate; crystal engineering; magnetic properties; iron

1. Introduction

Spin crossover (SCO) materials have been studied extensively due to their ability to
reversibly switch spin states in response to external stimuli, allowing their potential application
in molecular electronic devices [1,2]. Spin crossover behavior is often shown in hexacoordinated
Fe(II) [3], Fe(III) [4] and Co(II) [5] complexes. Among them, Fe(II) complexes which have dpp
ligands (dpp = 2,6-di(pyrazol-1-yl)pyridine) have been widely studied by Halcrow, Howard and
co-workers [6–13]. In addition, [Fe(dpp)2]2+ complexes show light-induced excited spin state
transitions (LIESST) [8,10], where the spin state can be controllably switched in response to visible
light. Significantly, the spin state of the Fe(II) ion is directly affected by the coordination environment
and distortions in the plane of the dpp ligand [11,12].

Polyoxometalates (POMs) are large anions in which transition metal cations in their highest
oxidation state are bridged by oxo-anions, leading to a huge variety of unique, nano-sized
structures [14–16]. POMs are also of interest due to their appealing properties, including reversible,
multi-electron redox behavior, electrocatalytic activity [17], photo-oxidizing properties [18,19] and
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proton conductivity [20,21], and show great promise for advanced applications. POMs can also act as
efficient spacers to magnetically isolate paramagnetic species: for example, Miyasaka, Hayashi and
co-workers have recently used POMs as magnetic spacers in Mn3+ dimers of a single molecule magnet
(SMM) [22].

In this work, the Fe(II) spin crossover complex, [Fe(dppOH)2]2+ (dppOH = 2,6-di(pyrazol-1-yl)-
4-(hydroxymethyl)pyridine; Figure 1) and a Keggin-type POM, [PMo12O40]3−, are combined to make
hybrid composite materials. Specifically, the tridentate ligand dppOH has a pendant hydroxyl group
which was expected to show favorable H-bonding interactions with neighboring polyoxoanions.
Controlled spin state conversion and modification of the electronic state of [Fe(dppOH)2]2+ were
targeted by employing POM anions as crystallographic spacers with potential to display proton
acceptor and photo-oxidative properties. Two hybrid materials (TBA)[Fe(dppOH)2][PMo12O40] (1)
and [Fe(dppOH)2]3[PMo12O40]2 (2) (TBA = tetra-n-butylammonium), were successfully isolated using
a simple synthetic approach. The spin state of the Fe(II) ions in 1 are shown to be high spin across the
entire temperature range measured, which is likely due to its highly distorted coordination geometry.
Conversely, 2 has three Fe(II) centers, one of which is shown to be stabilized in a low spin configuration
and displays moderate partial spin crossover behavior between 100 and 300 K.

Inorganics 2017, 5, 48 2 of 8 

 

efficient spacers to magnetically isolate paramagnetic species: for example, Miyasaka, Hayashi and 

co-workers have recently used POMs as magnetic spacers in Mn3+ dimers of a single molecule magnet 

(SMM) [22]. 

In this work, the Fe(II) spin crossover complex, [Fe(dppOH)2]2+ (dppOH = 2,6-di(pyrazol-1-yl)-

4-(hydroxymethyl)pyridine; Figure 1) and a Keggin-type POM, [PMo12O40]3−, are combined to make 

hybrid composite materials. Specifically, the tridentate ligand dppOH has a pendant hydroxyl group 

which was expected to show favorable H-bonding interactions with neighboring polyoxoanions. 

Controlled spin state conversion and modification of the electronic state of [Fe(dppOH)2]2+ were 

targeted by employing POM anions as crystallographic spacers with potential to display proton 

acceptor and photo-oxidative properties. Two hybrid materials (TBA)[Fe(dppOH)2][PMo12O40] (1) 

and [Fe(dppOH)2]3[PMo12O40]2 (2) (TBA = tetra-n-butylammonium), were successfully isolated using 

a simple synthetic approach. The spin state of the Fe(II) ions in 1 are shown to be high spin across the 

entire temperature range measured, which is likely due to its highly distorted coordination geometry. 

Conversely, 2 has three Fe(II) centers, one of which is shown to be stabilized in a low spin 

configuration and displays moderate partial spin crossover behavior between 100 and 300 K. 

 

Figure 1. The dppOH (2,6-di(pyrazol-1-yl)-4-(hydroxymethyl)pyridine) ligand. 

2. Results 

2.1. Synthesis 

The tridentate dppOH ligand (dppOH = 2,6-di(pyrazol-1-yl)-4-(hydroxymethyl)pyridine) and 

the Fe(II) complex, [Fe(dppOH)2](BF4)2 were prepared according to previously reported methods [13]. 

(TBA)[Fe(dppOH)2][PMo12O40]·2CH3NO2 (1) and [Fe(dppOH)2]3[PMo12O40]2·15H2O (2) were 

synthesized by slow diffusion of the Fe(II) complex into (TBA)3[PMo12O40] and H3PMo12O40 solutions, 

respectively. A solution of the POM in 1 mL nitromethane (10 mM) was placed in a glass tube (φ = 8 

mm), after which a buffer layer of nitromethane and acetonitrile (1:1 v/v, 0.5 mL) was layered on top. 

Finally, a solution of [Fe(dppOH)2](BF4)2 in 1 mL acetone/acetonitrile (2:1 v/v, 10 mM) was carefully 

layered on top of the middle buffer layer. After around 1 week, crystals suitable for X-ray analysis 

were obtained. 

2.2. Crystal Structures 

The structures of 1·2CH3NO2 and 2·2CH3NO2 were obtained by single crystal X-ray diffraction 

at 100 K (Figures 2 and 3). The crystal system of 1 is monoclinic and the space group is P21/c. The 

asymmetric unit contains one [Fe(dppOH)2]2+ cation, a TBA cation, a [PMo12O40]3− anion, and two 

nitromethane solvent molecules. Considering charge balance and BVS (bond valence sum) 

calculations, the valence of the molybdenum ions can be estimated as 6+, in which the overall charge 

on the [PMo12O40] anion should be 3−. 

Figure 1. The dppOH (2,6-di(pyrazol-1-yl)-4-(hydroxymethyl)pyridine) ligand.

2. Results

2.1. Synthesis

The tridentate dppOH ligand (dppOH = 2,6-di(pyrazol-1-yl)-4-(hydroxymethyl)pyridine)
and the Fe(II) complex, [Fe(dppOH)2](BF4)2 were prepared according to previously reported
methods [13]. (TBA)[Fe(dppOH)2][PMo12O40]·2CH3NO2 (1) and [Fe(dppOH)2]3[PMo12O40]2·15H2O
(2) were synthesized by slow diffusion of the Fe(II) complex into (TBA)3[PMo12O40] and H3PMo12O40

solutions, respectively. A solution of the POM in 1 mL nitromethane (10 mM) was placed in a glass
tube (φ = 8 mm), after which a buffer layer of nitromethane and acetonitrile (1:1 v/v, 0.5 mL) was
layered on top. Finally, a solution of [Fe(dppOH)2](BF4)2 in 1 mL acetone/acetonitrile (2:1 v/v, 10 mM)
was carefully layered on top of the middle buffer layer. After around 1 week, crystals suitable for X-ray
analysis were obtained.

2.2. Crystal Structures

The structures of 1·2CH3NO2 and 2·2CH3NO2 were obtained by single crystal X-ray diffraction
at 100 K (Figures 2 and 3). The crystal system of 1 is monoclinic and the space group is P21/c. The
asymmetric unit contains one [Fe(dppOH)2]2+ cation, a TBA cation, a [PMo12O40]3− anion, and two
nitromethane solvent molecules. Considering charge balance and BVS (bond valence sum) calculations,
the valence of the molybdenum ions can be estimated as 6+, in which the overall charge on the
[PMo12O40] anion should be 3−.
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Figure 2. (a) X-ray structure of complex 1; (b) hydrogen bonding interactions between [Fe(dppOH)2]2+

and [PMo12O40]3− and (c) packing structure of 1 viewed along the crystallographic b-axis. Color code:
C: gray, N: blue, O: red, P: orange, Fe: brown, Mo: light blue (hydrogen atoms and solvent molecules
omitted for clarity).

The Fe(II) ions in 1 were found to be in a distorted octahedral coordination geometry where
the angle of trans-N(pyridine)–Fe–N(pyridine) (φ) and the sum difference of the twelve possible
cis-N–Fe–N angles (α) from the perpendicular (Σ, where Σ = Σ|90 − α|) [11,12] were found to be
φ = 158.1◦ and Σ = 151◦, respectively, with an average Fe–N bond length of 2.2 Å. These values are
highly typical of high spin Fe(II) and 1 can therefore be assigned as assuming a high spin configuration.
In the packing structure of 1, both pendant hydroxyl groups on the dppOH ligands hydrogen bond
to a bridging µ2-oxo group on the [PMo12O40]3− anion (Figure 2b), where the distance between the
oxygen atoms of the hydroxyl groups and the µ2-oxo bridges (dO1 . . . O33 and dO2 . . . O28) are 2.94 Å and
2.85 Å, respectively. The dense packing arrangement observed in 1 leads to distorted coordination
structure, exerting a strong influence on the coordination environment parameters of the Fe(II) centers
and stabilizes its high-spin state.

The crystal system of 2·2CH3NO2, which was synthesized with the free acid of the POM
([H3PMo12O40]) as a starting material, is monoclinic with space group C2/c. The asymmetric unit
contains one and a half [Fe(dppOH)2]2+ cationic units and one full [PMo12O40]3− anionic unit, in
addition to one nitromethane molecule. 2 also contains two crystallographically distinct Fe(II) centers,
Fe1 and Fe2. As discussed above, the coordination geometry parameters φ and Σ were found to be
φ = 176.1◦ and Σ = 87◦ for Fe1, while those of Fe2 were found to be φ = 156.4◦ and Σ = 158◦. The
average Fe1–N and Fe2–N bond lengths are 1.9 Å and 2.2 Å, respectively, at 100 K. In this case, the
observed values for Fe1 and Fe2 suggest the existence of both low-spin and high-spin states in the
Fe(II) ions, respectively. It can also be noted that Fe1 is located on the center of symmetry and shows
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no H-bonding interactions between [Fe(dppOH)2] and the POM cluster, while Fe2 shows hydrogen
bonding interactions at the pendant hydroxyl groups, analogous to those in compound 1.
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Figure 3. (a) X-ray structure of 2; (b) hydrogen bonding interactions between Fe2-complexes and
[PMo12O40]3− and (c) the packing structure of 2 viewed along the crystallographic b-axis. Color code:
C: gray, N: blue, O: red, P: orange, Fe: brown, Mo: light blue (hydrogen atoms and solvent molecules
omitted for clarity).

2.3. Temperature Dependence of the Magnetic Susceptibilities

The temperature dependence of the magnetic susceptibility was measured for both 1 and 2 in the
range of 1.8–300 K (Figure 4). At 300 K, the χmT value of 1 is 4.51 emu·mol−1·K (g = 2.45). This value
confirms that the Fe(II) ion of 1 is in a high spin state (S = 2). At temperatures above 30 K, the χmT
value is constant, while below 30 K it decreases sharply due to intermolecular interactions and/or
zero-field splitting effects associated with the Fe(II) ions. The χmT value of 2 at 300 K was found to
be slightly low for three isolated high spin Fe(II) ions at 11.05 emu·mol−1·K, suggesting that 2 may
not be in a fully high spin state at 300 K (i.e., the spin state of 2 may be more accurately described as
(2 + x) HS FeII + (1 − x) LS FeII). Furthermore, upon cooling, the χmT value of 2 gradually decreases
to 9.11 emu·mol−1·K at 100 K, and this magnetic behavior can be ascribed to partial thermal spin
crossover behavior. From this data, it can be suggested that 2 contains one low-spin Fe(II) ion and two
high-spin Fe(II) ions (g = 2.46) at 100 K, whilst at higher temperatures (300 K), a fraction of low spin
Fe(II) ions may undergo thermally-driven spin crossover to the high spin state.
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3. Discussion

It was previously reported that the analogous complexes [Fe(dppOH)2](BF4)2 and
[Fe(dppOH)2](HClO4)2 show spin crossover behavior with T1/2 = 271 K and 284 K, respectively [10],
whilst the Fe(II) ion in 1 is ”locked” in the high-spin state and shows no spin crossover behavior. It
follows that the high spin state of Fe(II) is therefore stabilized in the crystal structure of 1, and we
have considered the following explanations. Firstly, the influence of the packing structure formed
by the [Fe(dppOH)2]2+ cations and [PMo12O40]3− anions is crucial. From our results, it appears clear
that close-packing and H-bonding interactions between the POM clusters and the hydroxyl groups
on the pendant (dppOH) ligands lead to significant distortion in the coordination environment of
the Fe(II) ions (φ = 158.1◦, Σ = 151◦). This highly-distorted coordination geometry around the Fe(II)
ion stabilizes a high-spin state at all temperatures. In the case of compound 1, the uniform 1:1 dense
packing arrangement of the [Fe(dppOH)2] and POM units (seen clearly in Figure 2b) facilitated by
these close-packing interactions is supported by an additional layer of charge-balancing TBA cations
which can be found in a distinct intermediate space between the groups of closely-associated POM
and [Fe(dppOH)2]2+ moieties.

On the other hand, 2 is shown to exhibit partial spin crossover behavior. In the crystal structure
of 2 at 100 K, two high-spin Fe(II) moieties (Fe2) and one low-spin Fe(II) center (Fe1) can be identified.
Where the crystal structure of 2 is similar to that of 1 (in which an observably similar 1:1 dense packing
arrangement can be found between the Fe2-complexes and the POM anions), a highly distorted
coordination geometry around the Fe2 ions is favored which stabilizes a high spin state in a manner
analogous to that in compound 1 (φ = 156.4◦ and Σ = 158◦). Conversely, the Fe1 complexes show
no significant intermolecular interactions with the POM counter-anions (with a minimum distance
dO–O = 3.52 Å between the POM and the pendant hydroxyl group on the dppOH ligands) and are
located in a larger crystallographic space (analogous to the TBA cations in compound 1), with markedly
less dense packing than the Fe2 complexes (see Figure 3). As a result, the Fe1 ions experience minimal
distortion (φ = 176.1◦ and Σ = 87◦) and the structural changes associated with the spin crossover of the
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Fe2 complex are unhindered. As a result, the Fe2 complexes show moderate spin crossover behavior
with an estimated T1/2 value ≈ 230 K. We attempted to explore the details of these structural changes
by single crystal structural analysis, however it failed as the result of 2 having lost crystallinity at 300 K.
In addition, Mössbauer spectroscopy could not be employed in this instance to aid elucidation of the
electronic state of the Fe ions because the Mo-containing POM clusters strongly absorb γ-rays.

4. Materials and Methods

4.1. Materials

The dppOH ligand and Fe(II) SCO complex, [Fe(dppOH)2](BF4)2 were synthesized according
to the literature methods [13]. (TBA)3[PMo12O40] was synthesized by performing a simple cation
exchange by adding excess TBABr to an aqueous solution of H3PMo12O40·nH2O and collecting the
resulting yellow precipitate by vacuum filtration. All other chemicals and solvents are commercially
available and were used as received without further purification.

4.2. Synthesis of [Fe(dppOH)2][POM] Composites

(TBA)[Fe(dppOH)2][PMo12O40]·2CH3NO2 (1): A solution of (TBA)3[PMo12O40] (255 mg,
0.10 mmol) in 10 mL nitromethane was prepared and then separated into 10 equal batches in glass
tubes (φ = 8 mm). A mixture of nitromethane and acetonitrile (1:1 v/v, 0.5 mL) was then layered on
top of the POM solution as a buffer layer to facilitate slow diffusion. Finally, a pre-prepared solution
of [Fe(dppOH)2](BF4)2 (95 mg, 0.13 mmol) in 10 mL acetone/acetonitrile (2:1 v/v) was separated into
10 equal batches and carefully layered on top of the buffer layer. The vials were then sealed and left
undisturbed, and after approximately one week, yellow crystals of 1 suitable for X-ray analysis were
obtained. The crystalline sample was collected via pipette and dried under vacuum prior to analysis
(yield = 55 mg, 15%). Anal. Calcd. for 1·2CH3NO2, C42H64N13FeMo12O46P; C, 18.51; H, 2.37; N, 6.68.
Found: C, 19.34; H, 2.11; N, 6.32.

[Fe(dppOH)2]3[PMo12O40]2·15H2O (2): A solution of H3PMo12O40·nH2O (190 mg) in 10 mL
nitromethane was separated into 10 equal batches and placed in glass tubes (φ = 8 mm). A mixture
of nitromethane and acetonitrile (1:1 v/v, 0.5 mL) was layered on top of the POM solution as a buffer
layer to facilitate slow diffusion. Finally, a solution of [Fe(dppOH)2](BF4)2 (95 mg, 0.13 mmol) in
10 mL acetone/acetonitrile (2:1 v/v) was separated into 10 equal batches and carefully layered on
top of the buffer layer. After approximately 1 week, yellow crystals of 2 suitable for X-ray analysis
were obtained. The crystalline sample was collected via pipette and dried under vacuum prior to
analysis (yield = 33 mg, 4%). Anal. Calcd. for 2·15H2O, C72H96N30Fe3Mo24O101P2; C, 15.64; H, 1.75; N,
7.60. Found: C, 15.77; H, 1.36; N, 7.15. We note that the elemental analysis was measured after the
samples had been dried under vacuum and that, whilst care was taken in all cases to measure the
dry material as promptly as possible, re-exposure to ambient conditions might help to explain the
anomalous hydration of the sample (as is best fitted to the elemental analysis data) when compared to
the single crystal data, where two nitromethane molecules are found per formula unit.

4.3. X-ray Crystallography

Crystals were mounted in oil on a micromount, and data were collected at 100 K on a SMART
APEXII diffractometer (Bruker, Billerica, MA, USA) coupled with a CCD area detector and with
graphite monochromated Mo Kα (λ = 0.71073 Å) radiation. The structure was solved using direct
methods and expanded using Fourier techniques within the SHELXTL program [23]. Empirical
absorption corrections were calculated using SADABS. In the structure analyses, non-hydrogen atoms
were refined with anisotropic thermal parameters. Hydrogen atoms were included in calculated
positions and refined with isotropic thermal parameters riding on those of the parent atoms.

Full details of the crystallographic analysis and accompanying cif files may be obtained free of
charge from the Cambridge Crystallographic Data Centre (CCDC numbers 1559207 and 1559208) via
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http://www.ccdc.cam.ac.uk/conts/retrieving.html (or from the CCDC, 12 Union Road, Cambridge
CB2 1EZ, UK; Fax: +44 1223 336033; E-mail: deposit@ccdc.cam.ac.uk).

4.4. Magnetic Measurements

Variable-temperature magnetic susceptibility measurements were carried out on polycrystalline
samples under an applied field of 20,000 Oe using an MPMS-XL SQUID magnetometer (Quantum
Design, San Diego, CA, USA). Diamagnetic corrections for the sample holder and [PMo12O40]3− were
collected experimentally and the contribution of the TBA cations and the (dppOH) ligands were
calculated using Pascal’s constants. Data collections were conducted at a rate of 1 K/min.

5. Conclusions

New composite crystals 1 and 2, incorporating spin crossover Fe(II) complexes and POM anions
were synthesized and their crystal structures have been obtained at 100 K. While [Fe(dppOH)2](BF4)2

shows high-spin to low-spin SCO behavior with T1/2 = 271 K, 1 is trapped in the high-spin state below
300 K and shows no spin crossover behavior. 2 contains three [Fe(dppOH)2] cations per formula unit,
two of which are similarly locked in the high-spin state configuration whilst the remaining Fe(II) ion is
found to exist in a low-spin state at 100 K and shows partial spin crossover behavior. The coordination
geometry around the Fe(II) ions is strongly affected by interactions between the pendant hydroxyl
groups of the dppOH ligand and the POM anions, which has a direct result on the spin state of the
composite compound. From this result, we show that combining spin crossover complexes with
functional anions can be used to modify spin crossover properties, and future work will demonstrate
how switchable behaviors can be obtained by facilitating proton-transfer interactions between the
ligand and the POM.

Supplementary Materials: The following are available online at www.mdpi.com/2304-6740/5/3/48/s1. Cif and
cif-checked files.
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