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Abstract 
 Why has diffusion MRI become a principal modality for mapping 
connectomes in vivo? How do different image acquisition parameters, fiber 
tracking algorithms and other methodological choices affect connectome 
estimation? What are the main factors that dictate the success and failure of 
connectome reconstruction? These are some of the key questions that we 
aim to address in this review. We provide an overview of the key methods 
that can be used to estimate the nodes and edges of macroscale 
connectomes, and we discuss open problems and inherent limitations. We 
argue that diffusion MRI-based connectome mapping methods are still in their 
infancy and caution against blind application of deep white matter 
tractography due to the challenges inherent to connectome reconstruction. 
We review a number of studies that provide evidence of useful microstructural 
and network properties that can be extracted in various independent and 
biologically-relevant contexts. Finally, we highlight some of the key 
deficiencies of current macroscale connectome mapping methodologies and 
motivate future developments.  
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Introduction 
 
 Functional integration, the interaction and information transfer between 
different subunits in the brain, is mediated in part through white matter 
connections [1]. The formation of these fiber pathways is guided by genetic, 
but also environmental factors. During the early phases of development, an 
initial over-production of synapses is followed by pruning of the redundant 
connections in response to first life experiences [2]. The continuous 
maturation and myelination of white matter from the first months of life and 
through to adulthood reflects learning and interactions with external stimuli.  
 This experience-dependent molding of brain connectivity [3] sheds light 
on the functional relevance of white matter pathways. Anatomical connections 
constrain neural computations. In fact, the pattern of anatomical connections 
a brain region has with other regions can predict, to a certain extent, the 
function of that region at a systems level [4, 5]. This notion of connectivity 
fingerprinting and its functional implications has increased interest in studying 
connections and structural organization [6]. The term connectome, proposed 
roughly ten years ago [7, 8], describes a comprehensive network map of 
extrinsic connections between functionally specialized brain regions. Ideally, 
such a map does not only contain a list of connected areas, but also the 
relative strengths and directionality of each connection [8]. Connectomics has 
the potential to reveal new insights into the principles that guide how different 
functional subunits are arranged and influence one another [9] as well as how 
these processes are perturbed in pathological brain conditions [10]. 
 Invasive approaches for mapping brain connections have existed for 
many decades [11]. At the microscale, techniques such as automated 
histological staining [12, 13], serial electron microscopy [14] and 3D 
fluorescence imaging [15] allow more data to be collected and processed 
nowadays with less labor-intensive methods and fewer imaging distortions. 
However, the small field of view of microscopy techniques limits their 
applicability to small model species, such as the nematode C. Elegans [16], 
and mapping exquisite details of small tissue segments in larger species. At 
the mesoscale, chemical tracers are considered to be the gold standard for 
mapping longer-range white matter connections as they allow very high 
measurement accuracy and detail. In fact, the majority of our knowledge on 
white matter organisation has been obtained through tracer studies (see [17] 
for a review) and macroscopic connectome matrices for different animals and 
scales have been obtained (for instance [18-23]).  
 Non-invasive imaging techniques offer an alternative modality for 
connectome reconstruction at the macroscale in living humans [17]. Diffusion 
MRI and tractography techniques (see other review papers in this issue) have 
been successfully used for many years now to reconstruct the trajectories and 
estimate microstructural properties of fiber bundles in white matter [24]. In 
comparison to invasive approaches, these methods are indirect; they do not 
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explicitly measure the quantity of interest, but rather rely on models and 
inference. For this reason, they are error prone and the results can be more 
difficult to quantify compared to corresponding invasive methods [25]. They 
also offer substantially lower spatial resolution than chemical tracers and 
microscopic techniques and they cannot estimate the directionality of 
connections. However, in-vivo mapping of connections in humans offers the 
potential of considerable advantages [6]: 1) many connections in many 
subjects can be studied simultaneously, 2) structural connections can be 
mapped along with function, behavior and genetics and 3) changes in 
connections with development, aging or pathology can be probed.    
 In this review we consider existing methodologies for mapping the 
connectome using diffusion MRI (dMRI). We discuss the impact on 
connectome reconstruction of different image acquisition parameters, fiber 
tracking algorithms and other methodological choices. We highlight 
comparative and validation studies that provide evidence for the potential of 
these methods but also reveal their deficiencies. Furthermore, we consider 
features of white matter connectivity that are inherently difficult to reconstruct 
with existing approaches. Such features impose limits on the biological 
specificity of dMRI-derived quantities and motivate new developments and 
shifts in current connectivity mapping paradigms.   
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Building a connectome  
 
 In-vivo MRI methods provide a macroscopic view of the connectome. 
Connections that can be reconstructed with dMRI and tractography are the 
extrinsic† pathways between regions that traverse white matter. Even if these 
constitute only a small fraction (~10%) of the total number of neuronal 
connections [26] (the others are intrinsic, intra-cortical), they are important to 
study in order to understand the brain at the level of a system and they are 
characterized by considerable complexity (see [27] for a review of these 
complex features).  
 Inferring a macro-connectome from dMRI images is a very challenging 
task and a field of active research. We divide connectome mapping into two 
tasks: node delineation and edge mapping (Figure 1). Nodes represent 
spatially distinct cortical and subcortical gray matter regions, while edges 
represent the white matter fiber bundles that interconnect pairs of regions.    
 
Node delineation 
 
 Specifying a parcellation scheme that subdivides cortical and subcortical 
gray matter into discrete, spatially contiguous parcels is not straightforward 
[28]. Architectonic atlases provide the simplest and perhaps most commonly 
used approach. Many such atlases are available  (see [29] for a review) and 
they can be registered to an individual brain to ensure that nodes between 
subjects are matched with respect to average size, geometry and location. 
However, architectonic and other template-based atlases do not capture 
variation between individuals in regional functional boundaries and thus make 
the simplifying assumption that a common parcellation is representative of all 
individuals. For instance, the AAL [30] and Harvard-Oxford [31] atlases are 
based on anatomical landmarks, while the parcellation of the Talairach 
Daemon [32] and the Juelich atlas [33] are based on cytoarchitectonic 
features from post-mortem brains.  
 Data-driven parcellations offer an individually customised alternative. 
Data from task-based or resting-state functional MRI can be used to define 
areas with homogeneous features across a population comprising hundreds 
of subjects [34-38]. In this way, regions are delineated based on functional 
properties that are specific to the individuals for whom connectomes are to be 

																																																								
†	Extrinsic	 [4,	 9]	 connections	 that	 traverse	white-matter	 include	 local	 U-fibres	 (up	 to	
~30	 mm	 in	 length)	 connecting	 neighbouring	 regions	 and	 long-range	 fascicles	
connecting	 remote	 regions	within	 or	 between	 hemispheres.	 Intrinsic	 connections	 are	
horizontal	intra-cortical	(<3	mm	in	length).	It	is	estimated	that	the	number	of	intrinsic	
connections	(~1011	fibres)	is	an	order	of	magnitude	larger	than	the	number	of	U-fibres	
(~1010).	U-fibres	 are	 an	 order	 of	magnitude	more	 than	 long-range	 connections	 (~109	
fibres)	[26].	Even	if	extrinsic	connections	are	considerably	less	than	the	intrinsic	ones,	
they	provide	the	network	links	necessary	to	achieve	functional	integration.	
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mapped.  Methods for defining functional boundaries are many and varied, 
with the most recent utilizing multiple modalities and unique measurements. 
For instance, [39] uses multiple features simultaneously, such as cortical 
folding, myelin content, resting-state and task-based activity, to identify a 
functionally-relevant and population-specific parcellation, which respects 
individual variability. In [40], the authors use structural, functional and 
behavioral features to identify a parcellation consistent across various 
domains.    
 
Limitations and open problems 
 Diffusion MRI and tractography methods can be also used to extract 
connection patterns and probe functional boundaries [4, 9]. This has been 
shown with controlled studies for a large number of regions in the cortex and 
subcortex (for instance [41-44], see also the “Validation-Indirect Evidence” 
section). However, current limitations in structural connectome estimation, as 
we explore throughout this Review, can limit the accuracy, interpretability and 
generalizability of such approaches for node delineation. 
 While parcellating the cortex based on functional homogeneity is an 
attractive alternative to node delineation, it also suffers from methodological 
caveats [45]. Furthermore, a number of conceptual problems exist with 
respect to the definition of areal boundaries [46]. Here, we briefly review 
some of these considerations.   
  
Individual variability  
 Individual variability in brain function and structure complicates the 
interpretability of population-level parcellations. Well-characterised areas, 
such as V1, can vary in areal size by 2-fold across subjects [46, 47]. The 
relationship between functional boundaries and cortical folding is also highly 
variable. Areas associated with high-order function exhibit more variability 
across subjects in folding patterns than primary areas, where the folds can be 
reasonable predictors of the boundaries [48]. Therefore, a group-level 
parcellation template cannot capture subtle yet important variations between 
individuals. Registration frameworks that align functional features rather than 
simply match geometry or cortical folding could offer a way to approach this 
problem [49]. 
 
Within-region heterogeneity  
 Different patterns can characterise the functional and topographical 
organization of a region. For instance, different within-area topographical 
organisation can underlie different functions of the same region [50]. V1 and 
V2 provide such examples, with their central and peripheral subregions 
exhibiting different relationships with other regions of the cortex [46]. This 
within-area heterogeneity, along with individual variability, makes delineation 
of boundaries very challenging. A potential solution is to define smooth 
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transitions and fuzzy boundaries between regions rather than binary 
parcellations. But that fuzziness should reflect uncertainty in functional 
features rather than data noise, folding differences or alignment errors. 
 
Scale and number of nodes 
 In many studies, the coarseness of gray matter subdivisions is a 
relatively arbitrary choice. Principled data-driven methods to perform model 
selection and define an optimal number of nodes exist for parcellations based 
on functional data [37]. However, these methods may be conflicted by the 
tradeoff between true functional relevance and discriminative power of the 
available data. For instance, using fMRI versus MEG data is accompanied 
with different limitations in spatial and temporal resolution, which can 
influence model selection. For this reason, some investigators have resorted 
to multi-scale schemes to ensure findings are generalizable and not sensitive 
to a given parcellation resolution [51, 52]. 
 The coarseness of a node parcellation influences the process of 
mapping white matter connections. In practice, edge mapping and node 
delineation are performed independently and the outputs of these two 
processes are only combined when mapping a connectivity matrix. 
Parcellations with fewer regions tend to give more reproducible and “smooth” 
mappings than finer ones, whereas more detailed parcellations in principle 
preserve more details [53, 54]. Low to mid-scale parcellations (in the order of 
tens to a few hundred regions) have been shown to increase agreement of 
dMRI-estimated connectomes with tracers in the mouse [55, 56] and monkey 
brain [57], when compared to results from finer subdivisions.     
 
 In summary, methods for delineating connectome nodes are many and 
varied. The number of nodes and specific nodal parcellation that is best 
suited to a given application is usually not obvious. Parcellations that are 
informed by both brain anatomy and/or functional specialization have gained 
significant traction in the field. In the future, parcellation strategies should be 
developed that capture individual variability. Unlike the microscale, where the 
parallel between nodes and neurons is obvious, defining nodes at the 
macroscale is less clear. It is therefore wise to assess the consistency of 
results for a coarse anatomical parcellation as well as a finer parcellation that 
is delineated functionally or perhaps randomly. Inconsistencies that emerge 
between these two scales can potentially shed light on the nature of a 
particular finding.  
   
 
Mapping edges 
 
 Once the nodes of a connectome have been defined, tractography can 
be used to estimate edges - the connecting paths between pairs of regions. 
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While other indirect methods exist [17, 58], diffusion MRI-based tractography 
is the only method that allows localization of white matter bundles in-vivo (see 
[59, 60] and papers in this special issue for reviews). Axonal fiber bundles are 
organized coherently such that water diffusion occurs preferentially along the 
orientations of least hindrance, which are typically parallel to the fibers. In 
contrast, diffusion is maximally hindered in the perpendicular direction. The 
preferred diffusion orientations (PDOs) can be indirectly mapped to fiber 
orientations at a voxel-wise level (see [61, 62] and papers in this special issue 
for reviews). Tractography approaches then integrate the voxel-wise 
information at a global scale and propagate curves that are maximally 
tangential to the local PDOs [63]. These curves provide estimates of the white 
matter bundles [64]. 
 There is a plethora of methods for mapping fiber orientations and for 
curve propagation. The diffusion tensor model [65] is the simplest approach 
and provides a unimodal approximation to the underlying fiber configurations. 
A more accurate model in the case of complex fiber patterns is the fiber 
orientation density function (fODF), which characterizes the fiber distribution 
in each voxel. Deconvolution methods, parametric [42, 66-68] or non-
parametric [69-71], q-ball imaging [72] and diffusion spectrum imaging [73] 
are some of the popular methods that can provide estimates of the fODF‡ and 
a discrete number of crossing orientations in each voxel. The importance in 
estimating crossings and the maturity of deconvolution methods have been 
shown in many instances for tracking deep white matter§ (e.g. [73-78]). A 
recent study showed benefits of considering fODFs for tracking into the 
transition from WM to GM [79]. 
 Tractography methods can be grouped into two categories: a) Local 
approaches [63, 80-82], which in a greedy, step-by-step fashion propagate 
curves (or streamlines) that are tangent to vector fields extracted from the 
fODFs. b) Global methods (for instance [83-89]), which estimate paths that 
are optimal according to a global criterion. Such paths are not necessarily 
tangent at every point of their route to the local fODF/vector fields. In 
principle, they are more immune to local errors. Local methods have been by 
far the most popular and applied approaches. Global methods offer a 
promising alternative [77, 90], but they require further validation, and they can 
be more cumbersome and computationally demanding. Global methods have 
been tested mostly for deep white matter tracking, and thus the extent to 
which they share or solve some of the limitations and open problems local 
methods have for connectome mapping (see next section) is yet to be 
explored. 
																																																								
‡	Strictly	 speaking,	 q-ball	 and	 diffusion	 spectrum	 imaging	 provide	 an	 estimate	 of	 the	
diffusion	ODF,	a	blurred	version	of	the	fODF.	
§	We	use	the	term	“deep	white	matter”	to	denote	all	white	matter	under	the	white/grey	
matter	boundary.	This	is	in	contrast	to	white	matter	at	the	boundary	and	above	where	
connection	terminations	occur.	
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 Local streamline methods can be further subdivided into deterministic 
and probabilistic, depending on whether they perform a deterministic or 
stochastic estimation. Deterministic methods [63, 81] provide a point estimate 
of the path of least-hindrance to diffusion between two points. Probabilistic 
methods [42, 82] estimate a spatial distribution for this path. They estimate 
the uncertainty around the local fODF peaks (through parametric or non-
parametric inference) [42, 82, 91] and account for this uncertainty to obtain 
the path distribution (peak-based methods). A variant of these approaches 
use samples from the whole fODF to obtain the distribution (whole-fODF 
methods, see [92] for an illustration of this difference). 
 Several studies have evaluated the test-retest reliability of these 
methods for connectome reconstruction [93-95]. Estimates derived from 
probabilistic tractography generally show greater connectome reproducibility 
than deterministic methods, reduce the effect of residual spatial misalignment 
errors and potentially improve some of the statistical properties of the 
sampled paths (i.e. normality). At the same time, they can be to the detriment 
of connectome specificity and accuracy [96]. Probabilistic tractography yields 
greater spatial dispersion in streamline trajectories, which may lead to more 
spurious connections (particularly for whole-fODF sampling methods [97]). On 
the other hand, connectomes derived from deterministic tractography 
generally comprise fewer connections, but results show substantially greater 
variation within and across individuals (particularly in data with low angular 
resolution or low signal-to-noise ratio). It is unclear what proportion of this 
variation represents genuine anatomical variation between individuals, as 
opposed to noise due to a poor fitting local fiber orientation model, 
tractography errors or residual misalignment between the streamlines and 
regional brain atlas. 
 The seeding strategy also has an effect on finding the edges of a 
connectome [98]. Typically, streamlines can be initiated from all white matter 
and the streamlines intersecting pairs of nodes are mapped to the respective 
edge [8]. This “brute force” approach was originally suggested to be more 
sensitive at detecting long white matter bundles [99]. An alternative is to seed 
from the boundary between white and gray matter [100, 101]. Boundary 
seeding has been recently shown to provide smaller biases of dMRI 
estimates when compared to biological ground truths (for instance less gyral 
bias, better predictions of path length distributions, slightly better sensitivity vs 
specificity performance) [23, 102].    
 
Limitations and Open problems  
 
Diffusion-to-axon mapping is ill posed 
 Finding connections is based on a mapping from water diffusion to fiber 
orientations, which is inevitably required due to the indirect nature of dMRI. 
Such inference is in general an ill-posed problem [60, 61], but the problem 
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becomes identifiable using approximations and assumptions. Improving data 
quality and estimation methods to reduce potential errors arising from these 
assumptions has therefore been at the heart of dMRI research. 
 MRI voxels (even at high-resolution) are too large to enable the 
resolution of axons. Thousands of axons coexist within the volume occupied 
by an imaging voxel. The measured macroscopic signal is therefore 
considerably far from the scale of interest.  As a result, different ground-truth 
fiber patterns can lead to very similar signal profiles within a voxel. An 
example is shown in Figure 2a. Voxel-wise fODF estimation does not have 
the information to differentiate between these patterns, as they correspond to 
similar signal profiles. The current approaches rely on approximations and 
typically assume that patterns with fibre orientation dispersion provide 
evidence for crossing fibres. Looking for and using discrete local maxima in 
these fODFs (when in reality there is a fanning or a sharp bending pattern) 
can lead to false positives and negatives [60]. Efforts have been made to 
extract more continuous features (other than the maxima) from the fODF and 
go beyond crossing fibres [66, 103-106]. However, taking advantage of this 
information in tractography is not straightforward and frameworks that explore 
such integration are missing. 
 Another factor that compounds the difficulty in identifying local fiber 
orientations is the axial symmetry of the diffusion signal. Diffusion in opposing 
directions will give rise to the same measurement. As a result, voxel-wise 
fODF estimates are antipodally symmetric as well, even if the ground truth 
patterns are not. Figures 2b and 2c, show the errors caused by ignoring this 
asymmetry when tracking diverging and converging bundles.  
 These inherent limitations make tractography methods very prone to 
errors. Imposing anatomical constraints [56, 101] and/or tractography filtering 
[107, 108] offer principled ways to reduce false connections. However, they 
do not solve the problem of missing connections (false negatives), and 
caution is needed as filtering can generate spurious between-group 
differences due to the effective re-distribution of streamlines. These 
limitations highlight the need for new paradigms. For instance, inferring 
asymmetric fODFs is possible by considering neighborhoods of voxels rather 
than individual voxels [109-112]. Augmenting tracking with microstructure 
[113-116] offers a more robust alternative to orientation-based tracking, as 
estimated bundles have structural features preserved along their route rather 
than orientation alone. 
  
Finding terminations is inherently limited 

 Mapping a connectome demands accurate fiber tracking in deep white 
matter as well as accurate determination of fiber termination points in grey 
matter. Identifying fiber termination is inherently difficult with tractography 
[60]. In fact, tractography cannot terminate propagation in an unsupervised 
manner and heuristics need to be used to determine endpoints. This makes 
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termination criteria an important choice and is the reason why anatomically-
driven rules can improve reliability of results [100, 101]. For instance, 
crossing the white/gray matter boundary (WGB) multiple times is likely to yield 
spurious trajectories and propagation within the cortex may be prone to 
greater errors due to low anisotropy in grey matter.     

Recovering laminar organisation of connectivity is an example where 
finding terminations with current dMRI technology is impossible. Different 
layers in the cortex may preferentially connect to different regions [17, 117]. 
Layer-specific orientation information has been shown with extremely high 
spatial resolution imaging of ex-vivo tissue [118]. But even if this information 
was available in-vivo (for instance with some variant of [119]), termination 
points to different layers would not be estimable using tractography [60], as 
the algorithms are insensitive to synaptic endpoints. Similar problems exist 
with subcortical/cerebellar nuclei, within which tractography cannot find 
synaptic termination locations. A difference, however, is that the inherently 
higher anisotropy within major subcortical structures allows topographical 
organisation and connection patterns to be probed within their volumes (for 
instance see [42, 120] or figure S3 in [121]). While in the case of cortex, due 
to low anisotropy, contrast and the inherent resolution limits, we are mostly 
sensitive to connectional patterns along the cortical sheet (WM/GM boundary) 
(see “Validation-Indirect Evidence” section for examples).  

In the cortex, another obstacle that biases the estimation of termination 
points is the presence of superficial white matter fibres, such as the U-fibres 
that run parallel to the WGB [122] (see myelin-stained fibres at a sulcal 
fundus in Figure 3a). The density of these fibres is higher at the sulcal fundi 
meaning that dMRI-estimated fibre orientations are parallel to the sulcal 
surface. It is therefore difficult for tractography to traverse the boundary and 
escape white matter. This under-representation of tractography streamlines at 
the sulci compared to gyri was first described in [27] as gyral bias. This bias is 
expected to be more evident for finer parcellation schemes and a large 
number of nodes, yet it can potentially introduce a confound for coarser 
parcellations as well, particularly when average curvature and sulcal depth 
profiles vary considerably across nodes.  
 
 
Quantifying edges 
 
 As described above, tractography can provide an estimate of the 
trajectories representing fiber bundles. Ideally, a connectome should also 
include estimates of connection strengths (axonal densities, myelination, 
diameter). Diffusion MRI cannot provide such direct measures [25, 60], but 
allows estimation of edge weights that indirectly reflect some of these 
properties of interest. These range from simple binary values, denoting the 
presence or absence of an edge, to approximations of biophysical properties 
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of connections, reflecting micro- or macro-structure. 
 Connection strength is most typically quantified using some function of 
streamline counts, the number of streamlines intersecting a pair of regions. 
Streamline counts can be enumerated for all pairs of regions to populate the 
cells of a connectivity matrix [7, 8]. Streamlines that are permitted to 
propagate within grey matter can intersect more than two distinct regions, in 
which case they contribute to the streamline count for multiple pairs. 
Anatomical constraints can be imposed to avoid such scenarios, which either 
terminate streamlines at the white/gray matter interface or within subcortical 
volumes [101].     
 Streamline counts can be symmetrized, normalized or transformed in 
various ways [85], which aims to reduce the effect of confounds reflecting 
algorithmic choices and ensure better consistency across subjects. Power 
transforms, in particular the logarithm, can be applied to the streamline counts 
before analysis to achieve normality. Normalization by node sizes [8, 123] 
can be used to account for volume/area variability in the chosen gray-matter 
parcellation. While it may be that larger brain regions are indeed more 
strongly connected by virtue of anatomy, a greater number of streamlines is 
likely to terminate in regions with a larger interface between grey and white 
matter due to the tractography process [53, 100]. Normalization by row and 
column sums of the matrix, such as fractional scaling, provide enhanced 
relative contrast of a particular edge to the rest of the edges that involve any 
of the two connecting nodes and improves the power to predict tracer-
measured connection strengths using tractography-derived weights [23].  
 Diffusion path probabilities, obtained from probabilistic tractography, 
reflect normalized conditionals of streamline counts given the orientation 
model, seeding strategy and termination/counting criteria [74, 82].  As 
discussed before, due to the stochastic generation of streamlines, 
probabilistic tracking provides a spatial distribution on the path of least 
hindrance to diffusion. These path probabilities have been recently shown to 
correlate with connection strength measured using tracers [23], similar to 
deterministic streamline counts [124]. However, path probabilities are also 
confounded by many uninteresting factors (such as path geometry, noise, 
modeling errors), which make direct interpretations difficult [25, 60]. 
 Alternative metrics that reflect microstructural properties along edges 
can be considered as edge weights. For instance, voxel-specific measures of 
anisotropy can be averaged over all voxels traversed by a path that is 
assigned to a particular pair of nodes [125]. The resulting tract-averaged 
measure thus characterizes the anisotropy of a connectome edge as a whole. 
Other microstructural measures can be also used [125, 126], such as axonal 
myelin content measures derived from images of magnetization transfer ratio 
[127, 128]. Different weighting functions can be employed for the averaging 
process to give greater weight to different parts of the tract (e.g. using 
streamline counts/probabilities in each voxel can give greater weight in the 
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main tract core versus the periphery).  
 Features that reflect tract macrostructure are another possibility for edge 
quantification. In fact, volume and cross-sectional area of paths intuitively 
relate more directly to connection strength than their microstructure 
counterparts. In [129] the tract volume is explicitly used in a model to 
parameterize connection paths using spatial basis functions. Extensive 
simulations illustrate the potential to infer volume as a probe of apparent 
connection strength, but high computational demands currently limit 
exploration and utility in real data are yet to be shown. In [108], a post-
processing filter of streamlines is presented based on a generative model of 
the data from streamlines (similar in spirit to [107, 130]). The filtered 
streamline counts are proposed as probes of the cross-sectional area of the 
WM connection underlying an edge. Even if such an interpretation is based 
on the strong assumption that relative fODF volume fractions reflect relative 
axonal densities, the filtering increases the biological relevance of the 
obtained edge weights [102]. 
 
Limitations and open problems 
 The major limitation for quantifying edges is that none of the above 
approaches provide an inter-regional measure of the number of connecting 
axons, which is a desirable measure of connectivity strength in many 
applications. Tract-averaged microstructural measures may provide an 
interpretable biophysical property per edge. However, it is questionable how 
informative such properties are when treating connectomes as networks, 
which would require some proxy of connectivity. In a recent study no 
correlation was found between such microstructural measures and axonal 
strengths measured by tracers [124]. On the other hand, functions of 
streamline counts can be thought to be more relevant in such a network 
context [23]. However, factors that reflect data quality, algorithmic choices 
and inherent limitations bias these measures [60]. 
 Future work should also focus on characterizing the distributional and 
noise properties of connectivity matrices. Connectivity matrices comprising 
streamline counts derived from probabilistic tractography are likely to show 
smoother variations between spatially neighboring node pairs compared to 
deterministic tractography, as streamline trajectories associated with 
probabilistic tractography are more spatially dispersed. 
 
Distance bias 
 Streamline counts between distant regions, interconnected by longer 
tracts, are often smaller than counts between neighboring regions. 
Algorithmic limitations contribute to this pattern, for instance longer tracts are 
more difficult to reconstruct with tractography because streamlines must be 
propagated for a longer distance and each propagation step provides an 
opportunity for “wrong turns” [131, 132]. However, connection strengths as 
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measured by tracers follow an exponential decay with connection length, with 
the majority of connections being short and strong and the long connections 
being weak, comprising fewer axons [133, 134]. Tracers of course have their 
own error sources [17], but the extent to which the algorithmic distance bias 
of tractography is biologically specific remains to be explored.  
 
Seeding bias  
 When streamlines are seeded from all of white matter, longer tracts are 
inevitably sampled more abundantly because they occupy a greater volume 
than shorter tracts. To compensate for this bias towards long tracts, the 
streamline count can be normalized by the average length of the streamlines 
contributing to the count [135]. However, given that many tracts are sheet-like 
and vary considerably in cross-sectional area and morphology, simple 
normalization factors such as the streamline length might not adequately 
correct for the over-sampling of tracts occupying greater volumes. Filtering of 
streamlines via generative models that ensure higher fidelity with the data 
[107, 108, 130] is another approach that seems to be more beneficial in this 
context. Initiating streamlines from the WM/GM boundary interface is an 
alternative that overcomes this limitation and can potentially provide more 
realistic path length distribution [23, 100, 102], but this seeding approach has 
difficulty in tracing out long fiber bundles.  
 
Gyral bias  

As described in the previous section, the existence of superficial 
tangential white matter can lead to under-representation of tractography 
streamlines at the sulci compared to gyri [122], the so-called gyral bias [27]. 
The bias is further magnified by algorithmic limitations in tractography; sharp 
turns (which are needed to capture axons that can bend at quasi-right angles 
[15]) are less preferred than linear trajectories and that will lead most of the 
times to the gyral crowns. 
 The gyral bias is biologically relevant. The preferential termination of 
tractography streamlines at gyral crowns agrees with neuro-anatomical 
expectations. It is the magnitude of the difference for preference towards 
gyral crowns compared to sulcal fundi that is unrealistic [27]. Indeed, let’s 
assume that the number of axons crossing the WGB is constant per unit 
cortical volume (i.e. there is no bias). Cortical folding however induces 
geometrical differences in different parts of the cortex. Cortex tends to be 
thickest along gyral crowns and thinnest in sulcal fundi [136] (Figure 3b), and 
larger cortical volume corresponds to a unit surface area of the WGB at the 
crown compared to the fundus. Therefore, even if the number of axons 
crossing the WGB boundary is roughly the same along it, the density of axons 
crossing at the gyral crowns will be larger compared to the ones crossing at 
the sulcal fundi. Van Essen et al used cortical thickness measures to compute 
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this expected bias (Figure 3c) and found that it is 4-5 times less than the one 
predicted by tractography [27]. 

New paradigms are needed to address these limitations when tracking 
close to the WGB. Some very recent studies have taken preliminary steps in 
this direction. In [137] the relationship of fibre orientations with cortical 
features is explored using post-mortem high-resolution histology and used to 
inform generative models for in-vivo diffusion MRI. In [138] a strong prior is 
imposed on the fibre orientations within the cortical ribbon and flow 
preservation constraints are used to successfully track into/out of various 
locations along the WGB. Approaches for neighbourhood-wise tracking, as 
the ones used before for deep white matter [110], may also be beneficial for 
better estimating the transition between white and gray matter.  
 
Counting using surfaces or volumes? 
 Boundaries, such as the WGB, can be represented either as volumes or 
as surface meshes. Surface representations offer a more compact and 
accurate description of the boundaries at a given resolution [139]. This can 
have an effect on the tractography results and their interpretation. For 
instance, an intermediate-resolution, voxel-based representation of the WGB 
cannot necessarily follow the highly convoluted boundary (Figure 3d) and can 
mask the gyral bias. As shown in the inset of Figure 3d, the streamlines are 
frequently unable to reach a voxel representing the gyral crown, without first 
traversing a voxel that represents the sulcal fundus. Depending on the width 
of a gyrus and on how tractography boundary conditions are imposed, this 
can artificially increase the visitation frequency to certain sulcal regions (blue 
asterisks in Figure 3d). However, these frequencies and their spatial pattern 
may purely reflect resolution-induced limitations of the voxel-wise 
representation. Using surface meshes, such as GIFTI files [139], should be 
more robust to these problems, but the exact differences between results 
obtained from the two representations remain to be explored.   
 
Summary 
 The reconstruction and mapping of connectome edges is confounded by 
many limitations and open problems remain to be solved. Reproducible, 
sensitive, specific and biologically interpretable measures of white matter 
connections are difficult to obtain with diffusion MRI. Despite these limitations, 
diffusion MRI enables reconstruction of connectomes, which display biological 
properties that are consistent with brain networks mapped with alternative 
modalities. Recent studies explore this directly [23, 102, 124], while a plethora 
of studies provide indirect evidence in favor of consistency between 
modalities. We review this evidence in detail in the Validation section of the 
paper. 
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Impact of data quality 
 
 So far we have discussed the impact of algorithmic and methodological 
choices on building connectomes. Another important aspect that affects 
estimation of dMRI-derived quantities in general (and therefore connectomes) 
is data quality. Given the inherent limitations of diffusion MRI, better data can 
help if developments allow: a) improvements in diffusion-to-axon mapping 
and b) reduction in partial volume. Signal-to-noise-ratio (SNR), spatial 
resolution, angular resolution and angular contrast are some of the data 
features that can directly influence these factors [28]. Even if some limitations 
cannot be directly overcome with better data (see [122] and some of the 
conceptual problems described in the previous sections), significant 
improvements in tracking white matter have been shown. 
 More specifically, better SNR and/or angular resolution improve 
precision and accuracy of the mapping from diffusion signal to fiber 
orientation estimates [140]. Improved angular contrast allows higher 
sensitivity in detecting within-voxel complex fiber patterns [69, 73, 76], which 
further allows more accurate tractography [74]. Multiple angular contrasts (i.e. 
b values) give better estimation of partial volume and differentiation of 
diffusion compartments and further augment accuracy of orientation 
estimates [141, 142].  
 Increased spatial resolution reduces partial volume and allows imaging 
of exquisite details of white matter organisation [143-145]. For instance, very 
high-resolution dMRI allowed the mapping of axonal and dendritic networks in 
the hippocampus, whose accuracy was confirmed with tracers. High spatial 
resolution is also beneficial for distinguishing correct tract termination points 
[146]. Increasing the resolution by using high field strength improved the 
estimation of the fibre spreading pattern to the cortex and reduced gyral bias 
[147]. In another recent study, improving on all the data quality aspects of 
dMRI data increased agreement of connectomes estimated in humans using 
three different modalities [148].  
 In Figure 4, we illustrate a simple example of how changing spatial and 
angular resolution of the data affects tractography. In that particular case, the 
increased spatial resolution is beneficial in differentiating thin projections from 
the hand area of the motor cortex. Apart from better resolving partial volume, 
higher spatial resolution is expected to increase the estimation accuracy of 
relatively short paths, which comprise the majority of brain connections [19, 
133]. We need to point out, however, that increasing spatial resolution at the 
expense of Contrast to Noise Ratio (CNR) or angular resolution can actually 
lead to suboptimal performance [146, 149], particularly in tracking major 
bundles.  
 Deciding on the acquisition protocol and getting the balance of these 
features right is governed by a series of trade-offs (for instance SNR 
competing against spatial resolution or angular contrast). As shown in Figure 
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4, it may not be optimal if a feature is improved at the expense of others. 
Recent frameworks attempt to resolve these trade-offs by fusing 
complementary datasets (e.g. data with high spatial & low angular resolution 
with data with low spatial and high angular resolution) [147, 150]. Another 
group of post-processing methods boost certain features to improve 
estimation. These include denoising approaches for improving SNR [151, 
152] and up-sampling or super-resolution methods for improving 
spatial/angular resolution [153-155]. Nevertheless, we can expect recent 
technological advances to provide better operating points for all these 
competing features and improve overall data quality. Hardware developments 
in modern scanners [156], such as higher gradient strengths, can translate to 
improvements in SNR and contrast of routine scans. While higher field 
strengths might pose difficulties to dMRI acquisitions due to the shorter T2 
relaxation times at high field [156], they can be used to achieve very high 
spatial resolution [143, 157].  
 Sequence developments should accompany these hardware advances. 
For instance, simultaneous multislice or multiband acquisitions [158, 159], 
allow 3-5-fold acceleration of dMRI scan time, changing the perception of the 
data quality that can be achieved in realistic time frames. Faster scan times 
translate to higher spatial and/or angular resolution and/or SNR per unit time. 
Diffusion-sensitization using double-pulsed field gradients (see [160] for a 
review) or generalized trajectory imaging [161] open new possibilities in 
probing restricted compartments and microscopic features with the potential 
to improve the accuracy of mapping from diffusion measurements to tissue 
structure. 
 Better data enable improved modeling and analysis [60]. In fact, new 
tools are required to take full advantage of the new information in certain 
applications. An example is increasing spatial resolution in the presence of 
inevitable subject motion and eddy currents. The higher the aimed resolution, 
the higher the need is for accuracy in distortion correction tools. New 
frameworks in this area [162, 163] have been shown to limit alignment errors 
between dMRI volumes to less than a quarter of the voxel size [164] and 
improve distortion correction [165], therefore preserving the benefits of high 
resolution acquisitions after preprocessing. 
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Validation - Comparison with other modalities 
 
 We have highlighted a series of limitations for mapping the connectome 
using diffusion MRI. It is therefore important to quantify the effect of these 
limitations on the ability to accurately map connectomes. It is also important 
to explore the utility and biological consistency of current connectome 
mappings given the limitations of dMRI and tractography. More and more 
frameworks are developed towards this aim (e.g. [78, 97, 166-168]). 
 In the following sections we review studies that specifically compare 
tractography-induced estimates with estimates from other modalities; either 
directly for the purpose of validation or indirectly for the purpose of multi-
modal integration. The comparisons show differences (and limitations as 
highlighted in the previous sections), but also provide evidence of agreement 
and predictive power in various different contexts that are greater than 
expected due to chance.  
 
Direct evidence 
 There have been efforts to directly validate parts and aspects of the 
tractography-estimated connectome with a different invasive modality, such 
as chemical tracers, primarily in animals. Tracers have their own limitations 
and biases [17]. For instance, identifying correspondence between injection 
sites and a particular brain area is not straightforward. Axons that traverse the 
injection site can result in the reconstruction of spurious connections because 
these axons can absorb the tracer even though they make no synaptic 
contacts with the injection site. Absolute quantification of connection strength 
is also difficult, as anterograde and retrograde tracers depict different features 
of connectivity. However, tracers are very precise in spatial localisation and 
have a considerably lower false positive rate than tractography. Thus, even if 
not perfect ground truths, they are much closer to the ground truth than in-
vivo dMRI.  

Validation efforts have focused on the existence of edges and/or on 
their relative strength (i.e. treating the connectome as a binary or weighted 
matrix, respectively). The main conclusions that can be drawn are: 1) 
Tractography predictions are above chance, however features with poor 
agreement exist. 2) There is a trade-off between sensitivity and specificity. 
Tractography methods that tend to be more sensitive in finding connections 
are also less specific. 3) Cortico-subcortical, short-range intra-hemispheric 
and homotopic inter-hemispheric connections are more reliably estimated. 4) 
Weights estimated by tractography can be fair but far from perfect predictors 
of the underlying connection strength. 5) Parcellated connectomes, i.e. 
estimated with nodes corresponding to mid-scale regions, are more accurate 
than denser ones that attempt to depict fine, within region, details. In the 
following paragraphs we review the relevant studies and findings in more 
detail. 
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Identifying the existence of connections 
 The first validation studies investigated how well tractography can 
identify large bundles and follow them through white matter. Qualitative 
comparisons have shown good agreement against histological tracing in the 
monkey brain [169] or against dissected human samples [170, 171]. Newer 
dissection methods [172] allow preservation of the cortex and of the 
superficial white matter and have shown examples of the ability of 
tractography to follow the true route of connections up to their terminations 
[173, 174]. However, semi-quantitative comparisons have also highlighted 
false positive connections that are estimated [175, 176].    
 The sensitivity (finding true connections) and specificity (avoiding false 
connections) of tractography in detecting connectome edges has been more 
systematically explored in comparison to chemical tract tracing in the monkey 
[23, 90, 177, 178], mouse [55, 56] or porcine brain [179]. Areas under the 
curve in receiver-operating characteristic (ROC) plots have been reported in 
the range of 0.7 to 0.8 suggesting a fair estimation accuracy in identifying 
connections and/or their routes (Figure 5a). At the same time, all studies 
illustrate the strong dependence of the results to the particular tractography 
settings and models. Probabilistic tractography is less sensitive than 
deterministic to anisotropy and curvature thresholds or the tissue composition 
of the seed [177, 178]. It also tends to be more sensitive, but less specific 
than deterministic methods and more susceptible to false positives [97, 177, 
179]. In general, an increase in sensitivity for all methods comes at the 
expense of a decrease in specificity and therefore a need for an optimised set 
of parameters is important. Also, tractography performs much better when 
exploring connections between relatively large cortical nodes rather than fine 
details within regions. 

Comparisons of dMRI-estimated paths with tracers also reveal benefits 
of considering fibre crossings in tracking (in some cases larger benefits are 
shown [179] than in others [177]). Adding prior knowledge to guide 
connectome mapping is also beneficial [56]. In [180], organisational principles 
of cortical projections identified with tracers were found and generalised to 
post-mortem macaque MRI data using informed tractography protocols that 
included a-priori specified waypoint and exclusion masks. These were then 
used to search for and identify similar principles in humans. In [181], 
subcortical connectivity signatures were obtained and revealed a series of 
networks between basal ganglia sub-nuclei and the cortex. Some of these 
networks, in particular cortico-striatal circuits, were directly validated against 
previous tracing studies in monkeys. 
 
Tractography-estimated weights 
 An even more challenging task than localising connections is 
extracting relative weights for the connectome edges. The recent 
development of comprehensive and weighted brain mappings by collating a 
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plethora of tracing experiments [19, 20] has permitted the direct comparison 
with tractography-derived connectomes. Out of these studies, we can extract 
some general features of the connectivity weights as measured by tracers: 1) 
There is a wide range of connectivity strengths than spans five orders of 
magnitude. 2) An exponential reduction of connectivity strength occurs with 
path length [133, 134]. 3) There is a prevalence of local connections. Short 
connections are significantly more and significantly stronger than long 
connections. 
 In one of the most recent comparisons, the authors evaluated the 
accuracy of dMRI connectomes in predicting generic features extracted from 
human brain dissections [102]. The connectome edges and weights correctly 
replicated the relative percentage of long inter-hemispheric and intra-
hemispheric connections and the inverse relationship between connection 
strength and length.      
 Non-human primate studies allow more detailed comparisons due to 
the plethora of available ground-truth. In [23] the connectome edges and 
weights obtained via macaque tractography and macaque tracers were 
compared. Tractography could recover four out of the five orders of 
magnitude in the range of connection strengths. The performance was far 
from perfect, yet better than chance, even for the weakest longest paths 
(Figure 5a). Strong and short connections were better characterised by 
tractography, as the performance worsened with smaller connection weights. 
Overall a correlation of ~0.55** was reported between edge weights in tracer 
and tractography and the path length dependence contributed significantly to 
this correlation. Interestingly, however, after regressing out path lengths, 
there was still a significant correlation (but smaller ~0.25) between the two 
measures, showing that it is not only the path length dependence that drives 
the relationship. Similar trends were reported in [124] (though with smaller 
overall correlations ~0.35, but a different definition of connectome weights).  

The dependence of these correlations to the node size was explored in 
[55, 56] for the mouse brain. Connection weights between mid-level sized 
regions were more reliable (correlation up to 0.77 in [56]) compared to 
considering small nodes (correlation dropped to 0.45). Similarly for the 
monkey brain [57]. As discussed in the previous sections, certain limitations 
reduce the reliability of tractography at finer scales. Despite the errors, all the 
validation studies provide evidence that dMRI-induced connectomes contain 
relevant information and predictive power. Interpretation might not always be 
straightforward, but a large number of applications show that this information 
can be useful. We review some of these applications in the following section. 
 
																																																								
**	To	put	these	correlation	values	into	perspective,	comparisons	between	histology	and	
MRI-derived	values	of	a	much	more	straightforward	feature,	such	as	cortical	thickness,	
give	 correlations	 in	 the	 order	 of	 0.6-0.7	 [182,	 183],	 reflecting	 the	 inter-modality	
variability	and	difficulty	of	direct	comparisons.	
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Indirect evidence 
 The idea of connectivity fingerprinting using tractography weights 
(Figure 5b) [4] has been applied to identify boundaries of functionally distinct 
regions (see [45, 184] for reviews). In one of the earliest studies [43], a dense 
weighted matrix mapping connections from the medial frontal cortex to the 
rest of the brain was obtained using tractography. This matrix was used to 
identify the boundary between the anterior and posterior part of the 
supplementary motor area. These are functionally distinct areas both in motor 
and cognitive domains and the boundary, identified as a sharp change in the 
tractography profiles, agreed well with the one obtained from functional MRI 
localizer tasks. Since then, similar results in predicting functional boundaries 
using dMRI and agreement with functional MRI have been shown for various 
cortical [41, 44, 185-191] and subcortical areas [42, 192-194] (see Figure 5c). 
Agreements have been also illustrated with other non-MRI functional 
measurements, including PET [120] and direct electrophysiological recordings 
[195], as well as cytoarchitectonic delineations [196, 197].  
 Tractography “signatures” can be reproducible and robust across 
subjects to a degree that allows predictions for the efficacy of targets in 
functional neurosurgery [198, 199]. In deep brain stimulation, neurosurgeons 
search for the most efficient stimulation target via trial and error. In [200] the 
authors identified in that classical way the thalamic location, which when 
targeted for stimulation allowed the most efficient alleviation of tremor 
symptoms. They then estimated using previously acquired dMRI the 
connectivity fingerprint of that region. New patients were scanned prior to 
surgery and the thalamic region best matching this fingerprint was identified 
and used as initial target for stimulation. They found that in these new 
patients the tractography-informed target was indeed very close to the most 
efficacious location, allowing better surgical planning. 
 The functional relevance of structural connectomes has been further 
illustrated by studies that use structure to constrain or predict function (Figure 
5d). Models of functional networks built on a structural backbone have 
increased explanatory power and identifiability compared to models that lack 
such structure [201, 202]. Structural connectivity networks alone have been 
used to predict the existence, strength and spatial features of functional 
connections as assessed by fMRI at rest [203]. During a task, the functional 
activation maps have been predicted solely by the connection pattern of the 
activated region [5]. More specifically, the authors in [5] learnt a model in a 
group of subjects between the tractography-estimated connectome of the 
fusiform gyrus and the functional activity recorded via fMRI during a face 
selection task. They then applied that model to the connectome of new 
subjects and they predicted their task activation. This predicted activation was 
found to be very similar to the individually measured activation by subsequent 
fMRI. A subsequent study used a similar mapping approach and predicted the 
functional organisation in young children after they learned how to read, using 
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the structural connection patterns they had developed prior to acquiring this 
skill (i.e. a few years earlier in their development) [204]. Such structure-
function relationships can be observed even at a higher-level, with structural 
connections predicting behavior and decision-making processes [205-207]. 
 Mapping gray-matter connection patterns offers the unique ability to 
perform comparative anatomy (see [208] for a review). This allows the 
identification of “homologue” areas across species (areas that share similar 
“connectivity contrast”) and the translation of the vast literature of animal 
studies to humans [209-212]; but also translation from humans to other 
primates to study evolution [213-216]. Such studies provide evidence of 
agreement of the structural estimates with a large range of independent 
sources of information.  
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Network analysis 
 
 Connectivity fingerprinting approaches discussed in the previous section 
(Figure 5b,c) mostly reflect hypothesis-driven analyses, where a subset of the 
connectome is considered and relative connection patterns associated with 
certain nodes are examined. An alternative approach considers network 
properties, either in a data-driven manner or with respect to hypothesis-driven 
regions. Complex networks have been studied in mathematics for centuries, 
where they are known as graphs and are fully defined by their nodes and 
edges (Figure 1 and Figure 6). In this section, we consider how graph theory 
and network science can be used to understand the global organization of the 
connectome. 
  The edges of a graph are either directed or undirected. Edges inferred 
from tractography are invariably undirected because the direction of diffusion 
cannot be resolved with diffusion MRI (in contrast to tract tracing methods 
that can distinguish between afferent and efferent fibers). Furthermore, the 
edges of the graph can be either weighted or binary, as previously discussed. 
  
Adjusting density and weights 
 Thresholding methods applied to brain graphs with weighted edges 
reduce the density of connections in a graph and aim to eliminate spurious 
edges, thus improving specificity. Thresholding can be further applied to 
binarize graphs [217, 218] and simplify the interpretability of certain analyses 
by emphasizing network properties that may be obscured by large variations 
in edge weights. On the other hand, thresholding may disregard useful 
information (see previous section and representative examples in [5, 43, 
205]). Therefore, the applicability of such approaches depends on the 
particular question of interest. 
 The simplest thresholding method, called weight-based thresholding, 
involves eliminating any edges with a weight that is below a given global 
threshold. To yield a binary graph, the weights associated with the remaining 
edges are disregarded, leaving only information about whether edges are 
absent (0 in connectivity matrix) or present (1 in connectivity matrix). Weight-
based thresholding introduces the confound of graph density to comparisons 
between groups of individuals. Graph density†† —the proportion of all node 
pairs that are directly interconnected by an edge— fundamentally influences 
the properties of a graph [218]. Applying the same global threshold to 
different brain graphs does not necessarily ensure that the resulting 
thresholded graphs have the same density. Therefore, when complex 
properties of thresholded brain graphs are found to differ between individuals, 

																																																								
††	The	 term	 “connection	 density”	 is	 found	 in	 the	 relevant	 literature.	 We	 use	
“graph	density”	here	to	avoid	confusion	with	connection	axonal	density	that	we	
refer	to	in	other	sections	of	the	paper.			
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it is unclear whether these differences are trivially owing to differences in 
graph density.  
 Density-based thresholding [218] overcomes this confound. A unique 
threshold is determined for each individual to ensure a fixed graph density for 
all individuals. The disadvantage of this approach is that the number of 
spurious connections may differ between individuals because different 
absolute thresholds are used, which introduces a new confound.   
 The differences between thresholding methods are evident when 
comparing brain graphs between different groups (e.g. patients and healthy 
controls) [217]. For instance, many white matter connections in patients with 
schizophrenia comprise significantly fewer streamlines when compared to 
healthy individuals [219]. Therefore, density-based thresholding is likely to 
result in brain graphs that comprise more spurious connections in patients 
compared to controls [220]. This may explain the subtle randomization of 
network organization reported in patients with schizophrenia [219, 221]. In 
particular, density-based thresholding may force the inclusion of spurious 
edges into the patient brain graphs, leading to randomization. On the other 
hand, if weight-based thresholding is used, it is important to recognize that 
potential differences in complex network properties may simply reflect a lower 
overall number of connections in one group. Ultimately, the distinction 
between these two thresholding methods boils down to whether differences in 
complex network properties should be divorced from differences in graph 
density.  
 A variety of alternative thresholding methods have been developed to 
preserve or emphasize specific features of brain graphs. Fragmentation of a 
graph into disconnected islands of nodes is undesirable and anatomically 
unrealistic. To avoid fragmentation, a minimum spanning tree can be formed 
based on the edges with the highest weights [222]. By definition, this yields a 
connected graph in which paths can be found between all node pairs. Further 
edges can then be progressively added to the minimum spanning tree until a 
desired graph density is achieved. Local thresholding methods attempt to 
preserve graph structures that span multiple scales of edge weights. 
Whereas global thresholding is invariably based on a single threshold, local 
thresholding methods such as the disparity filter [223] seek to calculate 
distinct thresholds for each node and its associated connections. Finally, 
thresholding can be performed to preserve edges that are consistently found 
between a group of individuals [224]. Such consistency-based thresholding 
can however eliminate connections that genuinely vary between individuals.   
 While thresholding is not an essential prerequisite to brain graph 
analysis (see for instance the connectivity fingerprinting examples described 
in the Validation section and in Figure 5), it is often performed to: i) improve 
the interpretation of topological descriptors, ii) ease computational and 
storage burden; iii) control for the effect of between-group differences in 
graph density when performing between-group comparisons of network 
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properties; and, iv) minimize the number of spurious (false positive) 
connections. Including spurious connections (false positives) is substantially 
more detrimental to the topological analysis of brain graphs than failing to 
detect genuine connections (false negatives), and thus thresholding is 
considered a crucial step to maximize the specificity of brain graphs [96]. The 
choice of thresholding method (if any) should be guided by the requirements 
of subsequent analyses. For example, thresholding methods that yield binary 
graphs are inappropriate if the goal is to test for between-group differences in 
the weights associated with each edge. 
 
Network properties of brain graphs 
 Many intriguing properties of brain graphs have been discovered during 
the last decade. These properties are not unique to the human brain and are 
often found universally across many species and imaging scales. Brain 
graphs are small-world networks that are modular in structure [225]. Modular 
small-world networks are characterized by communities of nodes that are 
densely interconnected among themselves, predominantly with relatively 
short connections, while also sparsely connected to other communities by a 
small number of long-distance connections (Figure 6a).	 These densely 
interconnected communities (modules) are hypothesized to facilitate network 
segregation and specialized information processing. The longer connections 
interconnecting these modules facilitate network integration and distributed 
information processing. Modules in brain graphs tend to be spatially localized 
and comprise cortical regions that perform specialized functions, such as 
visual, auditory or motor processing tasks.  
 Brain graphs also comprise a densely interconnected core of hub nodes 
that form a rich club [226]. Hub nodes make connections with many other 
nodes and serve as focal points for the divergence and convergence of neural 
information. Hubs are defined as nodes with large degrees, where the degree 
of a node is simply the total number of other nodes to which it is directly 
connected [227]. The nodes of brain graphs differ very substantially in 
degree. Indeed, the distribution of nodal degrees in most brain graphs can be 
described by a truncated power law (scale-free distribution), which implies the 
existence of a small number of highly-connected hub nodes. For a hub node 
to form part of the rich club, it must also be densely connected with other rich-
club nodes. A rich club in general comprises nodes (hubs or non-hubs) that 
are both densely connected among themselves as well as with other nodes. 
Non-hub nodes of the club are called peripheral or local nodes. Rich clubs are 
synonymous with many kinds of natural and engineered networks. For 
example, major air transportation hubs are interconnected to an extent that is 
significantly greater than expected in random networks with the same nodal 
degree distribution. While the hub nodes comprising a rich club are usually 
distributed across different modules, they are also densely interconnected by 
long-range connections. This suggests that the rich club is a network core 
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that plays a crucial role in integrating and coordinating the activities of 
specialized modules. Typical hub nodes comprising the rich club of brain 
graphs include the caudate, thalamus, precuneus, superior frontal gyrus and 
middle cingulate gyrus (Figure 6b).   
 Another property of brain graphs is network economy [228]. Brain 
graphs are spatially embedded networks in which each node is associated 
with a coordinate in Euclidean space and each edge has a physical length 
[135]. Long connections are considered costly to nervous systems in the 
sense that they occupy more physical space and consume more metabolic 
resources [229]. A small number of long-distance connections is however 
crucial to ensure information can be efficiently integrated between different 
modules. Spatially embedded networks that comprise only short connections 
are not very costly in terms of their energy and space requirements, but they 
are also not very efficient integrators of information. Indeed, spatially 
embedded networks comprising only short connections are lattice-like 
networks in which distant pairs of nodes must traverse many connections to 
communicate. The number of connections that need to be traversed, known 
as the path length, can be drastically reduced with the addition of a small 
number of long-distance connections [230]. Network economy refers to this 
tradeoff between the cost of a network’s topology and the efficiency with 
which that network can integrate information (Figure 6c). In practice, 
efficiency is quantified as the inverse of the path length between all node 
pairs [231], while cost is quantified as the sum of the physical length of all 
connections. Numerous studies indicate that nervous systems have evolved 
to negotiate a compromise between network efficiency and network cost 
[232].  
  
Comparing network properties between groups    
 Comparing the network properties of brain graphs between groups of 
individuals can reveal new insights into brain network organization in health 
and disease (see [10] for an extensive review). Statistical inference can be 
performed on the connectome at many different scales. The simplest data-
driven approach is to independently test the weights associated with each 
edge for a between-group difference or a statistical association with some 
measure of cognitive performance. Network-specific methods can be used to 
identify between-group differences given the network structure and correct for 
multiple comparisons. The network-based statistic [233, 234] is an example of 
one such non-parametric approach that identifies interconnected subnetworks 
for which the null hypothesis (of no differences between groups or no 
associations with chosen score) can be rejected. Given that brain pathology 
seldom impacts a single connection in isolation [235], these mass univariate 
approaches aim to identify multiple network elements that significantly differ in 
connectivity strength between groups. In many brain diseases, white matter 
connections provide conduits that promote the spread and spatial propagation 
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of a pathological mechanism [236, 237], and thus it is not surprising that 
disease-related connectivity effects often form interconnected subnetworks 
(Figure 6d).   
 Another approach to statistical inference is the testing of between-group 
differences in global summary measures of network organization, such as 
measures of network efficiency [228], small-worldness [238] and modularity 
[239]. Global testing is simple but lacks specificity, in that insight cannot be 
gained into whether effects are distributed throughout the brain, or confined to 
a specific set of nodes or edges. Finally, multivariate statistical inference is 
growing in popularity and can play an important role in the future as datasets 
continue to increase in size and complexity. Multivariate approaches seek to 
learn complex patterns among multiple elements of a brain graph and utilize 
these patterns for inferential classification and prediction. Support vector 
machines [240], partial least squares [241] and canonical correlation analysis 
[242] have been successfully applied to connectomic data.  
 Interpreting clinical differences in brain graphs can be challenging. 
These can be further complicated due to the complex patterns of 
epiphenomena and adaptive responses, as well as the progressive nature of 
connectivity deficits in many brain diseases. In general, analysis of brain 
graphs in clinical populations requires care in the choice of network measures 
analyzed—testing for between-group differences in a large set of arbitrarily 
chosen properties of a brain graph is unlikely to be fruitful. Ascribing biological 
meaning to some network measures is also challenging and based on many 
assumptions. For example, measures of path length tacitly assume neural 
information is transmitted via the shortest paths in a brain graph [228, 229], 
but this remains to be established and other models of transmission based on 
diffusion processes and greedy navigation may be considered more plausible 
[243].  
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Summary  
 
 Using diffusion MRI to map macro-connectomes in vivo has shown 
promise in exploring brain organisation and advancing our knowledge of brain 
connection patterns and network properties that are difficult to elucidate with 
alternative techniques.  

However, mapping connectomes with diffusion MRI remains 
challenging and caution is needed to ensure that connectomic analyses do 
not demand or assume fiber reconstruction accuracies that stretch beyond 
inherent limitations of macroscale imaging modalities. It is important for 
investigators to be aware of these existing limitations that affect the 
applicability, accuracy and interpretation of connectome reconstructions. 
Open problems in the various stages of building connectomes set new 
interesting and challenging questions. They provide new opportunities for 
acquisition and methodological developments, which are necessary to 
progress the field. Validation studies based on microscopy, tracers and 
histology are also needed. Such comparisons can assist with identifying the 
major challenges and modes of failure in a systematic way and motivate new 
developments.   
 Multimodal imaging and analysis may overcome some of the 
limitations of dMRI. Apart from using dMRI, brain networks can be also 
estimated using anatomical [244], resting-state functional [245] and task-
based functional MRI [246], while temporal dynamics can be estimated using 
MEG [247] and EEG [248]. Since all these approaches are indirect, each is 
accompanied with its own assumptions, limitations and independent sources 
of errors [17]. Therefore, having multiple windows to the true physical 
connectivity can filter out inaccuracies inherent to particular modalities and 
provide stronger support for the reliability of the findings [148]. This cross-
modal paradigm has been used by large initiatives, for instance the Human 
Connectome Project [121, 249], and has proved beneficial in demanding 
problems [39].  
 Currently, estimated parcellated connectomes with nodes 
corresponding to relatively large regions are more robust and reproducible, 
but they are also more likely to overlook detailed patterns of connectivity. 
Dense parcellations have proven useful when parts of the connectome are 
considered in a controlled, hypothesis-driven analysis. However, they can 
potentially introduce difficulties in estimation when the connectome as a 
whole is to be used in an exploratory fashion. In the future, we can expect 
that solving some of the open problems will increase the accuracy of the 
different representations.  
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Figure 1. Generating a macroscale connectome involves estimating its nodes 
and edges. The nodes are typically gray matter (GM) regions (cortical and 
subcortical) defined either geometrically, functionally or cyto/myelo-
architectonically. The edges represent connection pathways between the 
nodes. Diffusion MRI and tractography can probe these white matter (WM) 
connections and estimate relative weights. 
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Figure 2. a) Examples of complex fibre patterns that can result to very similar 
within-voxel diffusion MRI signals. Reproduced with permission from [61]. b) 
The estimated diffusion tensor (DT) and fibre orientation density function 
(fODF) are shown for different patterns. The last column shows an 
asymmetric fODF, which cannot be estimated in practice given that the voxel-
wise dMRI signal is inherently antipodally symmetric. Modified with 
permission from [62]. c) Hypothetical example showing what the effect of 
asymmetric fODFs in tracking fanning geometries would be. The asymmetry 
in voxel-wise estimates provides asymmetry in propagation, with the aim of 
reducing false positives in the case of tracking converging (fanning in) 
geometries. Recreated from [60]. 
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Figure 3. a) A myelin-stained slice showing fiber patterns in the cingulate 
sulcus of a 18-month-old macaque. The major fiber orientations run parallel to 
the WM/GM boundary. b) Folding-related effects on radial axes and cortical 
thickness. The cortex is thinnest at the sulcal fundi (region B) and thickest at 
the gyral crowns (region C). c) Expected gyral bias based on estimated 
surfaces and cortical thickness. The cortical volume (mm3) per mm2 surface 
area of the WM/GM boundary surface is displayed on an inflated human brain 
(right hemisphere). Panels (a), (b), (c) are adapted with permission from [27]. 
d) Defining boundaries using surfaces vs volumes. The white-gray matter 
boundary is shown as a surface (green outline) comprising vertices that are 
2mm apart. The same boundary has been projected to a volume (dark red 
region) comprising voxels that are 2mm apart. The projection was performed 
using for each vertex of the 3D surface the nearest voxel. Both boundaries 
are superimposed on a high-resolution T1w image (sagittal view). The inset 
(yellow outline) shows a magnified view of a gyrus, as it is described by the 
two methods. The volumetric description lacks specificity and precludes 
differentiation of termination points of incoming pathways (blue curves) at 
different locations of the boundary. For instance, locations at the sulcal fundi 
(blue asterisks) can be perceived as termination points of the incoming 
streamlines, even if these are directed towards the gyral walls and crown. 
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Figure 4. Tractography results from the hand area of the motor cortex for 
different spatial and angular resolutions. The same subject was scanned at 
two different spatial resolutions: (1.35mm)3 and (2.5mm)3 using a Siemens 
Prisma 3T. The diffusion sensitisation followed a HCP-like dMRI protocol 
(with 3 b values=1000, 2000, 3000 s/mm2 and 90 directions per b value) [145] 
and identical preprocessing was applied to both datasets [250]. The former 
dataset represented a high spatial and angular resolution scan, and the latter 
dataset a low spatial and high angular resolution counterpart. A subset of the 
2.5mm dataset with 60 uniform directions for b=2000 s/mm2 was used to 
represent low spatial and low angular resolution. Up to 3 fibre orientations 
were estimated in each voxel of each dataset using the generalised ball & 
stick model [141]. A tractography protocol defined in MNI space was then 
used (left panel), including a seed region at the hand area of the motor cortex 
(red) and two axial waypoint masks at the internal capsule (blue). The modes 
of the path distributions obtained using probabilistic tractography are shown 
for each case (results thresholded at path probabilities of 0.5%) in axial and 
sagittal views. The four arrows correspond from medial to lateral to: cortico-
thalamic, cortico-bulbar, cortico-spinal and cortico-striatal projections.  
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Figure 5. a) Correlation between connection weights inferred from tracers 
and tractography in the macaque connectome (correlation coefficient r~0.55) 
[23]. Shorter connections contribute to the correlation more than the longer. 
Receiver operating characteristic (ROC) curves for two alternative 
tractography algorithms, as benchmarked against a ground truth derived from 
tracers. An area under the curve of ~0.72 suggests that tractography does 
better than chance, but it is far from perfect. b) Connectivity fingerprints of two 
functionally distinct prefrontal areas, as measured using tracers in the 
macaque brain and presented in [4]. The radial distance represents 
connection strength (weak=1, medium/ambiguous strength=2, strong=3). c) 
Two parcellations of the parietal cortex based on the “connectivity 
fingerprints” methodology, as estimated by in-vivo tractography in humans 
[44]. For each case, sagittal (or coronal) views of the parcels are shown 
superimposed with the centre of gravity of cytoarchitectonic regions and 
center of mass of fMRI activations in various relevant tasks. The functional 
relevance of these parcels is demonstrated by the marked overlap. d) 
Predicting activity in the face area of the fusiform gyrus with a model that 
uses only the pattern of extrinsic connections of the fusiform gyrus to the rest 
of the brain [5]. The actual activity measured using task fMRI is also shown 
for comparison. Notice how individual variability in activation during task is 
predicted by the respective individual variability in the connections. All panels 
are reproduced with permission.  
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Figure 6. Characteristic network properties of brain graphs. a) Brain graphs 
are modular networks. In this example, each of the four modules is 
encapsulated by a distinctly coloured bubble and comprises a densely 
interconnected set of cortical regions that perform a specialized function. The 
four modules are interconnected by a network of hub nodes (outlined in red) 
that form a rich club. Cortical regions in distinct modules most often 
communicate via routes traversing the rich club. The modules shown have 
been delineated in the cat connectome reconstructed with tract tracing.  b) 
Hub nodes of the human connectome. Hub scores represent consistency 
across measures of node degree and centrality. Hub nodes are convergence 
and divergence points of neural information. c) Network economy refers to the 
trade-off between network cost and network efficiency. Brains graphs are 
complex networks that attain a trade-off between the low cost of lattice 
networks and the high efficiency of random networks. The addition of a small 
number of long-distance connections to a lattice network results in a small 
increase in network cost, but a substantial reduction in the average number of 
connections that need to be traversed to establish a route between pairs of 
nodes. d) Network of disrupted connections comprising significantly fewer 
streamlines in patients with schizophrenia compared to healthy individuals. 
Each of the coloured regions represents a node. Streamlines are only shown 
for disrupted connections. The cingulum bundle, genu and splenium of the 
corpus callosum can be seen to be disrupted. Panel (a) reproduced from 
[251], (b) from [128], (c) from [228] and (d) from [219] with permission.	
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