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Abstract Modern shape analysis allows the fine com-

parison of shape changes occurring between different

objects. Very often the classic machineries of Gener-

alized Procrustes Analysis and Principal Component

Analysis are used in order to contrast the shape change

occurring among configurations represented by homol-

ogous landmarks. However, if size and shape data are

structured in different groups thus constituting differ-

ent morphological trajectories, a data centering is needed

if one wants to compare solely the deformation rep-

resenting the trajectories. To do that, inter-individual

variation must be filtered out. This maneuver is rarely

applied in studies using simulated or real data. A geo-

metrical procedure named Parallel Transport, that can

be based on various connection types, is necessary to

perform such kind of data centering. Usually, the Levi

Civita connection is used for interpolation of curves in

a Riemannian space. It can also be used to transport a

deformation. We demonstrate that this procedure does

not preserve some important characters of the deforma-

tion, even in the affine case. We propose a novel pro-

cedure called ‘TPS Direct Transport’ which is able to

perfectly transport deformation in the affine case and to

better approximate non affine deformation in compar-

ison to existing tools. We recommend to center shape
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data using the methods described here when the dif-

ferences in deformation rather than in shape are under

study.
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1 Introduction

1.1 State of the Art

Shape theory became central in many fields from com-

puter vision to biological and medical applications; ac-

cording to [41], it can be split in at least two prin-

cipal frameworks: i) shape optimization, that is, the

search for the best shape according to a criterion; ex-

amples include image segmentation and object track-

ing; and ii) shape analysis, consisting in the study of

families of shapes for statistics, (automatic) cataloging,

probabilistic modeling, etc. The former is more used

in computer vision, and relies on continuum formula-

tions (diffeomorphisms, active contours, parametrized

surfaces etc.); the latter is more used in biological appli-

cations, and is based on the discrete sampling of shapes

by means of homologous landmarks, which are carefully

selected according to anatomical features. Recently, the

field of computational anatomy translated the contin-

uum approaches in medicine and biology.

In both frameworks, a shape is represented by a

point on a Riemannian manifold, whose geodesic play

a key role: geodesics are the natural paths along which

to transport shapes, thus providing the essential tool

to compare two different shapes or to interpolate be-

tween them. The essence of a Riemannian manifold is
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embodied in two notions: i) the metric, measuring the

distance between points (that is, shapes); ii) the con-

nection, yielding the geodesic connecting two points. It

is worth noting that a connection has to be compati-

ble with the metric, and can be built upon a Parallel

Transport (PT), a rule for transporting vectors along

geodesics.

Moreover, a PT is compatible with the metric when

it does not change the length of vectors and the an-

gles between them. For a given a metric, there exists

a unique PT compatible with it, and having vanishing

torsion: the Levi Civita (LC) PT. (The torsion of the

connection is a slightly technical notion that we will

discuss in the following).

According to [48], PT can be used in Shape theory

for many purposes, such as defining geodesics between

shapes, transporting a deformation from one shape to

another, creating random sampling for statistical shape

models. In the case of shapes sampled by homologous

landmarks, the LC connection is often used to define

the geodesic between two shapes, and to transport de-

formations [19]. However, it can be proved [47] that

this approach does not preserve some important fea-

tures of the deformation. [44] discusses the problem of

comparing the deformations occurring between pairs of

shapes and groups of shapes (in particular they for-

malize the concept of correspondence). The LV PT in

the Kendall’s Shape Space has been used in the past

for 2D configurations [14,18] with explicit formulas; re-

cently, [47] proposed a new 2D explicit formula for LC

PT in the Kendall’s Size-and-Shape Space.

Many efforts have been done in recent years in order

to unify shape metrics with deformation metrics, see

[7,27,28,34,48], whose complete review is far beyond the

scope of the present paper. In particular, new metrics

have been proposed together with the corresponding

connections.

A morphometric approach based on diffeomorphisms

(namely ’diffeomorphometry’) has been recently patented

for surfaces (not necessarily identified by homologous

landmarks) acquired by CT scan [29]. For example,

[42](fig.1) proposed a strategy that is similar in aim

to the one presented here. [28,31] revise the theory be-

hind this attractive approach that traces back to [46]

and [45]. It stems from the computation of geodesics by

means of the Large Diffeomorphic Deformation Metric

Mapping (LDDMM) approach for which we refer the

reader to [13,28] and references therein.

In classic Geometric Morphometrics, [2], [9], the de-

formation between two shapes is evaluated using the

Thin Plate Spline (TPS) method, that is a function

that minimizes the bending energy [1].

TPS, however, is a non-bijective interpolating func-

tion, and has no inherent restrictions to prevent folding,

even if some efforts have been made to tackle this is-

sue [11]. Moreover, given two shapes, a target and a

source, TPS is ‘source dependent’ and swapping tar-

get with source yields a different deformation path.

In Geometric Morphometrics it is a consolidated prac-

tice to decompose the whole deformation in affine and

non affine components. The same is done in other con-

texts such as in the “deformotion” approach proposed

by [49]. [41] proposed a tri-partite decomposition of the

deformation (translation, scaling, all the rest) in the

framework of the active contour approach, while [32]

did the same in the context of LDDMM, in order to

manage the non scale-invariance of LDDMM transfor-

mations. None of the aforementioned methods yield a

PT compatible with the affine/non affine decomposi-

tion and do not consider the PT of the affine part of

the deformation toward a target shape. When a PT is

built upon the above mentioned methods, the LC con-

nection is the main tool for transporting deformation.

This PT, based on the LC connection, is dependent

from the path, and some efforts have been done to pro-

pose path-independent strategies [12,25].

Table 1 (far to be exhaustive) summarizes the prin-

cipal features of the most common approaches proposed

in the last years.

In the present paper we propose a PT that has two

properties: i) it is independent from the path; ii) it is

compatible with the affine/non affine decomposition.

We couple this strategy with a data-centering aimed

at eliminating inter-individual differences and with a

trajectory analysis aimed at recovering the original de-

formational series, once shapes have been transported.

In the present article we focus on the landmark-based

shape theory, i.e. Geometric Morphometrics.

Geometric Morphometrics begins with the seminal

contributions of Kendall [15, 16]. He proposed a cri-

terion to eliminate all non shape-informed differences

to evaluate dissimilarities between shapes. In the case

of shapes sampled by homologous landmarks, the non

shape-informed attributes are size, translation and ro-

tation. Kendall [16] showed how shapes can be repre-

sented as points on a Riemannian manifold of dimen-

sion m×(k−1)−1−m(m−1)/2, were m is the dimen-

sion of the ambient space, and k the number of land-

marks. This manifold is named Shape Space. The pole

of the Shape Space is usually taken at the average of

all configurations, called consensus. When the variation

around the consensus is small, the geodesic Procrustes

Distance is approximated by its projection (usually or-

thogonal) on the tangent space to the consensus. The

aligned coordinates are then often subjected to ordina-
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Table 1 Comparison of PT approaches. L/R= Left/Right; C/S = Cartan-Schouten

Methods Space PT Torsion Curvature Scale Affine PT Relevant.
dimension invariant preserv. calc. Ref.

Kendall Size & Shape (k − 1)m LC 0 6= 0 NO NO Algebraic [14,18,20,47]

LDDMM ∞ LC 0 6= 0 NO NO Num. Integr. [5, 27,28,30]

[43,46]

Mod. LDDMM ∞ LC 0 6= 0 YES NO Num. Integr. [32]

Stat. Vel. Field ∞ symm. C/S 0 6= 0 YES NO Algebraic. [22, 23]

Stat. Vel. Field ∞ L/R C/S 6= 0 0 YES NO Algebraic. [22, 23]

Active Contour ∞ LC 0 6= 0 NO NO Num. Integr. [40]

Mod. Active Contour ∞ LC 0 6= 0 YES NO Num. Integr. [41]

Parametrized surfaces ∞ LC 0 6= 0 NO NO Num. Integr. [48]

TPS Space (k − 1)m DT 6= 0 0 YES YES Algebraic This study

tion methods, such as Principal Component Analysis

(PCA) for further analysis. If one is interested also in

the size variation, the appropriate space is the Size-and-

shape Space, where only translations and rotations are

eliminated by obtaining the so called forms.

1.2 The contributions of the present paper

In this paper we deal with trajectory of forms, defined

as ordered sequence of forms, and we investigate the

differences among trajectories, irrespective of the dif-

ferences of the forms they contain.

We show that shape analysis of trajectories should

be performed only after a proper representation of each

shape of a trajectory has been obtained, and before ap-

plying ordination methods. In fact, studying the form

of a trajectory means studying how the deformation

changes along each path irrespectively of the actual

form to which these deformations apply. The indepen-

dence of the deformation from the form to which it is

applied is critical: it implies that any form variation

between individuals at the beginning of each trajecto-

ries must be completely filtered out. Often, in statis-

tics, inter-group differences are eliminated by apply-

ing a group-mean centering, optionally followed by the

Grand Mean addition.

A problem arises if the data are shape or form data.

Very frequently the LC connection on the Shape Space

is used to compute the geodesics between two shapes

[18, 20]. Sometimes it is also used to transport a defor-

mation along this geodesic, in order to apply a defor-

mation from one shape to the another shape [14,19,48],

where the torsion of the connection is zero. Formally,

this procedure could be applied in order to center data

in the Shape Space, but it is revealed to be inadequate

in some cases because it does not preserve the physical

meaning of the deformation during the path.

Many efforts have been done in recent years in or-

der to unify shape metrics with deformation metrics

[4,21,27,30,32,34,44,48]; in general, independently from

the used description (landmarks based, parametric, dif-

feomorphism based), new metrics have been proposed

together with the corresponding induced LC connec-

tions. Because LC connection can be written in terms

of the metric, PTs are determined uniquely by metric

issues.

Here we show how a new connection that we call

‘TPS Connection’ allows, by means of a ‘TPS DT’,

to compare different form trajectories by performing a

data centering which maintains the nature of the de-

formations. In particular the DT is compatible with

the decomposition of the deformation to affine and non

affine components. The adjective ‘Direct’ means that

PT does not depend on the path, then the Riemannian

curvature of the connection is zero. Moreover the DT is

compatible with an introduced new Riemannian metric

(TPS metric) but is different from the LC transport,

as the torsion of the connection is different from zero.

Despite all the technicalities related to the landmarks

based description, the idea to give up the symmetry

of the connection to obtain a connection flat and com-

patible with a significant decomposition of the tangent

spaces could be exported to other contexts.

In shape analysis flat connections are rarely used,

but in classical differential geometry there are several

flat connections which are compatible with a given met-

ric. Left (respectively right) Cartan-Schouten connec-

tion is an example of a connection with absolute paral-

lelism whose parallel transport has a closed form (the

differential of the left (respectively right) translations)

and which is compatible with any left (respectively right)

invariant Riemannian metric. The DT which we pro-

pose here is a particular type of Weitzenbock’ connec-

tion. A Weitzenbock connection is specified by a frame

field everywhere (see e.g. [25]).
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We used simulated datasets and an a priori known

set of affine and non affine parametrized deformations

in order to build properly pre-processed form trajec-

tories to be used in standard ordination methods such

as PCA. As far as we know there are few or no con-

tributions aimed at performing such ”reverse engineer-

ing” strategy. This allows to control the properties of

final result and to perform specific performance anal-

yses allowing to appreciate if the original deformation

trajectories are properly transported toward the target

shape. In addition, we illustrate the methodology with

an application in cardiology, which motivates the work.

To summarize, the main contributions of the present

work are:

– Trajectory Analysis via Data Centering in

Riemannian Manifold

While PCA on centered data is used in many pa-

pers (e.g. the concept of atlas in functional anatomy

[5, 28]), as well as trajectory analysis via the use of

different kinds of PT ( [10, 24, 33, 36, 50, 51]). How-

ever, the idea of performing a shape analysis on the

shapes of trajectory themselves, evaluated at physi-

ological homologous times in order to assess the bi-

ological function has been introduced the first time

in [35] and formalized in [47]. In that papers, has

been widely shown as this procedure leads to better

disease classification.

– TPS Metric

In both LDDMM and active contour frameworks,

it has been proposed a decomposition of the de-

formation (together with a compatible metric), [32]

and [41]; this decomposition only uncouples scaling

from the rest of the deformation, without distin-

guishing between global affine deformations (size,

aspect ratio and shear), and local ones (non affine

component). Such a recognition of the difference be-

tween these two features of a deformation is instead

present in the original formulation of TPS by Book-

stein, but the decomposition is not accompanied by

a Riemannian metric, being the bending energy only

a singular metric which vanishes on all the affine de-

formations.

– TPS Direct Transport

The main features of the DT are: 1) it is compat-

ible with the above mentioned TPS metric, 2) it

is compatible with the given decomposition, 3) it

is path independent, i.e. it induces a flat space. In

particular the first feature means that the DT is an

isometry with respect to the TPS metric. The sec-

ond feature means that the transported vector of the

original affine component coincides with the affine

component of the transported vector and the same

holds for the non affine component. The third fea-

ture makes the whole procedure very simple from a

conceptual point of view and computationally very

cheap as it does not require any integration proce-

dure: no calculation of the geodesics, no calculation

of the PT along geodesics, only a closed form ex-

pression.

Moreover, the peculiarity of the DT, with re-

spect to the most common PT used in shape analy-

sis is the way it is built. It is not defined in terms of a

given covariant derivative (e.g. in terms of Christof-

fel symbols), by integrating ODEs. It is directly for-

mulated in terms of a given rule, by checking that it

respects some abstract requirements characterizing

any PT that represents a connection on a mani-

fold [8]. This procedure is common in classical dif-

ferential geometry. In fact, as stated above, the DT

is a type of Weitzenbock connection.

– Reverse Engineering Experiments

The performance of PT here proposed, together with

the whole procedure of data centering, is assessed by

means of shape analysis on ad hoc shape data: we

generate sequences of shapes by using parametrized

deformation; our goal is to recover the values of the

parameters used to generate the data set. This ap-

proach is rarely found in related literature.

All the following examples and analyses were per-

formed in R using the package ‘deformetrics’ avail-

able on github. It can be installed using the in-

stall github() function in ‘devtools’ R package by

typing the following command line:

install github(‘deformetrics/deformetrics’,local=FALSE).

2 The geometrical structure of the shape space

A body B is an open subset of the m-dimensional Eu-

clidean ambient space Em; the positions x ∈ Em of k

points, called landmarks, define a configuration of the

body, which can be represented as a k × m matrix

X = (x1, . . . , xk)T ; we denote with Ckm the Configura-

tion Space, that is, the set of all possible configurations.

The Shape Space Σk
m can be defined as the quo-

tient of Ckm under the action of the group S(m) of the

Euclidean similarity transformations in Em. S(m) can

be decomposed in three subgroups: translations T (m);

rotations SO(m); homothety or dilatation H(m). The

Shape Space can be conveniently generated by remov-

ing similarity transformations one by one; the first step

is to remove location, translating each configuration in

such a way that the centroid lies on the origin o of the

Euclidean space. This brings us to the Centered Con-

figuration Space CCkm. A centered configuration is then

defined as a configuration whose centroid lies on the

origin.
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The successive filtering can be done by removing

rotations–thus obtaining the Size-and-Shape Space SΣk
m;

eventually, by removing size, we obtain the Shape Space

as Σk
m = SΣk

m/H(m) [9]. To summarize, we consider

the following spaces:

Ckm ,Configuration Space;

CCkm ,Centered Configuration Space;

SΣk
m = CCkm/SO(m) ,Size-and-Shape Space;

Σk
m = SΣk

m/H(m) ,Shape Space;

For each of the aforementioned spaces a suitable

parametrization is needed. Here the Centered Config-

uration Space CCkm is parametrized in two complemen-

tary ways: centered landmarks or Helmertized landmarks.

The first is a redundant parametrization while the sec-

ond is a strict one. Both the parametrizations are ob-

tained by pre-multiplying the coordinates matrix X by

a suitable matrix.

We define the centered configuration XC as the k×m
matrix:

XC = CX

where C = Ik − 1
k1k1Tk , Ik is the k × k identity matrix

and 1k is a k × 1 column of ones.

We define the Helmertized landmarks XH as the

(k − 1)×m matrix:

XH = HX

where H is the so called Helmert sub-matrix. The j−th
row of the Helmert sub-matrix H is given by

(hj , ..., hj ,−jhj , 0, ..., 0), hj = − (j(j + 1))
−1/2

and so the j − th row consists of hj repeated j times,

followed by jhj and then k−j−1 zeros, j = 1, ..., k−1.

One can switch from one parametrization to the other

by using the properties:

HTH = C ,

and then

XC = HTXH , XH = HXC .

The form (otherwise called size-and-shape) of a config-

uration X is the equivalence class [X]S ∈ SΣk
m repre-

sented by:

[X]S = {XC Q : Q ∈ SOm} .

Finally, the shape of a configuration X is the equiv-

alence class [X] ∈ Σk
m defined as:

[X] = [X]S / ||XC ||

where ||XC || = (trace(XT
C XC) )1/2 is the Centroid Size

(CS) of XC , the most used measure of size in Geometric

Morphometrics. We call an icon a particular member of

the shape set [X] which is taken as being representative

of the shape. To summarize, we consider the following

elements:

Configuration: X ∈ Ckm ;

Centered Configuration: XC , orXH ∈ CCkm ;

Form or Size-and-Shape: [X]S ∈ SΣk
m ;

Shape: [X] ∈ Σk
m .

Let us note that the procedure described above de-

fines implicitly an atlas for the shape space, which in-

herits a manifold structure. Actually, the Shape Space

by Kendall has a richer geometric structure, being en-

dowed with: i) a Riemannian structure, defined by a

metric (gΣ) on the tangent bundle; ii) a distance (dΣ)

on the manifold; iii) a connection, defined by a covariant

derivative (∇Σ) on the tangent bundle. It is important

to stress that, in principle, these definitions are inde-

pendent of each other, and the richness of the resulting

geometric structure is overshadowed by both the ele-

gance of the Kendall’s construction, and by the tacit

identification CCkm ≡ R(k−1)m ≡ E(k−1)m of the cen-

tered configuration space CCkm with the (k − 1) × m

Euclidean Space E(k−1)m; in particular, it is assumed

that this identification holds for each level of the geo-

metrical structure. The meaning and the consequences

of this assumption will be discussed below.

Once accepted that the entire geometrical structure

of E(k−1)m is inherited by CCkm, one observes that the

regular part of the shape space Σk
m is built by a se-

quence of Riemannian isometric maps: a quotient map

π (submersion) followed by an hortogonal projection $

(immersion):

CCkm ≡ E(k−1)m
quotient π−−−−−−→
submersion

SΣk
m

orthogonal projection $−−−−−−−−−−−−−→
immersion

Σk
m .

This sequence induces isometrically all the geometric

structure from the configuration space Ckm to the shape

space Σk
m; details can be found in [16], [20].

Here, it is useful to recall that in the Euclidean space

Ekm, the tangent spaces at any point can be identi-

fied with a global vector space Rkm, i.e. the translation

space of Ekm. Thus, to each pair of points (Y,X) there

corresponds a vector V = Y − X ∈ Rkm. Vectors be-

longing to Rkm are called deformation vectors; the Eu-

clidean metric tensor corresponding to the dot product

U ·V = trace(UTV ) is then naturally used to define an

Euclidean distance:

d(Y,X) = ||Y −X|| =
√

(Y −X) · (Y −X) .

Without entering into details (which will be given in

the next section), here we complete the picture of the
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Euclidean space structure by recalling that the connec-

tion on Ekm, in particular the LC connection, gives rise

to parallel transports that are simple translations.

The induced distance on the size-and-shape space

SΣk
m is:

dS([Y ]S , [X]S) = inf
Q∈SO(m)

d(Y Q,X) (2.1)

= inf
Q∈SO(m)

||Y Q−X|| .

This definition allows us to give a procedure to align a

configuration Y onto a configuration X. In particular

the aligned configuration Ŷ is obtained by means of an

optimal rotation Q̂ minimizing the Euclidean distance

||Y Q−X||.

Ŷ = Y Q̂ , Q̂ = argminQ∈SO(m)||Y Q−X|| .

It is possible to prove that Q̂ is the rotational com-

ponent coming from a polar decomposition of Y TX

(see [9]). That is, Y TX = Q̂ U with U ∈ Sym(Rmm)

and Q̂ ∈ SO(m). It follows,

Q̂TY TX = (Y Q̂)TX = Ŷ TX = U .

As a consequence, we can say that two configurations

Ŷ , X are optimally aligned if and only if the matrix

Ŷ TX is symmetric, i.e Ŷ TX ∈ Sym(Rmm). This pair-

wise alignment is called Ordinary Procrustes Analysis

(OPA) without scaling. When one deals with several

configurations Xi a technique called Generalized Pro-

crustes Analysis (GPA), allows, by means of an itera-

tive algorithm, to define an average configuration XGM ,

called the Grand Mean (GM), and, simultaneusy, to

align every Xi to XGM . In other words, at the end of a

GPA, one obtains a set of configurations X̂i, such that

for each i, X̂T
i XGM ∈ Sym(Rmm)

Each tangent space TX(CCkm) at the centered con-

figuration XC ∈ CCkm can be identified with the global

vector space R(k−1)m; moreover, with respect to the

quotient map π : CCkm → SΣk
m, TX(CCkm) splits into a

vertical and a horizontal subspace:

TX(CCkm) = VX ⊕HX ,

characterized as follows:

VX = {V ∈ TX(CCkm) : V = XW ,with W = −WT },

HX = {V ∈ TX(CCkm) : with V TX = (V TX)T },

In practice, a vertical vector at X is an infinitesimal

rotation of the configuration X, while a horizontal vec-

tor is a vector that, added to X, yields a configuration

Y = X +V aligned with X. Conversely, given a config-

uration Y aligned with X, their difference is horizontal.

The key feature of the horizontal subspace HX is

that it is isometric to T[X]S (SΣk
m), the tangent space of

SΣk
m at the form [X]S . This feature allows us to repre-

sent vectors in T[X]S (SΣk
m) through their corresponding

vectors in HX , which are easier to handle.

3 Deformation maps and Form trajectories

One basic notion that will be crucial in the following is

that of a deformation map, a smooth, interpolant map

Φ : Em → Em. Given a pair of configurations X,Y ∈
Ckm, we shall write

Y = Φ(X)

to say that Y is a deformation of X, that is

yi = Φ(xi) , ∀xi ∈ X , yi ∈ Y .

Here X is the source and Y is the target. Note that

the deformation acts on the whole space Em, rather

than just on a set of landmarks. A bijective deforma-

tion Φ is a diffeomorphism from Em to itself. Further-

more, note that the deformation is a notion pertaining

to the Configuration Space rather than to the Shape

Space or Size-and-Shape Space. A family of deforma-

tions Φt : Em → Em, smoothly parametrised by a scalar

t, is called a motion. Given a motion Φt, we define the

discrete trajectory of the configuration X under the ac-

tion of Φt as the sequence:

TΦ(X) = (Xt1 , . . . , Xtn) , withXti = Φti(X) .

We shall tackle two main examples:

1. Different motions of the same body: given different

motions Φjt , and a single configuration X, we can

generate many different discrete trajectories:

TΦj (X) = (Xj
t1 , . . . , X

j
tn) , withXj

ti = Φjti(X) ;

2. Same motion of different bodies: given a motion Φt
and different configurations X`, we generate many

different discrete trajectories:

TΦ(X`) = (X`
t1 , . . . , X

`
tn) , withX`

ti = Φti(X
`) .

Please, note that the apex in Xj
ti or X`

ti can refer both

to a motion Φjt , as in the first item, or to a configuration

X`, as in the second one.

The same notion of discrete trajectory applies also

to a sequence of forms; thus, we define the trajectory of

the form [X]S under the action of Φt as the sequence:

FTΦ(X) = ([Xt1 ]S , . . . , [Xtn ]S) , withXti = Φti(X) .



The TPS Direct Transport: a new method for transporting deformations in the Size-and-shape Space. 7

Our goal is the development of a procedure to compare

forms’ discrete trajectories, and be able to discriminate

between intra- and inter-form variations.

If the displacements between the forms of a discrete

trajectory are small enough, they can be considered as

vectors belonging to a same tangent space of SΣk
m; in

this case form differences can be efficiently assessed by

ordination analyses such as PCA performed on the co-

variance matrix. The problem arises when two or more

forms’ discrete trajectories span different and distant

neighborhoods of the Size-and-Shape Space. In such

a case, even if the deformations within each discrete

trajectory are small, they cannot be compared: defor-

mation vectors belong to very different tangent spaces.

In differential geometry the tool for comparing vec-

tors on different tangent spaces is Parallel Transport

(PT) [8, 26,39].

4 Parallel Transports and Riemannian

Connections

The PT on a manifold is related to the connection de-

fined on its tangent bundle. To be more precise, accord-

ing to [8], we begin by specifying the rule that any PT

τb,a along a path from a to b has to fulfill:

τb,a : TaM→ TbM , is linear, and non-singular.

Va 7→ Vb ;

moreover, for any point c on the path

τb,c ◦ τc,a = τb,a (4.2)

It follows from this that τa,a is the identity on TaM,

and τa,b = (τb,a)
−1

.
A parallel vector field is a vector field generated by

parallel transporting a given vector along a path; thus,

W is a parallel field if Wb = τb,a (Wa) for each b and

some a on the path. A connection is compatible with a

metric g if the PT is an isometry, that is

ga(Va,Wa) = gb(τb,a(Va), τb,a(Wa)) (4.3)

for each pair of vector Va,Wa, see [17].

Usually, a PT is defined by means of a covariant

derivative ∇ along a curve γ. A vector field V is said

to be parallel along γ if:

∇γ̇V = 0. (4.4)

As shown in [39], the PT is usually defined in terms of

the covariant derivative ∇, but one can also reverse the

process: assume a parallel transport τ , and define the

covariant derivative by a limit:

∇VpU = lim
h→0

τ−1h,0Uγ(h) − Uγ(0)
h

(4.5)

The torsion of the connection ∇ is the tensor field:

∇VW −∇WV − [V,W ] ,

with [·, ·] the Lie bracket. A connection is called sym-

metric when the torsion is null, for all V,W . A funda-

mental result of Riemannian Geometry is the existence

of a unique symmetric connection compatible with the

metric g, named the LC connection. The uniqueness

of the LC connection allows us to transfer easily a con-

nection from a Riemannian manifold to another one via

isometric maps.

Since the work of [16], the LC connections on the

Shape SpaceΣk
m and on the Size-and-Shape Space SΣk

m

have been widely studied. As outlined in the previous

Section, the regular part of the Shape Space can be de-

fined by means of a sequence of Riemannian immersions

and submersions starting from the Centered Configura-

tion Space CCkm, so that the LC connection on the Shape

Space can be isometrically inherited from that on CCkm:

Connection on CCkm
isometric−−−−−−−→

inheritance
Connection on Σk

m .

For m = 2, PT has an explicit representation, while for

m = 3 PT can be evaluated by integrating the ordi-

nary differential system (4.4). In both cases, the pro-

cedure has been used to interpolate curves on Shape

Space [20], [18]. On the other hand, in [14] and [48] the

LC parallel transport has been used to transfer a de-

formation from a shape to a different one. In [47] an

explicit representation for m = 2 has been introduced

also for the Size-and-Shape Space, and used to compare

form-discrete trajectories. In order to evaluate the util-

ity of such a procedure, we need to better explain how

the deformation can be defined and described.

5 Describing Deformations: the Centered Thin

Plate Spline

In the previous sections we introduced two different no-

tions of deformation: the deformation vector VX , and

the deformation map Φ. Both are meant to transform

a given configuration X onto a deformed configuration

Y : we have Y = X + VX or, alternatively, Y = Φ(X).

The differences between these two notions are:

– VX represents the displacements of the landmarks,

while Φ is a map defined on the whole space.

– Given two close configurations X and Y , the defor-

mation vector from X to Y is unique, while there

exist infinitely many maps Φ such that Φ(X) = Y .

The choice of a suitable interpolation function Φ is not

so obvious. A very known interpolating function is the
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Thin Plate Spline (TPS), introduced in [1] and devel-

oped in successive papers as [3, 37]. The major draw-

back of the TPS is that it cannot prevent folding and

cannot guaranty a diffeomorphism. For this reason it is

not the mostly used regularization kernels in Computer

Vision. Nevertheless it is the most used in Geometric

Morphometrics, were the considered deformations are

usually not so large to induce appreciable foldings. As

stated above here we are considering the deformation

occurring, within a single trajectory, between near con-

figurations, then we will consider TPS as an acceptable

representation.

The TPS representation of the deformation is often

used due to the following advantages:

– The TPS interpolation has an explicit representa-

tion

– it decomposes the deformation into a global affine

transformation and a set of local deformations which

highlight changes at progressively smaller scales.

– it is based on the minimization of a cost-function,

called the bending energy,

– the bending energy gauges the non-affine part of the

deformation as a pseudo-distance between configu-

rations.

The TPS representation allows us to obtain a very mean-

ingful analysis of the deformation. On the other hand

there are some drawbacks in the original formulation:

– The TPS is defined in the Configuration Space rather

than in the Centered Configuration Space. This in-

troduces an annoying term which represents a trans-

lation, even when two centered configurations are

compared.

– The bending energy is a pseudo-distance, in fact it

vanishes in the affine part of the deformation, so it

cannot gauge the distance between two configura-

tion related by a linear transformation (for example

a simple shear).

– The bending energy is a pseudo-distance because it

is not symmetric: the bending energy in deforming

X onto Y is different from the one in deforming Y

onto X.

– The affine and non affine components, as coming

from the TPS analysis, are not orthogonal in the

Euclidean metric.

By following the notation of [9] we summarize the con-

struction of the TPS, and we refer to [1, 9] for fur-

ther details. In the Euclidean space Em, the m-tuple

of interpolating TPS is a function Ψ represented by the

triple (c, A,W ), where: c ∈ Em is a point represented

by (m× 1) matrix; A is a linear transformation of Em,

represented by a (m×m) matrix; W is a (k×m) matrix.

Given a point x ∈ Em, and a configuration X ∈ Ckm, we

have

y = Ψ(x) = c+Ax+WT s(x) , (5.6)

where s(x) = (σ(x − x1), ..., σ(x − xk))T a is (k × 1)

matrix, xi ∈ X is the position of the i-th landmark,

and

σ(h) =

{
||h||2 log(||h||) if ||h|| > 0;

0 if ||h|| = 0.
for m = 2

σ(h) =

{
−||h|| if ||h|| > 0;

0 if ||h|| = 0.
for m = 3

Given a source configuration X, and a target configu-

ration Y , we can apply equation (5.6) landmark-wise,

yielding to

Y = 1kc
T +XAT +SW , with Sij = σ(xi−xj) . (5.7)

There are 2k interpolation constraints in equation (5.7),

and we introduce m× (m + 1) more constraints on W

in order to uncouple the affine and non affine parts:

1TkW = 0 , XTW = 0 . (5.8)

For a given pair (X,Y ) there exists a unique set of

m(1+m+k) = m+m2 +mk parameters for the triplet

(c, A,W ) that solve the problem (5.7), constrained with

(5.8); the explicit solution can be found in the refer-

ences.

Now we introduce some small changes to the original

procedure in order to calculate everything directly in

the Centered Configuration Space CCkm. By multiplying

(5.7) by C, and exploiting the following properties of

the operator C:

C = HTH , C 1kc
T = 0 , C W = W ,

(the last equation is a consequence of the constraint

(5.8)) we can write

YH = XHA
T + SHWH ,

with YH = HY , XH = HX, and WH = HW (k−1)×m
matrices, and SH = HSHT a (k − 1) × (k − 1) ma-

trix. Everything is expresses in Helmertized coordinates

that, as previously noted, is a strict parametrization of

CCkm. The constrained interpolation problem (5.7) can

then be re-written as:YH
0

 =

SH XH

XT
H 0

 WH

AT

 .
This linear system, provided that SH is invertible, yields

the unique solution [9], [1]:WH

AT

 =

SH XH

XT
H 0

−1 YH
0

 =

Γ11 Γ
T
21

Γ21 0

 YH
0

 .
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where

Γ21 =
(
XT
HS
−1
H XH

)−1
XT
HS
−1
H (5.9)

Γ11 = S−1H − S
−1
H XHΓ21 (5.10)

are a m×(k−1) and a (k−1)×(k−1) matrices, respec-

tively, which only depend on the source configuration

X. Finally

AT = Γ21YH , WH = Γ11YH , (5.11)

so that the following decomposition holds:

YH = XHΓ21YH+SHΓ11YH = XHA
T +SHWH . (5.12)

The centered coordinates can be recovered simply by

pre-multiplying with HT . The quantity

J(Ψ) = νπ trace
(
WT
HSHWH

)
= νπ trace

(
Y TH Γ11YH

)
(5.13)

(where ν = 16 for m = 2 and is ν = 8 for m = 3

(see appendix)) is called the bending energy. It can be

proved that this corresponds to the integral:

J(Ψ) =

n∑
i=1

n∑
j=1

n∑
k=1

∫
Rm

(
∂2Ψi
∂xj∂xk

)2

(5.14)

representing a mean elastic energy stored by the body

as effect of the non-affine part of the deformation Ψ [1].

It is woth noting that in the past literature it has been

always used, to the best of our knowledge, a different

value for ν (e.g. in [3] eq.(5)). We provide, in appendix,

the derivation of the right coefficient. The symmetric

(k − 1) × (k − 1) matrix Γ 11 is named bending energy

matrix.

It is important to note that the kernel of Γ 11 com-

prises the affine transformations ofXH defined byXH 7→
XHA:

Γ11XH A = 0 ,∀X ,

and for all m × m matrices A. This property follows

directly by the definition (5.9) that implies Γ21XH = I,

and, once put in (5.10) implies Γ11XH = 0.

6 Gauging Deformations: The TPS Riemannian

metric and the Γ Energy

In this section we will try to unify the two different no-

tions of deformation introduced up to now, deformation

vector and deformation map, and to overcome the main

drawbacks of the original TPS tool.

This unification will be made by endowing the space

CCkm with a new Riemannian structure based on the

TPS. It is important to note that CCkm is a linear space,

and any tangent space TX(CCkm) at XC can be identi-

fied with the global vector space R(k−1)m; on the other

hand, if a Riemannian metric is introduced, the afore-

mentioned identification is not canonical, and depends

on the chosen point. Consequently, CCkm would then be

actually a linear space, but its structure not Euclidean;

for example, geodesics may be different from straight

lines, and parallel transports different from the identity

(a typical example of this situation is the hyperbolic

plane [48]).

In other words, if we take two centered configu-

rations XC , YC , we can always define their difference

V = YC−XC with V ∈ R(k−1)m. But only ifXC and YC
are near enough, does it makes sense to consider this

difference as a vector belonging to the tangent space

TXC (CCkm).

From now on, deformation vectors will have a sub-

script denoting the starting point, that is, the source

configuration; moreover, we assume all the configura-

tions to be centered, and represented by the Helmer-

tized landmarks, and we shall drop the subscript ()H ;

if no otherwise specified, each matrix is a (k − 1) ×m
matrix.

Given a configuration X, and a deformation vector

VX ∈ TX(CCkm), we may define a deformed configura-

tion Y by:

Y = X + VX . (6.15)

According to the TPS decomposition, we can represent

(6.15) by using (5.12):

Y = XΓ21(X + VX) + S Γ11(X + VX)

= X +XΓ21VX + S Γ11VX

= X +X
(
AT − I

)
+ SW,

Note Γ21X = I, Γ11X = 0. It follows that, by means of

TPS analysis, the deformation vector VX is decomposed

into two summands:

VX = V UX + V BX ,with:

V UX = XΓ21VX = X(AT − I) , a uniform deformation of X;

V BX = SΓ11VX = SW, a non-uniform deformation of X.

We note that in the following, as standard in GM, we

will use the term uniform deformation as a synony-

mous of linear deformation. In fact, removing transla-

tions from affine deformations, we obtain linear defor-

mations. Uniform means that the gradient of the defor-

mation (the local strain) is constant. At the same time

we will use non-uniform as a synonymous of non-linear.

In this way the notion of deformation map yields

a useful decomposition of the deformation vector. It is

important to note that V UX and V BX are not orthogonal
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with respect to the Euclidean metric, that is, in general,

trace[
(
V UX
)T
V BX ] 6= 0.

We can define a different metric gX at any X, such

that gX
(
V UX , V

B
X

)
= 0; the metric gX can be naturally

induced by the TPS parameter by defining the matrix

GX , such that:

gX (U, V ) = trace
(
UTGX V

)
, ∀U, V ∈ TX(CCkm) .

(6.16)

The matrix GX can be decomposed into two symmet-

ric summands, representing, respectively, the uniform

metric and the bending metric:

GX = GU +GB (6.17)

Those two terms can be defined by using the TPS pa-

rameters Γ21 and Γ11, both depending on X, as follows:

GU = µ1Γ
T
21Γ21 , GB = µ2Γ11 ,

with µ1 and µ2 two positive scalars. It is easy to show

that

rank(GU ) = m, rank(GB) = (k − 1)−m,

and that the corresponding eigenspaces are linearly in-

dependent, so that rank(G)=k − 1, that is, full. Given

(6.16, 6.17), the metric gX splits into two summands,

gX = gU + gB, and its action on vectors is rewritten as

follows:

gX (U, V ) = gU (U, V ) + gB (U, V )

= µ1 trace
(
UTΓT21Γ21V

)
+ µ2 trace

(
UTΓ11V

)
.

By means of the TPS metric tensor gX , the tangent

space TX can be decomposed as the direct sum

TX = UX ⊕g BX (6.18)

where UX is the subspace of uniform infinitesimal trans-

formations of X, BX is the subspace of those transfor-

mations that are infinitesimal pure bending of X and ⊕g
is the direct sum between subspaces that are orthogonal

with respect to g.

Given the geometrical role of the TPS metric, one

could ask what is the physical meaning of gX . This can

be made clear by evaluating separately gU and gB on

the pair (V, V ). The uniform part gU gives:

gU (V, V ) = µ1trace
(
V TΓT21Γ21V

)
= µ1trace

(
(Γ21V )TΓ21V

)
By using (5.11) and (6.15) we obtain:

gU (V, V ) = µ1trace
(
(A− I)T (A− I)

)
= µ1||(A− I)||2

where ||.|| is the Frobenius norm of the space of m×m
matrices. Then, if we consider µ1 as an elastic stiffness,

gU (V, V ) is a quadratic elastic energy gauging the uni-

form deformation (A − I). The non-uniform part gB
gives:

gB (V, V ) = µ2trace
(
V TΓ11V

)
By using (6.15) and the property Γ11X = 0 we obtain:

gB (V, V ) = µ2trace
(
Y TΓ11Y

)
= µ2 J(Φ)

Then, gB (V, V ) is proportional to the previously in-

troduced bending energy, and µ2 is an elastic bending

stiffness. Finally, the value of gX(V, V ) is called the Γ -

energy associated with the deformation vector V . To be

precise the values of µ1 and µ2 should depend on the

elastic properties of the material of the considered body.

However, as the two sub metrics act on orthogonal sub-

spaces, the values of µ1 and µ2 will be immaterial in the

present considerations concerning parallel transports.

7 Transporting Deformations in the Centered

Configuration Space: the TPS Direct Transport

In the previous section we equipped the Centered Con-

figuration Space CCkM with a new Riemannian metric:

the TPS metric gX . The obtained Riemannian space is

a (k− 1)×m dimensional linear space; following (6.18)

on each point the tangent space splits in a m ×m di-

mensional subspace UX of the uniform deformations

and a (k− 1−m)×m dimensional subspace BX of the

non-uniform deformations, mutually orthogonal with

respect to the TPS metric. As previously seen, UX can

be parametrized by the linear spaceMm×m of them×m
matrices. Let ei (i, j = 1...m) the standard orthonor-

mal basis of Em, ηij = ei ⊗ ej the standard basis of

Mm×m, we assume ηUij = Xηij as a basis for UX .

The eigenvalue analysis of Γ11 yields the principal

warp eigenvectors γi, associated with the non vanishing

eigenvalues λi, (i = 1...(k − 1 − m)). By construction

γi constitute an orthonormal basis with respect to the

Euclidean metric. Any V BX ∈ BX can then be expressed

as:

V BX = S Γ11SW =

k−1−m∑
i=1

Sγi λi γ
T
i SW

=

k−1−m∑
i=1

m∑
j=1

ηBij
(
ηBij
)T
W

where we introduce the principal warps, ηBij = λ
1
2
i Sγi⊗

ej , a basis of BX orthogonal (not orthonormal) with

respect to the TPS metric. The corresponding compo-

nents
(
ηBij
)T
W are called partial warp scores.

The (k − 1) × (k − 1 − m) matrix EX , collecting

all the principal warps of X in columns is called the

principal warps matrix and can be obtained as follows:
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– Perform a TPS analysis on X and find S and Γ11,

– Perform an eigenvalue analysis on Γ11 and obtain

Γ11 = ΓΛΓT where Γ is the (k−1)× (k−1) matrix

containing, in column, the eigenvectors γi, and Λ is

the diagonal (k−1)×(k−1) matrix of the eigenvalues

λ1, . . . , λk−1, ordered by increasing magnitude. The

first m eigenvalues will be equal to 0,

– Drop the first m columns from Γ , by obtaining the

(k− 1)× (k− 1−m) matrix Γ̄ , containing the prin-

cipal warp eigenvectors by column,

– Drop the first m rows and the first m columns from

Λ, by obtaining the (k−1−m)× (k−1−m) matrix

Λ̄,

– Define the (k−1)×(k−1−m) matrix EX = SΓ̄ Λ̄1/2

Normalizing the bases of each subspace by using

(µ1, µ2, λi), we obtain, for the whole tangent space, the

following orthonormal basis that we call standard basis:

ηij =

{
1√
µ1
ηUij if 1 ≤ i ≤ m;

1
λi
√
µ2
ηB(i−m)j if m+ 1 ≤ i ≤ k − 1.

with i = 1...k − 1, j = 1..m.

After building the standard basis we can complete

the introduced Riemannian structure by defining a par-

allel transport. A parallel transport can be defined by

assigning a correspondence between the basis of the

tangent spaces, but the choice of this correspondence

is not canonical, and depends on our goal. The require-

ment that a connection be compatible with the metric

determines univocally only the symmetric components

of the connection. The symmetric part is unique, coin-

cides with the LC connection, and the geodesic equa-

tions only depend on such components; but in general,

the PT of a vector along a path is also affected by the

skew symmetric components of the connection, which

are proportional to the torsion [39].

Our goal is to probe the deformation between a pair

(source, target) of configurations, and then apply the

same deformation to a different source. The key point is

in the definition of the notion of same deformation. We

want to formalize this notion as an equivalence relation,

i.e a binary relation reflexive, symmetric and transitive.

We propose the following definition: Two deforma-

tion vectors are equivalent if they can be described by

the same TPS parameters. In particular, their uniform

parts share the same linear transformation A. Concern-

ing the non uniform parts, we recall that W is a redun-

dant representation of this part, its rank being deter-

mined by the constraint (5.8), i.e. it is different for each

tangent space. Thus, our minimal requirement that two

deformation vectors must fulfill in order to be equiva-

lent, is that they store the same bending energy.

In terms of geometrical structure, the proposed equiv-

alence between two vectors can be represented by a no-

tion of parallelism determined by a PT that:

R.1 is compatible with the TPS metric,

R.2 is compatible with the decomposition (6.18),

R.3 preserves the uniform component,

R.4 is independent of the path.

Let Xa be a source configurations, and Va, Ub two

associated deformation vectors: The first item requires

the PT to be an isometry with respect to the TPS met-

ric.

ga (Ua, Va) = gb (τb,a(Ua), τb,a(Va)) (7.19)

The second means:

V Ub = (τb,a (Va))
U

= τb,a
(
V Ua
)

V Bb = (τb,a (Va))
B

= τb,a
(
V Ba
)

The third requirement is illustrated by Fig. 1 in

which it is clearly shown that the LC transports do

not preserve the uniform component. The last require-

ment follows by the consideration that only a notion of

absolute (global) parallelism can characterize an equiv-

alence relation. In fact an absolute parallelism induces

an equipollence relation [38]. In our construction two

equipollent vectors represent the same deformation, ap-

plied to different starting configurations. In general, a

relation between vectors, based on a path dependent

connection, will not be reflexive, symmetric and tran-

sitive. For example, for a path dependent connection a

vector is not parallel to itself if it is transported along

a loop. In geometrical terms, independence of the path

implies a vanishing Riemannian curvature and a non

vanishing torsion. In the following, we propose a possi-

ble PT rule, compatible with the given requirements. In

general, an absolute parallelism (also called a Weitzen-

boch connection) on a manifold can be built, when the

manifold is parallelizable, by choosing a basis on each

tangent space (the so-called Weitzenbock frame). Two

vectors will be parallel if they have the same compo-

nents on that basis. Furthermore, if the Weitzenbock

frame, on each point of the manifold, is orthonormal

with respect to a riemannian metric g, then the abso-

lute parallelism will be compatible with g. Above we

introduced, for each X, the orthonormal (with respect

to TPS metric) standard basis ηij . Starting from that

basis it is possible to build any possible Weitzenbock

frame Wij by a suitable change of basis matrix Q:

Wij = Qipηpj

with i, p = 1...k − 1, j = 1..m. The three requirements

listed above restrict the possible choices of Q. In par-



12 Valerio Varano1 et al.

ticular the first requirement imply that Q must be or-

thogonal (rotation or reflection):

R.1↔ QTQ = I,

The second requirement imply that Q must be a block

matrix:

R.2↔ Q =

[
QU 0

0 QB

]
,

whereQU is am×m orthogonal matrix (i.e. (QU )TQU =

I), which rotates ηUij within U and QB is a (k−1−m)×
(k − 1 −m) orthogonal matrix ((QB)TQB = I), which

rotates ηBij within B. The third requirement set QU = I

R.3↔ Q =

[
I 0

0 QB

]
While the above restrictions are important ingredients

of the theory, the choice of QB (provided it is orthogo-

nal) can depend on the applications.

In particular, for QB = I, the proposed PT clas-

sifies two deformations as equivalent when they share

the same uniform component, and the same, ordered

partial-warp scores. Let us note that, given two differ-

ent configurations Xa and Xb, the j− th principal warp

of Xa may represent a deformation mode very different

from the corresponding j− th warp of Xb. As principal-

warps represent the standard basis of the subspace BX ,

we can introduce a criterion to rotate such a basis in

order to obtain a more convenient correspondence be-

tween tangent spaces. One possible algorithm is:

– Assume a configuration P as pole for the space;

– Assemble the (k − 1 − m) × (k − 1) matrix of the

principal warps for P , Γ̄P ,

– For each configuration X, define QBX as the rota-

tional component of the polar decomposition of the

(k − 1−m)× (k − 1−m) matrix ETPEX .

For any X, this procedure minimizes the Euclidean dis-

tance ‖EXQBX − EP ‖ between the rotated principal

warps of X, and the corresponding basis on the pole

P . As a consequence, the corresponding non uniform

deformation modes are made as similar as possible, al-

beit they will never coincide, being attached to different

source configurations. Note that, in applications, the

Pole can be conveniently chosen coincident with the

Grand Mean of the considered dataset.

Once defined this Weitzenbock frame, we describe,

in the following, how we can use it to transport a de-

formation from a point to another.

Let Xa and Xb be two source configurations, and

Va, Vb the two associated deformation vectors, given

by:

Va = Xa(ATa − I) +SaWa , Vb = Xb(A
T
b − I) +SbWb .

We say that Vb is the parallel transport of a given Va,

that is, Vb = τb,a(Va), if and only if the uniform part of

Vb equals that of Va:

Ab = Aa ;

and the non uniform part Wb of Vb solves the linear

systems:

XT
b Wb = XT

aWa = 0 QBb E
T
b Wb = QBaE

T
aWa,

(7.20)

The first equation of (7.20) constrains Wb to be or-

thogonal to the affine part, while the second define the

isometry in the subspace B. This last requirement im-

plies the conservation of the bending energy. The sys-

tem (7.20) can be written as: XT
b

QBb E
T
b

 [Wb

]
=

 XT
a

QBaE
T
a

 [Wa

]
.

The solution is given by

[
Wb

]
=

 XT
b

QBb E
T
b

−1  XT
a

QBaE
T
a

 [Wa

]
.

That can be re-written as:

Wb = M−1b MaWa

And so:

Vb =
(
XbΓ21a + SbM

−1
b MaΓ11a

)
Va, (7.21)

where Γ21a and Γ11a are calculated assuming XH = Xa

and SH = Sa in (5.9). The equation (7.21) characterizes

Vb as the parallel transport of Va. It is immediate to

verify that (7.21) is linear, invertible (for each pair of

regular points Xa and Xb) and independent from the

path. It is also possible to prove that (7.21) is respectful

of the general rule (4.2).

In fact, given a third pointXc, equation (7.21) writes:

Vc = τc,a(Va) =
(
XcΓ21a + ScM

−1
c MaΓ11a

)
Va ; (7.22)

performing a successive PT toward Xb, one obtains

Vb = τb,c(Vc) =
(
XbΓ21c + SbM

−1
b McΓ11c

)
Vc .

Inserting (7.22) in the last equation, using the proper-

ties Γ21cV
B = 0, ∀V B ∈ BXc and Γ11cV

U = 0, ∀V U ∈
UXc , and observing that, by construction, XcΓ21aVa ∈
UXc and ScM

−1
c MaΓ11aVa ∈ BXc , one obtains:

Vb=
(
XbΓ21cXcΓ21a + SbM

−1
b McΓ11cScM

−1
c MaΓ11a

)
Va

=
(
XbΓ21a + SbM

−1
b MaΓ11a

)
Va = τb,a(Va) ,

where we used the properties Γ21cXc = I, and Γ11cV
B =

S−1c V B, ∀V B ∈ BXc .
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Once checked that these abstract requirements are

fulfilled by the DT, we can be sure that DT is, for-

mally, a PT, inducing on the manifold a connection. In

this work we are not interested in calculating the coef-

ficients of this connection (i.e. the Christoffel symbols).

This could be done by choosing a basis for vectors and

using (4.5) to calculate covariant derivatives directly

as limits [39] of a difference between near vectors. Be-

cause the DT does not depend on paths we don’t need

(in order to perform our data centering) to calculate

geodesics and solve the differential equation (4.4). How-

ever, also without calculating coefficients of the con-

nection, we are able to infer some important features

of it directly from the PT: the connection is flat (zero

Riemannian curvature) because the PT is independent

from the path; the skew symmetric components of the

connection (proportional the Torsion) will be different

from zero, because the DT is different from the Levi

Civita Connection.

We name the introduced connection the TPS con-

nection and the related parallel transport TPS Direct

Transport (because it is independent of the path). The

Centered Configuration Space, equipped with the TPS

metric and the TPS connection is named TPS Space.

8 Transporting Deformations in the Size and

Shape Space

Once the Centered Configuration Space has been en-

dowed with the TPS Riemannian structure, a further

step is needed to complete the tools for comparing forms’

discrete trajectories: we need to endow with such a

structure to the Size-and-Shape Space.

As previously seen, the classical Size-and-Shape Space

inherits by isometry the LC connection from the Cen-

tered Configuration Space, and because of the unique-

ness of the LC connection, this inheritance is unique. In

other words, once the (Euclidean) metric on the Cen-

tered Configuration Space is restricted to the Size-and-

Shape Space, there exists only one connection compat-

ible with such a metric, and torsion free (Levi-Civita).

Given the uniqueness, it is then possible to build pro-

cedures, or explicit formulas, for parallel transporting

vectors along paths, in particular along geodesic paths

[18,20,47].

As the torsion of the TPS connection is not null,

it is not unique, and we cannot transfer directly the

connection from the Configuration Space to the Size-

and-Shape Space: some appropriate choices are needed.

As explained in details in [18, 20, 47], the classical

PT of form-vectors (or shape vectors) along geodesics

is represented by the transport of horizontal vectors of

CCkm along horizontal geodesics (i.e. geodesics of CCkm
whose tangent vectors are everywhere horizontal). In

order to use here the same rationale, it is important

to adapt the vertical and horizontal subspace splitting

to the TPS metric. In fact the definition of the verti-

cal subspace VX does not depend on the metric, being

determined directly by the tangent map Tπ to the quo-

tient map π. On the other hand the horizontal subspace

HX , the orthogonal complement of VX , depends on the

definition of direct sum related to the chosen metric.

Then, for any given point X ∈ CCkm, the tangent

space TX(CCkm) splits, with respect to the quotient map

π from Ekm to SΣk
m, into a vertical and a horizontal

subspace:

TX(CCkm) = VX ⊕g HgX ,
characterized as follows:

VX = {V ∈ TX(CCkm) : V = XW , W ∈ Skw(Rm×m)},

HgX = {V ∈ TX(CCkm) : Γ21XV ∈ Sym(Rm×m)}.
In practice, a vertical vector at X is an infinitesimal ro-

tation of configuration X, while a TPS-horizontal vec-

tor is a vector whose uniform part is symmetric. Each

TPS-horizontal vector represents a form-vector. A con-

venient way to define a PT transport of form vectors,

compatible with the TPS metric and independent from

the path is to select a representative section of the Size-

and-Shape Space and define the PT on it as follows:

– Assume a configuration P as Pole of the TPS Space.

– Select, for each form, an icon, defined as the con-

figuration of the equivalence class of forms aligned

with P. The set of such icons is a section SP of the

quotient space SΣk
m = CCkm/SO(m), viewed as fibre

bundle.

– Given two source configurations Xa, Xb ∈ SP and

a TPS-horizontal vector Va at Xa, we define the

directly transported Vb as the TPS-horizontal vector

transported on Xb with the TPS connection defined

by (7.21).

It is worth noting that, being a TPS-horizontal vector

defined as a vector whose uniform part is symmetric and

because TPS connection preserves the uniform compo-

nent, the Direct Transport of a TPS-horizontal vector

will still have a uniform part symmetric an then will be

still a TPS-horizontal vector.

9 Data Centering in the Size-and-Shape Space:

Modified-Ordinary and Hierarchical

Procrustes Analysis (MOPA & HPA)

In section 2 we introduced the OPA alignment and we

observed that the difference between two aligned config-

uration is a standard horizontal vector. Now we need an
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Fig. 1 The Levi Civita parallel transport (left) and a parallel transport that preserves the affine component (right) in the
configuration space.
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Fig. 2 Data Centering via Direct Transport. Left: Before shape data centering; Right: After the shape data centering.

alignment able to generate TPS-horizontal vectors. We

name such types of alignment Modified OPA (MOPA).

While OPA was based on the minimization of the Eu-

clidean size-and-shape distance dS , MOPA is based on

the minimization of the TPS pseudo-distance defined

as:

dTPS([X]S , [Y ]S) = inf
Q∈SOm

√
gX ((Y Q−X), (Y Q−X)) .

In particular the MOPA aligned configuration X̂b is ob-

tained by means of an optimal rotation Q̂ minimizing

dTPS .

Ŷ = Y Q̂

where Q̂ = argmin gX ((Y Q−X), (Y Q−X)). Accord-

ing to this definition, Q̂ turns out to be the rotational

component of the polar decomposition of (A − I), the

TPS uniform component of the deformation vector Y −
X. Based on this definition, aligning a shape with an-

other means filtering rotations out from the uniform

part of the deformation; let us remark that rotations,

as defined in a standard Procrustes alignment, are not

deformation-based.

After the MOPA, the vector Ŷ − X results as a

TPS-horizontal vector of the tangent space on X. It is

important to note that MOPA alignment makes sense

only between near configurations, when the second can

be considered as a small deformation of the first. On the

other hand OPA alignment continues to be the main in-

strument to superimpose different bodies, characterized

by very different shapes.

We now propose a Riemannian Data Centering to

analyze sequences of configurations, based on the fol-

lowing algorithm (see Fig. 2). Let us consider n different

sequences (Xj
1 , X

j
2 , X

j
3 , . . .), with j = 1, . . . , n; then:

1. Hierarchical Procrustes Analysis (HPA):

(a) Within each sequence, select a reference config-

uration Xj
c , which can be the first one, or the

local mean;

(b) Perform a GPA with no scaling among the se-

lected references Xj
c to find the XGM ;

(c) Perform n loops of OPA (or MOPA) with no

scaling to unit CS, to align all the shapes of a

sequence to its proper reference Xj
c .

2. Parallel transport:

(a) Build the TPS-horizontal (or horizontal) vectors

V ji = Xj
i −Xj

c ;

(b) Transport the vectors toward XGM by using the

TPS Direct Transport (or the Levi-Civita Par-

allel Transport along geodesics) in the Size-and-

Shape Space;
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(c) add the transported vectors to the XGM to gen-

erate new sequences to be analyzed with stan-

dard methods: Y ji = XGM + V ji .

The three steps of HPA may be considered as a pre-

processing needed before transporting the configura-

tions: Step 1a) is simply the choice of a reference con-

figuration for each sequence; Step 1b) displaces each

reference on the same section SGM of the Size-and-

Shape Space; Step 1c) aligns each configuration in a

sequence with the reference, so that their differences

become TPS-horizontal vectors (using MOPA) or hor-

izontal vectors (using OPA).

In our case, with the TPS connection, after the

MOPA based HPA, the formula to be used to trans-

port TPS-horizontal vectors is (7.21).

For the standard LC connection, after the OPA based

HPA, explicit PT formulas are available for two dimen-

sional data; the formula to be used to transport the

horizontal vector Va from Xa toward Xb is (see equa-

tion (3.2) in [47]):

Vb = Va−
sin(θab) (Za + Zb)Ω

1 + Za · Zb
, Ω =

(
0 −1

1 0

)
(9.23)

where Za = Xa/||Xa||, Zb = Xb/||Xb||, θab is the angle

of the OPA alignment between Xa and Xb.

At the end of the procedure, after the step 2c) we

obtain a new set of sequences, to be analyzed with stan-

dard methods such as GPA+PCA.

10 Preliminary examples: PT of ellipses

As outlined in the introduction, in [32] it is proved that

a non-degenerate scale-invariant metric does not exist

for LDDMM. This imply that change in size and change

in shape are coupled in PTs. The proof is illustrated by

a simple example concerning the change in aspect ratio

of a circle. It is shown that this simple deformation,

once performed a PT upon LDDMM toward a smaller

circle, the result is a much more circular shape: the ratio

between the biggest and smallest axes decreases from

1.25 (before PT) to 1.18 (after PT). In order to correct

this drawback the authors of [32] introduce two new

models decomposing volume and shape variation. The

behavior of the corrected models is then illustrated by

means of a second simple example concerning the PT

of the deformation (a scaling composed with a bump)

of an ellipses toward a different closed curve. In the

present section we replicate both the experiments by

using our Direct Transport method (Figure 4). In both

experiments both the area increment and aspect ratio

are correctly transported. The same does not hold when

using LDDMM according to [32].

11 Case Study: Relating Deformations to PC

scores

Our purpose is to perform a reverse engineering exper-

iment: at first, we define some parametrized deforma-

tion maps to be used to generate different sequences of

shapes; then, by using size-and-shape analysis, we try

to recover the values of the parameters that have been

used to generate the sequences.

The experiment is made more challenging by using

both sequences made with different reference configu-

rations undergoing the same deformation, or sequences

made of different configurations undergoing different

deformations; our goal is to show the effects of inter-

subject variation and the capability of PCA in recover-

ing deformation parameters.

As stated in the Introduction, one of the most used

ordination technique is PCA performed on the covari-

ance matrix of aligned coordinates. However, if there

exist an inter-shape difference between the shapes de-

formed by different motions, the PCA will try to ex-

plain concomitantly both the intra- and inter- shape

variations.

We discuss this issue by using an appropriate case

study posed in the 2D Euclidean space; to generate

a dataset of many different sequences, we consider a

motion Φc described by two parameters t 7→ c(t) =

(ε(t), γ(t)), and a set of five different reference configu-

rations Xi, see Fig. 3, each sampled with 8 landmarks,

assumed homologous; the two parameters ε, γ represent

two different modes of deformation, and may be used

to define a uniform deformation, or a bending, see Fig.

3b. The uniform deformation Φc is represented through

the matrix F (t) as follows(
xt

yt

)
=

(
F11(t) F12(t)

F21(t) F22(t)

) (
xo

yo

)
, (11.24)

with F (t) = exp

[(
ε(t) 0

0 −ε(t)

)
+

(
0 γ(t)

γ(t) 0

)]
,

and (xo, yo) landmarks of Xi; here, ε and γ represent

aspect ratio and shear, respectively. Let us note that F

maintains the area; note also that such a deformation is

symmetric, and thus, it has a null rotational part. The

non-uniform deformation Φc is represented by

xt
yt

 =
1 + γ(t) exp(ε(t))xo

γ(t)


sin

(
γ(t) yo

exp(ε(t))

)
cos

(
γ(t) yo

exp(ε(t))

)
− 1

 .

(11.25)
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Fig. 3 Top. Five reference Configurations. Bottom. Morphological meaning of deformation parameters. a) The ε− γ space of
parameters. b) effect of ε. c) effect of γ in the affine case. d) effect of γ in the non affine case.
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Fig. 4 Top left: A deformation of a circle defined by 45 landmarks with radius=1 into an ellipse with aspect ratio=1.5; area
black circle: 3.13; area red ellipse 3.00. Top right: the deformation shown in top left panel applied to a circle with radius=0.5
and area=0.78. The resulting ellipse has an area=0.75 and aspect ration of 1.5. The normalized area increment is conserved in
both panel and it is approximately=-0.04. Bottom left: A local deformation of an ellipse; area black ellipse=1.00; area deformed
ellipse=1.28. Bottom right: the same deformation of bottom left panel applied to a generic contour: area black (undeformed)
contour=2.11; area red contour=2.71. In both case the normalized area increment =0.28. This experiment has been performed
using DT and it is pretty comparable to the original one presented in [32].

here, ε and γ represent aspect ratio and bending cur-

vature, respectively.

Both uniform and non uniform motions induce ro-

tations, translations or scaling in a reference configu-

ration; thus, the initial configurations undergoing the

transformations are preliminary centered, scaled and

optimally aligned via a common GPA. The sequences

are generated by considering closed curves, called cy-

cles, in the space of parameters sampled at times ti =

1...21; we consider the following cases, see Fig.5:

– 1) One cycle c(t) of uniform motions as in (11.24)

applied to the five different reference configurations

X`:

TFc(X`) = (X`
t1 , . . . X

`
tn ) , (11.26)

with X`
ti = Fc(ti)(X

`);
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– 2) One cycle c(t) of non-uniform motions as in eq.

(11.25) applied to the five reference configurations

X`:

TΦc(X`) = (X`
t1 , . . . X

`
tn ) ,

with X`
ti = Φc(ti)(X

`);

– 3) Five cycles cj(t) of uniform motions as in 11.24

applied to the five reference configurations X`, pos-

ing ` = j, that is, each configuration Xj is deformed

with cycle cj(t):

TFcj (Xj) = (Xj
t1 , . . . X

j
tn ) (11.27)

with Xj
ti = Fcj (ti)(X

j);

– 4) Five cycles cj(t) of non-uniform motions as in

(11.25) applied to the five reference configurations

X`, with ` = j, that is, each configuration Xj is

deformed with cycle cj(t):

TΦcj (Xj) = (Xj
t1 , . . . X

j
tn ) , (11.28)

with Xj
ti = Φcj (ti)(X

j).

In order to simulate more realistic datasets, a random

uniform rotation is applied to each configuration of the

generated data. Let us note that cases 1 and 2 are meant

to assess if our procedure is able to recognize that the

five different sequences in CCkm have been generated by

a same cycle of parameters c(t), despite the differences

among the reference configurations. On the other hand

all the cases are meant to assess if our procedure is able

to

– recognize that all the sequences are generated by

the combination of only two deformation modes (pa-

rameters)

– reconstruct the whole pattern of the five cycles in

the plane of the two parameters (form of the cycles

and reciprocal orientation)

The analysis of each case is performed by comparing

three different methods:

1. Classic: no preliminary data centering

2. LC Data Centering : preliminary data centering based

on the Levi Civita parallel transport in Size-and-

Shape Space

3. DT Data Centering : preliminary data centering based

on our TPS Direct Transport of in the Size-and-

Shape Space

In each case a GPA followed by a PCA is then per-

formed.

We quantify the ability in recovering original cycles

of PCAs by adopting the so called trajectory analysis

(see [6, 35]). In practice we consider each cycle in the

(ε, γ) plane as a shape itself, where pairs (ε(ti), γ(ti))

identify the landmarks. We thus have two main shapes

each with 105 landmarks: an elliptical shape constituted

by 5 petals perfectly superimposed and a “flower” shape

constituted by 5 radially oriented petals. This allows us

to comparing these shapes with those identified in the

space of first two PCs from the PCAs of the analyses

that we evaluated in this study. Thus, the ability in re-

covering the parameter space of the methods presented

here is evaluated in terms of non-uniform component

of the partial Procrustes distances between original pa-

rameters shapes (the elliptical shape constituted by the

5 identical cycles or the “flower” shape) and the shapes

identified by the first two PCs in the PC space of the

corresponding analyses based on classic approach, DT

and LC parallel transports. This choice is due to the

fact that a simple linear re-parameterization of the as-

signed deformations could change the aspect ratio of the

plane ε, γ, thus the ability in recovering them is quan-

tified only upon non uniform deformation. This partial

Procrustes distance is normalized on the maximum dis-

tance allowed that is
√

2.

The comparison of results obtained by means of the

three methods is plotted in Fig. 6, where the first two

PC scores are shown. In the same figure the deforma-

tion modes corresponding to each PC are shown. Table

2 and Table 3 report, respectively, the global variance

explained by the first two PC scores and the Procrustes

Distance between original parameters shapes and the

shapes of cycles identified by the first two PC scores.

Fig. 7 illustrates the Procrustes superimposition of non

uniform components of deformations between original

cycles and cycles recovered after GPA on the shape

space+PCA performed on data transported according

to DT (top) or LC (bottom). Shape distances (normal-

ized by
√

2) between red and black shapes are shown in

Table 3.

Table 2 Variance explained by firsts two PC scores

case 1 case 2 case 3 case 4

Classic 90 % 67% 87% 88%

LC 76% 80% 82% 84%

DT 100% 96% 100% 87%

Table 3 Partial Procrustes Distance between non uniform
components of the original and reconstructed parameters cy-
cles pattern (% of the maximum dP =

√
2)

case 1 case 2 case 3 case 4

Classic 70% 69% 61% 67%

LC 54% 42% 19% 26%

DT 1.7% 18% 11% 20%
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Fig. 5 Dataset generation under different conditions. Case 1 and case 3 are affine cases; case 2 and case 4 are non affine cases.

In case 1 the DT method recovers virtually perfectly

the parameters cycles:

– the five cycles in the PCs space plane are superim-

posed

– the 100% of the variance is explained by two PCs
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– both the modes corresponding to that PCs are affine

– the normalized Procrustes distance between the cy-

cles pattern is only 2%

We note that both for Classic and LC methods the five

cycles are not superimposed, the performance measures

(variance explained and procrustes distance) are worst

than in the DT method. Moreover, in both cases the

deformation modes represented by the first two PC are

not uniform. In the first case this happens because the

PCs have to explain first of all the difference between

the initial configurations. In the second case is crucial

the fact that LC connection does not distinguish be-

tween uniform and non uniform component.

In case 2 the DT method is not perfect as in case 1

but it results in being the best among the three meth-

ods, in fact

– the five cycles in the PCs space are quasi superim-

posed

– the 96% of the variance is explained by the first two

PCs

– the modes corresponding to PC1 is uniform while

that corresponding to the PC2 is nonuniform (bend-

ing)

– the normalized Procrustes distance of the shape of

the cycles pattern from the “flower” shape of origi-

nal parameters is higher (18%) than for case 1 but

much lower that in the other two methods

In case 3 the DT method performs again very well:

– the 100% of the variance is explained by firsts two

PCs

– both the modes corresponding to that PCs are affine

– the normalized Procrustes distance of the shape of

the cycles pattern from the flower” shape of original

parameters is small: 10%

In case 4 the DT method results in being the best of

the three methods even if LC method appears quite ac-

ceptable. On the the other hand the classic approach re-

turns, as in the other cases, cycles that account mostly

for inter-group differences without any recovery of de-

formation parameters.

12 Examples with real data: Left ventricle

analysis

We now consider data coming from 3D echocardiogra-

phy on 48 real human left ventricles (LV) moving in

time. These data come from the same research project

partially published in [35, 47]. In those papers it was

shown that the trajectory analysis is able, only after

a proper data centering (there based on LC connec-

tion), to distinguish between healthy and pathologi-

cal subjects. Here, taking for granted that result, we

will show as the DT can give a more accurate trans-

port of the deformations compared to LC. We collected

shape data by means of 3D Speckle Tracking Echocar-

diography (PST25SX Artida, Toshiba Medical Systems

Corp., Tokyo, Japan). The result of our 3DSTE system

is a time-sequence of configurations, each constituted

by 1297 landmarks, assumed to be homologous. These

48 motion trajectories belong to healthy individuals and

were acquired at the same electromechanically homolo-

gous times used in [35,47]. However, in order to better

interpolate motions, we used a finer homologous time

sampling. This results in individual motion trajectories

each composed by 16 homologous times.The homology

of landmarks is ensured by the fact that six landmarks

are manually digitized by the operator (the same for

all subjects) on the apex, the base, the mitral annulus

and the interventricular septum. Starting from these

landmarks the rest of the cloud is generated via speckle

tracking as interlandmarks that are topologically ho-

mologous across different individuals.

It is worth noting that formula (9.23) holds in 2D;

thus, in order to compare our procedure with the LC

data centering, we generate a 2D dataset by project-

ing a coronal slice of the epicardial and endocardial

3D landmarks on the plane (that passing trough inter-

ventricular septum) transversal to the LV base identi-

fied by the diameter of mitral annulus and ventricular

apex.

For the obtained dataset we perform a shape anal-

ysis using the same three methods of the previous sim-

ulated examples.

It is worth noting that in this example we are not

performing reverse engineering, so we cannot evaluate

the performance of the used methods comparing the ob-

tained results with some a priori known solution. Nev-

ertheless, we can compare the performance of the par-

allel transport methods by checking the conservation of

some important quantities related to the deformation

when one passes from the original to the centered data.

In particular we check:

– bending energy estimated from the individual end-

diastolic states (relaxed states) to each of the individual-

specific deformed state.

– Procrustes distance between the individual end-diastolic

states (relaxed state) and each of the individual-

specific deformed states.

– As a last check we performed separate GPAs in the

shape space followed by PCA. We then stacked in

single vectors all PC1 or PC2 or PC3 scores com-

ing from these PCAs. These vectors represents the
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Fig. 6 The comparison of results of classic GPA+PCA, Levi Civita Riemannian Parallel Transport in size and shape space,
and Direct Transport. The first two PC scores are shown. From top to bottom the three methods and from the left to the
right the four cases are reported.

”true” individual deformation cycles not affected by

the presence of other individuals. We plotted these

vectors against PC1 or PC2 or PC3 scores, stacked

in the same way, coming from separate GPAs+PCAs

performed after LC or DT parallel transports. For

any individual motion trajectory (each composed by
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Fig. 7 Procrustes superimposition of non uniform components of deformations between original cycles and cycles recovered
after GPA on the shape space+PCA performed on data transported according to DT (top) or LC (bottom).
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16 shapes) we computed the absolute deviation from

isometry (=1) of regression coefficient between PCs

of pure data and transported data (either DT or

LC).We then performed ANOVAs using DT/LC as

factor variable in order to assess significance.

Fig. 8 reports the results of the PCA performed on

real data using the three different methods, together

with the deformation modes. While the classic method

still shows evidence of the ambiguous meaning of PCs

that explain concomitantly intra- and inter- individ-

ual variation, the LC and the DT yield qualitatively

similar results. While for the classic method there is

no hope in observing the sole deformation cleaned up

by inter-individual variability, the deformations illus-

trated by LC and DT are coherent. The PC1 repre-

sents the global contraction and the myocardial thick-

ening, while PC2 is associated with different extents

of deformation affecting the mitral annulus and ven-

tricular apex. We note that the initial shapes we used

in the simulated datasets were intentionally challeng-

ing as they are hugely different. In fact, the maximum

geodesic Procrustes distance between pairs of shapes

in our simulated datasets is about 1.2 (the maximum

allowed is about 1.57' π/2). Our real data span 0.25

of geodesic Procrustes distance thus making the use of

LC connection still acceptable. Despite this qualitative

similarity, some significant differences emerge looking

at Fig.9, where the bending energy, the Procrustes dis-

tance (both calculated for each shape of each individual

from its proper end-diastolic state) and the first three

PC scores coming from separate GPAs+PCAs before

the data centering are plotted versus the same quanti-

ties after the data centering via DT or LC. It is evident

that our DT method conserve both the bending en-

ergy and the Procrustes distance better than LC. An

alternative representation (per-individual absolute de-

viations from isometry) of the same results is given in

Fig. 10. There are illustrated the absolute deviations

from isometry (=1) of regression’ beta coefficients for

data shown in Fig.9. Regressions were calculated using

the model DT or LC result ∼ Original result for each

of the individual cycles. ANOVAs results are always

significant (=asterisks). DT method performs always

better than LC. It is worth noticing that for bending

energy the absolute deviation from isometry for regres-

sion’ beta coefficients is zero as a consequence of the

definition of DT (eq.7). The averaged values of absolute

deviations from isometry for DT are 0.027, 0.025, 0.032

for PC1, PC2 and PC3 respectively, while they are 0.12,

0.094, 0.093 for LC parallel transport. In order to assess

significance we performed ANOVAs on absolute devia-

tions from isometry using DT/LC as factor variable. We

found differences always significant (p-value for PC1:

1.972e-10; p-value for PC2: 1.857e-07; p-value for PC3:

2.491e-06). In addition Levene’s test revealed that DT

always shows a significant smaller variance respect to

LC (PC1: 5.6e-4 vs 7.9e-3 [p-value: 6.94e-7]; PC2: 3.6e-

4 vs 6.8e-3 [p-value: 2.98e-6]; PC3: 9.5e-4 vs. 6.2e-3 [p-

value: 8.84e-5]). From these results it is evident that DT

preserves original deformations better than LC even if

the latter might be acceptable.

13 Conclusions

In this paper we considered the problem of comparing

trajectories of forms in presence of inter-group differ-

ences. We proposed to solve this problem by performing

a data centering in the Riemannian space, by means of

a connection characterized by a parallel transport that

preserves the original components of the deformations.

In particular, we pointed out that, in order to build such

type of connection is not sufficient to provide a metric

and the related Levi-Civita connection, but it is neces-

sary to introduce a connection with torsion, named TPS

connection leading to parallel transport named Direct

Transport. By means of a set of simulations we per-

formed a reverse engineering experiment and we showed

that in the uniform motion (case 1 and 3) the original

deformation cycles are perfectly recovered by the Di-

rect Transport procedure. In case of non uniform mo-

tions (case 2 and 4) the DT method is not perfect as in

uniform cases but it performs very well and results in

being the best among the three methods.

We want to stress that in the non affine case a per-

fect example of reverse engineering cannot be built.

This depends on the fact that applying the same dif-

feomorphism to different bodies does not mean applying

the same deformation. To be more precise a diffeomor-

phism, e.g. (11.25), transforms the ambient space and

the bodies follow it. But in this way each landmark

moves accordingly to its position in the space. No co-

variation and reciprocal position among landmarks is

considered in this way. The deformation can be char-

acterized by a global component (affine) and a series

of local components. In order to transport the global

component one can transform the whole space, by ig-

noring the role of the landmarks, but the local com-

ponent is related to the single landmark neighborhood.

Homology cannot be neglected in the non-affine case

(see [44] for the non landmark based case). The only

way to apply the same non-uniform deformation to dif-

ferent bodies would be to assign a diffeomorphism to a

first body and to transport the obtained deformation

vector toward the other four bodies by means of the

TPS connection. But in this way the reverse engineer-

ing falls in a circular reasoning: recovering via Direct
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Transport a dataset generated by Direct Transport. On

the other hand the homology is naturally embedded in

the real cases, then we consider as the most important

non-uniform example in the present paper the real one:

human left ventricles. Despite the small Procrustes dis-

tances encompassed by the entire left ventricular data,

the performance indicators presented show an evident

superiority of the DT method with respect to the oth-

ers.
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Fig. 9 Performance evaluation of the real example. Top row: DT; bottom row: LC. From left to right: i) scatterplot between
bending energies estimated from the individual-specific end-diastolic states (relaxed states) and each of the individual-specific
deformed state calculated on pure original data (x-axis) and on data transported via DT (top) or LC (bottom). ii) The same as
above with Procrustes distances. iii) The same as above for the fisrt three PCs coming from separate GPAs+PCAs on original
data (x-axis) and those coming from separate GPAs+PCAs performed on transported data via DT (top) or LC (bottom).
Colors indicate the individual cycles each composed by 16 shapes.
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Fig. 10 Absolute deviations from isometry (=1) of regression’ beta coefficients for data shown in Fig.9. Regressions were
calculated using the model DT or LC result ∼ Original result for each of the individual cycles. ANOVAs are always significant
(=asterisks). DT method perfoms always better than LC. It is worth noticing that for bending energy the absolute deviation
from isometry for regression’ beta coefficients is zero as a consequence of the definition of DT (eq.7).
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15 Appendix

In the following we derive the right value of ν coefficient

used for quantifying the absolute value of the bending

energy (eq. 5.13, 5.14).

We start from the equation (3.2) from KENT, J.

T. & MARDIA, K. V. (1994). The link between krig-

ing and thin plate splines. In Probability, Statistics and

Optimization, Ed. F. P. Kelly, pp. 324-39. New York:

Wiley.

σα(h) = cα,d|h|2α α > 0, α not an integer

σk(h) = bk,d|h|2k log |h| α = k, k > 0 an integer

where

cα,d = 2−2απd/2Γ (−α)/Γ (k + d/2)

bk,d = 2−2k+1(−1)k−1πd/2/{Γ (k + d/2)k!}

In the same paper the equation (5.8) gives the expres-

sion for the Bending Energy:

Jdr+1(y∗) = (2π)2yTBy

where r = 1 = α.

TWO DIMENSIONAL CASE

In the two dimensional case d = 2, α = 1 = k (Theorem

1 pag. 333 Kent and Mardia 1994).

σ1(h) = bk,d|h|2 log |h|

bk,d = b1,2 = 2−1(−1)0
π2/2

Γ
(
1 + 1

2

)
1!

=
1

2

π

Γ (2)
=
π

2

Covariation function σ(h) = π
2 |h|

2 log |h| leads to Bend-

ing Energy J = (2π)2yTBy.

So, with σ(h) = |h|2 log |h| we obtain a Bending

Energy

J = (2π)2yTBy × 2

π
= 8πyTBy

If we use σ(h) = |h|2 log |h|2 = 2|h|2 log |h| we ob-

tain a Bending Energy

J = (2π)2yTBy × 4

π
= 16πyTBy

THREE DIMENSIONAL CASE

In the three dimensional case d = 3, α = 1/2 (Theorem

1 pag. 333 Kent and Mardia 1994).

σ1/2(h) = cα,d|h|1/2

c1/2,3 = 2−1
π3/2Γ (−1/2)

Γ (1/2 + 3/2)
=

1

2

π3/2(−2)
√
π

Γ (2)
= −π2

where we used the properties Γ (2) = 1 and Γ (−1/2) =

−2
√
π.

So σ1/2(h) = −π2|h|1/2 gives J = (2π)3yTBy.

Hence σ(h) = −|h|1/2 gives

J =
8π3

π2
yTBy = 8πyTBy


