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Abstract 

This study aims to improve user comfort and 

satisfaction regarding the thermal 

environment in the open plan office, which 

is a current challenge in the workplace 

addressed by limited research. The main 

difficulty in an open plan setting is that 

changing the room temperature in an area 

affects all occupants seated nearby. This 

issue in addition to individual differences in 

perceiving the thermal environment create a 

great challenge to satisfy all occupants in the 

workplace. This study investigates the application of an advanced thermal system, a user-controlled 

thermal chair, which allows individual control over their immediate thermal environment without 

affecting the thermal environment and comfort of other occupants. The performance of the chair 

was further analysed through Computational Fluid Dynamics (CFD) simulations providing a detailed 

analysis of the thermal distribution around a thermal chair with a sitting manikin. The results 

indicated that user thermal comfort can be enhanced by improving the local thermal comfort of the 

occupant. A prototype of an office chair equipped with thermal control over the seat and the back 

was produced and examined in an open plan office in November in Leeds, UK. Forty five individuals 

used the chair in their everyday context of work and a survey questionnaire was applied to record 

their views of the thermal environment before and after using the chair. The results of the field 

study revealed 20% higher comfort and 35% higher satisfaction level, due to the use of thermal 
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chair. Thermal measurements showed acceptable thermal conditions according to the ASHRAE 

Standard 55-2013. Over 86% of the occupants set the temperature settings of the seat and the back 

of the chair between 29C and 39. 82% of the occupants expressed their satisfaction level as 

“satisfied” or “very satisfied” regarding the performance of the thermal chair. The thermal chair 

energy consumption was relatively low (0.03kW) when compared with that of typical personal 

heaters, which are about 1-1.5kW. Further research is recommended to improve the design and 

application of the thermal chair to improve user overall thermal comfort and also further reduce 

energy consumption. 
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1. Introduction 

The research in the field of thermal comfort is mainly focused on what temperatures satisfy all in 

order to produce standards and guidelines [1]. Individual differences in perceiving the thermal 

environment are ignored [2-4]. This results in actual occupant satisfaction is significantly lower 

rather than the predicted [5]. Hitchings argues that ‘instead of talking about what temperatures feel 

neutral in particular places when we have already accepted this to be dynamic, the ambition may 

now be to reveal which techniques people are willing to employ to get through particular periods 

more sustainably’ [6]. However, limited research is focused on different methods to provide 

individual user control over the thermal environment. Research suggests that providing thermal 

control has an important impact on user satisfaction [7] and comfort [8,9]. However, providing 

thermal comfort with the aim to satisfy all in an open plan office is a challenge. There are individual 

differences in perceiving the thermal environment [10] and a particular temperature setting cannot 

satisfy all [3, 11-15]. This becomes more of a challenge when occupants share an office or a 

workspace and they have different temperature preferences. The difficulty is that by adjusting the 

temperature in an area in the office directly influences the thermal comfort of the occupants seated 

nearby [3]. Another challenge is to provide user thermal control for everyone in an open plan office. 

In an ordinary open plan office, only occupants seated around the perimeter of the building may 

have access to openable windows, blinds, and possibly temperature control of the radiators, 

assuming these options are available [16]. The research reports that users are reluctant to utilise 

thermal control in an open plan office even when provided for them, due to consideration for other 

colleagues’ comfort and health, as they are aware that applying a change influences their colleagues 

[3,10]. For instance, an occupant seated next to the window may avoid opening a window even 

when they feel uncomfortably warm, as this may cause discomfort for other occupants seated 

nearby. Furthermore, providing occupants with lower energy demanding devices to control their 



immediate thermal environment allows them to remain comfortable over a wider range of ambient 

temperatures [17-19].  

 

In order to address these changes, this study investigated the application of an advanced thermal 

control system in an open plan setting that allowed users to set their immediate thermal 

environment according to their requirements. and remain comfortable over a wider range of 

ambient temperatures. Previous works [9] have shown that allowing the indoor ambient 

temperature to be lowered by a few degrees can result in large energy savings because the space is 

heated less intensely and less often. The work will utilise Computational Fluid Dynamic (CFD) and 

field testing to assess the  thermal comfort performance of a thermal chair which allows users to 

control heating that is provided directly through the surfaces of seat and backrest. Initially, 

Computational Fluid Dynamic (CFD) analysis will be used to simulate the thermal distribution around 

a manikin seated on the thermal chair. The CFD code FLUENT will be used with the Finite Volume 

Method (FVM) approach and the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) 

velocity-pressure coupling algorithm with the second order upwind discretisation. Thermal comfort 

levels will be calculated using the ASHRAE PMV method. The CFD results will inform the design, 

construction and field testing of a prototype and optimise performance. The purpose of the field 

experiment is to assess the effectiveness of the thermal chair at providing comfort in a realistic 

office environment. For this purpose, a thermal chair prototype equipped with thermal control over 

the seat and the back will be produced and examined in an open plan office in Leeds, UK during the 

winter season.  The field study will examine the comfort and satisfaction of the users before and 

after the use of the thermal chair. 

 
  

2. Previous Related Work 

 

There is a contradiction between literature and practice about providing user control over the 

thermal environment [20,21]. The literature suggests the use of thermal control for occupants to 

increase their comfort and satisfaction [9,22], because occupants use the actual and potential 

variations in room temperature [23]. In addition, thermal control is predicted as an important asset 

to the workplace in the future [8]. On the contrary, currently in practice, occupant control over the 

thermal environment is being replaced with centrally operated thermal systems [23] to simplify the 

management of thermal systems and to avoid users meddling  with it [25].  

 

In order to reduce the energy consumption of the building and to improve the thermal comfort of 

the user, personalised thermal control systems have been introduced and investigated [26]. Knudsen 



and Melikov (2005) investigated different personalised control systems to improve user satisfaction, 

comfort [27] and productivity [4]. They introduced different control systems on the desk, chair and 

floor level and found that a thermally controlled chair has the most impact on user satisfaction. They 

used a manikin in their experiments [27]. Ugursal and Culp (2013) experimented on dynamic 

localised airflow for different body parts [28]. Liu et. al. (2013) investigated the impact of the skin 

temperature and clothing and reported that localised thermal comfort increases the overall thermal 

comfort of the respondents [29]. Mao et. al. (2017) studied the relationship between human 

thermal comfort and energy consumption in sleeping environments [30]. Chowdhury et. al. (2008) 

studied the impact of low energy cooling technologies in the workplace using simulation and field test 

[31]. University of Berkeley is one of leading institutes on Personal Control Systems (PCS) research 

[9,32-37]. Pessut et al. (2015) state that “Personal comfort systems (PCS) are a promising technology 

for both improving occupants’ thermal comfort and simultaneously reducing buildings’ heating and 

cooling energy. They provide comfort by targeting a relatively small amount of energy directly onto 

occupants” [36]. Figure 1 illustrates Zhao et. al. (2016)  design of the Personal Comfort System Chair 

[38]. The chair is equipped with two fans and a strips of heating element on the seat of the chair and 

a fan and a heating strip on the back of the seat. The mesh fabric of the chair allows the heating or 

ventilation to reach the person seated on the chair [38]. A rechargeable battery (280 W.hr) was used 

to provide the required energy for the heating elements (16 W) and the fans (3.6 W). They used a 

pressure sensor to reduce the energy waste. Fifteen office employees used the chair in their office 

and filled in a survey questionnaire, including their satisfaction levels [38]. In a different research, 

the team experimented on the chair when twenty three college students used the chair in an 

environmental chamber for a duration of fifteen minutes. Their results indicated a great 

improvement in occupant’s thermal sensation, thermal comfort and perceived indoor air quality. 

Ninety two percent of the occupants found room temperatures between 18C to 29C comfortable, 

due to the use of the cooled-warmed chair [35]. 

  

 



 

Figure 1. The Personal Comfort System Chair, UC Berkeley [38] 

 

Watanabe et al (2009) suggests a user controlled system as a ventilated chair to improve occupant 

satisfaction with the thermal environment [39]. They provided an individually controlled ventilation 

system for the back and seat of the chair, as illustrated in Figure 2. They applied experiments in a 

climate chamber during the summer and their participants included seven university students. They 

used the ASHRAE seven point thermal sensation scale, five point comfort scale and a two point 

acceptability scale. They concluded that the application of a ventilated chair improves local comfort 

of the occupants, also that occupants felt comfortable at 30C [39]. 

 

 

Figure 2. Ventilated chair [39] 



 

Ventilated office chairs in hot climates were reported as successful to cool and to improve user 

comfort in experimental chambers [39-41], which is called ventilated [40] or cooled chair [41], as 

demonstrated in Figure 3. In this prototype, the air is drawn through the back and seat of the chair 

and it is released through the armrests so that the ventilation allows the user to cool down. They 

used the thermal sensation seven point scale and found that occupants found temperatures up to 

27C comfortable [41-43]. Gong et al. (2008) investigated the application of a cooled chair to be 

used in theatres through the application of CFD analysis of a ventilated chair and human body [44]. 

In this study, the ventilation outlet was placed under the chair.  

 

 

Figure 3. Cooled Chair [41] 

 

The successful use of heated and cooled chairs in the car industry were also reported [45, 46]. Zhang 

et al. (2007) used water tubes to warm or cool the car seat [47]. Pasut et al. (2013) studied the 

application of a heated/cooled chair (active chair) in an experimental chamber [30]. They found that 

the use of the active chair improves occupants’ comfort and satisfaction. They found that the 

heating impact of the chair is more effective and satisfying for users than the cooling impact. Choi et 

al. (2007) examined the application of a thermoelectric device to heat and cool the car seat [45]. 

Their research focused on the cooling side of the thermoelectric device. Most of the research on 

cooled-warmed office chair is focused on the cooling effect rather than the heating effect of the 

chair.  

 

This study investigated the performance of a thermal chair in an office building located in a cold-

temperate climate during the heating season. Furthermore, many of the previous works were 

carried out in climatic chambers and only a few tested in the field. This study conducted a 



comprehensive field experiment and survey in a context of every day office environment to assess 

the effectiveness of the thermal chair in providing comfort. Finally, no studies investigated the 

performance of a heated office chair using computational methods. The research will utilise FLUENT, 

a Computational Fluid Dynamic (CFD) code, to simulate the thermal distribution around a thermal 

chair with a seated manikin.  

 

3. Research Methodology 

This study aims to improve user comfort through the application of a thermal chair in the workplace. 

It investigated the application of CFD and field studies of thermal comfort to analyse the 

performance of a thermal chair used in an open plan office. A prototype of an office chair equipped 

with separate user temperature control over the seat and the back was designed and produced, as 

illustrated in Figure 4. The chair seat and the back rest areas was incorporated with heating element 

pads covered by the chair fabric . Each pad uses up to 30W. Surface temperature measurements in 

Figure 5 (left) shows the typical temperature at various settings: 30% (low), 60% (medium) and 100% 

(high) while the corresponding average energy usage are shown in Figure 5 (right). 

 

 

Figure 4. Thermal chair: (left) design, (middle) thermal image of seat temperature (FLIR T660) and (right) in use 



    

Figure 5. (left) Thermocouple temperature measurements of the surface of heating element pads and (right) average temperature and 

energy measurements at various settings. 

 

3.1. Computational Fluid Dynamics (CFD) modelling 

The basic assumptions for the CFD simulation include a three-dimensional, fully turbulent, and 

incompressible flow. The CFD code was used with the Finite Volume Method (FVM) approach and 

the Semi-Implicit Method for Pressure-Linked Equations (SIMPLE) velocity-pressure coupling 

algorithm with the second order upwind discretisation. The k-epsilon transport model was employed 

for the air turbulence due to its well-documented performance in predicting indoor airflows [48]. 

The general governing equations include the continuity, momentum and energy balance for each 

individual phase. The transport equations are formulated in Eqn. 10 and Eqn. 11. The transport 

equations are formulated below [49]. 

 

 

(1)  

 

(2) 
 

 

(3)  

 

where;  represents the velocity of phase q and  and  characterizes the mass transfer from 

the pth to qth phase and vice-versa.  represents the qth phase stress-strain tensor. hq represents 

the specific enthalpy of the qth phase and  represents the heat flux. Qpq represents the intensity 
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of heat exchange between the pth and qth phases and hpq is the interface enthalpy. Sq represents 

the source term.  

 

 

(4)  

 

(5)  

 

where; Gk represents the generation of turbulence kinetic energy due to the mean velocity 

gradients, Gb represents the generation of turbulence kinetic energy due to buoyancy. YM represents 

the contribution of fluctuating dilatation in compressible turbulence to the overall dissipation rate. 

,  and  are constants,  and  are the turbulent Prandtl numbers for k and Ɛ.  and  

are the source terms. 

 

3.1.1 Computational geometry 

The geometry (Figure 6) was created using CAD software and then imported into ANSYS to create a 

computational model. In this study a sitting manikin was used to analyse the impact of the thermal 

chair on the prediction of airflow velocity and temperature field. Figure 6 shows the geometry of the 

thermal chair with the manikin (1.8m standing height) inside the computational domain (4.8m width 

x 3.8m length x 3m height). The computational domain consisted of an inlet on one side of the 

domain, and an outlet on the opposing boundary wall with the thermal chair located centrally.  

 

Figure 6. Computational domain for the analysis of office thermal chair with manikin model 

 

3.1.2 Computational mesh, verification and sensitivity analysis  
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Due to the complexity of the model, a non-uniform mesh was applied to volume and surfaces of the 

computational domain [50,51]. The generated computational mesh is shown in Figure 7. The mesh 

was modified and refined according to the critical areas of interests in the simulation. The size of the 

mesh element was extended smoothly to resolve the areas with high gradient mesh and to improve 

the accuracy of the results. Sensitivity analysis was used to verify the computational modelling of the 

thermal chair with manikin. The sensitivity analysis was performed by conducting additional 

simulations with same domain and boundary conditions but with various mesh sizes (coarse, 

medium and fine mesh). The average value of the airflow velocity in the vertical line was used as the 

error indicator (Figure 7). The average error between the fine and coarse mesh was 5.4% or ±0.032 

m/s. Thus, the repetition of numerical model with finer mesh had no considerable effects on the 

results. 

 

    

Figure 7. Grid sensitivity analysis 

 

The convergence of the solution and relevant variables were monitored and the solution was 

completed when there were no changes between iterations (Figure 8). In addition, the property 

conservation was also checked if achieved. This was carried out by performing a mass flux balance 

for the converged solution. This option was available in the FLUENT flux report panel which allows 

computation of mass flow rate for boundary zones. For the current simulation, the mass flow rate 

balance was below the required value or <1% of smallest flux through domain boundary (inlet and 

outlet). 
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Figure 8. (a) Solution convergence (b) solution monitoring of airflow temperature (c) solution monitoring of airflow velocity 

 

3.1.3 Boundary conditions 

One side of the computational domain was set as velocity inlet (set at 0.1 m/s and 23˚C) and the 

opposite wall as pressure outlet. Two configurations were simulated; (a) an office chair with heated 

seat (heat flux: 40 W/m2) and back rest (heat flux: 40 W/m2) and (b) a standard non-heated office 

chair and 250mm diameter underfloor air jets (set at 0.2 m/s and 25˚C). It should be noted that the 

manikin in the study was only intended to replicate the physical shape of a sitting person. The heat 

released by the manikin on the surrounding airflow field was also simulated by applying a heat load 

(a total heat load of 89 W) at the manikin surface [52,53], while the radiation was not considered in 

this study. The study by [52] details the impact of simplified methods on thermal airflow fields in the 

vicinity of surfaces.  

 

3.2. Field studies of thermal comfort 
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Different researchers have applied both experimental chambers and field studies of thermal comfort 

to investigate the design and application of individual control systems. Kroner (2006) studied the 

impact of personalised thermal control in the daily context of an open plan office [54]. Luo et al. 

(2014) applied field studies of thermal comfort to compare thermal control in two office buildings in 

different climatic conditions [55]. This study aimed to investigate the subject in the context of every 

day life comparing user comfort and satisfaction before and after using the thermal chair. Therefore 

field studies of thermal comfort were applied to investigates users’ views of the thermal chair in an 

open plan office in November in Leeds, UK. The average of the indoor dry bulb temperature was 

24.1C and the average of the indoor relative humidity was 29.32% RH. The PMV calculations are 

presented in section 4. Forty four occupants participated in the research by seating on the chair for 

the duration of an hour per person during the working hours. Participants were wearing normal 

indoor winter clothing. Mainly sedentary activities took place in the office and the participants were 

asked to go about their work as usual both before and after using the thermal chair. Their views of 

the thermal chair was recorded before and after the use of the chair through a survey questionnaire 

based on the ASHRAE seven point scale thermal sensation, comfort and satisfaction [56], as 

presented in Table 1. The mobile survey method which included multiple choice questionnaire 

displayed on a portable device screen allowed instant and direct individual feedback. 

 

Table 1. Survey questions based on the ASHRAE seven-point scale [56] 

Currently at my desk regarding the thermal environment, I feel: 

Very 

comfortable 
Comfortable 

Slightly 

comfortable 
Neutral 

Slightly 

uncomfortable 
Uncomfortable 

Very 

uncomfortable 

No strong 

opinion 

3 2 1 0 -1 -2 -3   

Currently at my desk, the overall environment makes me feel: 

Very 

satisfied 
Satisfied 

Slightly 

satisfied 
Neutral 

Slightly 

dissatisfied 
Dissatisfied Very dissatisfied 

No strong 

opinion 

3 2 1 0 -1 -2 -3   

Currently, my overall body feels: 

Hot Warm 
Slightly 

warm 
Neutral Slightly cool Cool Cold 

No strong 

opinion 

3 2 1 0 -1 -2 -3   

Currently, I prefer to overall feel: 

Much 

warmer 
Warmer 

Slightly 

warmer 

No 

change 
Slightly cooler Cooler Much cooler 

No strong 

opinion 

3 2 1 0 -1 -2 -3   

Currently, my back feels:  

Hot Warm 
Slightly 

warm 
Neutral Slightly cool Cool Cold 

No strong 

opinion 



3 2 1 0 -1 -2 -3   

Currently, the seat feels: 

Hot Warm 
Slightly 

warm 
Neutral Slightly cool Cool Cold 

No strong 

opinion 

3 2 1 0 -1 -2 -3   

Satisfaction with the thermal chair: 

Very 

satisfied 
Satisfied 

Slightly 

satisfied 
Neutral 

Slightly 

dissatisfied 
Dissatisfied Very dissatisfied 

No strong 

opinion 

3 2 1 0 -1 -2 -3   

 

The occupants included twenty nine males and fifteen females mainly aged between twenty and 

forty years old, and four participant aged above forty. The office was mechanically ventilated open 

plan office in the University of Leeds. Thermal measurements were applied at the time of the survey 

questionnaire to evaluate the thermal environment. Thermal measuring equipment is presented in 

Table 2. 

Table 2. Velocity and thermal measuring equipment 

Measurement Time Equipment details Resolution Accuracy Range 

Velocity Instant: at workstations Testo425 0.01m/s ±0.03m/s 0 to 20m/s 

Dry bulb temperature Instant: at workstations PCE-GA 70 meter  0.1°C  ±0.5°C  5 to 50°C  

Relative humidity Instant: at workstations PCE-GA 70 meter  0.1°C  ±3 RH 10 to 90% RH 

  

4. Results and Discussion 

Figure 9 and Figure 10 compared the predicted temperature contours of a side view cross-sectional 

plane inside the computational domain representing the thermal distribution around the manikin 

with heated office chair and normal chair. The left hand side of the plot shows the scale of airflow 

temperature in ˚C. The contour plot in the fluid domain is colour coded and related to the CFD 

colour map, ranging from 22.35 to 46.85 ˚C. As observed, the thermal chair (Figure 9) heated the 

seat and back rest areas between 28-36˚C. While for the case of the space heated with underfloor 

air jets, the temperature around the manikin range between 24-28˚C as observed in Figure 10. For 

both cases, lower temperature near the face area was observed due to higher airflow movement 

while a higher temperature can be observed near the seat area and thigh region due to lower air 

movement and constrained space. . From the results it was evident that depending on the position 

of the user (in this case a manikin), the seat and back rest regions had different temperature levels.  

Hence, there should be separate controls for the seat and backrest area to allow the user to have 

more control over the temperature distribution. This was implemented in the design of the chair 

used in the field tests. 



 

 

Figure 9: Cross-sectional contour showing temperature distribution around manikin with the thermal chair 
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Figure 10: Cross-sectional contour showing temperature distribution around manikin with a standard non-heated office chair and 

underfloor air jets 

 

Thermal comfort expresses the occupants' satisfaction with a building’s thermal environment. 

Several models or indices have been established to predict thermal sensation and comfort and the 

most common of these are the Predicted Mean Vote (PMV) and Physiologically Equivalent 

Temperature (PET) [57]. The PMV predicts the average value of the votes of a group of occupants 

exposed to the similar thermal environment. It is expressed by the ASHRAE thermal sensation scale: 

+3 hot, +2 warm, +1 slightly warm, 0 neutral, −1 slightly cool, −2 cool and −3 cold (ASHRAE, 2013 

radiant temperature, relative humidity, clothing and metabolic rate. In this study, the CFD 

temperature, velocity, humidity results were used to determine thermal comfort indices and assess 

acceptability of environmental conditions. Metabolic rate for the occupants and clothing insulation 

were assumed as standard values (see Table 1). Equations and derivations of the PMV are available 

in [58]. Table 3 summarises the predicted comfort levels in the vicinity of the manikin surfaces. 

Based on the PMV predictions, improved comfort levels were observed for the back area and seat 

area. The seat area went from -0.50 (slightly cool) to 0.08 (neutral) when the chair was heated. To 

further optimised the design, there should be separate controls for the seat and backrest area and 

this was implemented in the design of the chair used in the field tests. Thermal comfort levels 



calculated using PMV method with set values for humidity (30%), metabolic rate (1 met), clothing 

(0.7).  

 

Table 3: Predicted Mean Vote and thermal comfort levels in the vicinity of the manikin surfaces 

Body parts With thermal chair in use Without thermal chair 

 PMV PPD (%) PMV PPD (%) 

Head -0.44 (neutral) 9 -0.45 (neutral) 9 

Back/Back rest area 0.17 (neutral) 6 -0.50 (slightly cool) 10 

Seat area 0.08 (neutral) 5 -0.50 (slightly cool) 10 

Thigh/Upper Legs 0.40 (neutral) 8 0.40 (neutral) 8 

 

In the field studies of thermal comfort, users’ views were compared before and after using the 

thermal chair. Figure 11 Shows the temperature settings that the respondents arranged on the seat 

and the back of the chair. Only two respondents did not use the temperature of the back of the chair 

and three respondents had the thermostat for the seat of the chair off. Over 86% of the occupants 

set the temperature settings of the seat and the back of the chair between 29C and 39C.  

 

 

Figure 11. Temperature settings of the a. back and b. seat of the thermal chair arranged by the user 

 

Figure 12 demonstrates thermal sensation of the user on their back and seat before and after using 

the chair. 68% of the occupants had a neutral and slightly warm thermal sensation before using the 

thermal chair and only two respondents felt warm. The rest of the occupants (23%) felt slight cool to 

cold around their back. After the use of the thermal chair, still one person felt cold, but no 

respondents felt cool or slightly cool around their back. 98% of the occupants felt between neutral 



to hot on their back, with majority feeling slightly warm to warm. Users’ respondent regarding their 

thermal sensation of the seat of the chair followed similar pattern. 73% of the occupants felt neutral 

to slightly warm before using the chair, this number shifts towards the warm side after using the 

thermal chair, as 86% felt neutral to hot and 45% of them felt warm around the seat of the chair. 

These numbers are particularly interesting as it shows that users mainly had a neutral or slightly 

warm local thermal sensation before the use of the thermal chair. However, after being able to 

adjust the temperature of the seat and the back, majority of them utilised this function and reported 

slightly warm to warm local thermal sensations.  

 

Figure 12. Thermal sensation of respondent’s a. back and b. seat reported by the respondent before and after using the thermal chair 

 

Respondents reported much higher comfort levels after using the thermal chair, as presented in 

Figure 13. The number of “comfortable” and “very comfortable” users increased from 57% to 77%. 

The bar chart shows slightly warm or neutral thermal sensation before the experiment, while after 

using the chair majority of the users reported slightly warm or warm overall thermal sensations.   

 

 

Figure 13. a. Users’ views of their comfort and b. thermal sensation before and after using the thermal chair 

The number of occupants feeling a neutral thermal sensation dropped from 32% to only 9%, while 

their comfort level and satisfaction increased. Their satisfaction increased from 45% to 80%, as 

illustrated in Figure 14. Majority of the occupants set the temperature of both the seat and the back 



between 29 to 35C. 43% reported to desire no change in the temperature and 39% preferred 

slightly warmer temperature. This suggested that occupants preferred to feel slightly warm to warm. 

82% of the occupants expressed their satisfaction level as “satisfied” or “very satisfied” regarding 

the performance of the thermal chair, as demonstrated in Figure 14. 

 

 

Figure 14. a. Users’ overall satisfaction with the thermal environment and b. their satisfaction using the thermal chair 

 

One of the questions focused on users’ preference in having separate thermostats for the back and 

the seat of the chair. 86% of the respondents preferred separate controls and 14% liked an 

individual thermostat for the whole chair.  

 

5. Conclusion and Future Work 

The aim of this work was to improve user comfort and satisfaction regarding the thermal 

environment in the open plan office, which is a current challenge in the workplace and limited 

research addresses it. The work utilised Computational Fluid Dynamic (CFD) and field testing to 

assess thermal comfort performance of a thermal chair which allows users to control heating that is 

provided directly through the surfaces of seat and backrest. The CFD analysis predicted an 

improvement in local thermal comfort. Thermal sensation of the occupant was expected to change 

from slightly cool to neutral around the back, and from neutral to slightly warm around the seat. 

This result was to a degree in agreement with the results of the field studies, as there was a move 

from slightly cool and mainly neutral to slightly warm and warm after the use of the chair. Also, 

similar move from neutral and slightly warm towards warm was reported by the respondents after 

using the thermal chair. Although the results of both CFD and field studies indicated a move towards 

warmer thermal sensations, the CFD analysis showed a small move, while respondents reported 

much bigger move. The CFD analysis predicted the user’s thermal comfort for the seat and backrest 

region as -0.50 slightly cool before and 0.08-0.17 neutral thermal sensations after the use of the 

thermal chair.  The field study analysis based on the occupants’ responses indicated much higher 



comfort and satisfaction levels after using the thermal chair. The overall comfort level was improved 

by 20% and the overall satisfaction with the thermal environment was increased by 35% after using 

the thermal chair. 82% of the occupants expressed their satisfaction level as “satisfied” or “very 

satisfied” regarding the performance of the thermal chair. 

 

The results emphasised the importance of the application of detailed CFD analysis to carry out a 

detailed analysis of the thermal distribution around the thermal chair providing opportunities for 

optimisation. From the CFD results it was evident that depending on the position of the user (in this 

case a manikin), the seat and back rest regions had different temperature levels.  Hence, there 

should be separate controls for the seat and backrest area to allow the user to have more control 

over the temperature distribution.  The CFD results showed that thermal comfort levels near the 

seat and back rest area were improved however it also showed that areas such as the face and legs 

regions cannot be improved by the current design therefore further work is necessary to redistribute 

the heat to other areas of the user. The results of the field studies also suggested separate thermal 

controls, as 86% of the respondents agreed with “do you prefer to have separate controls for back 

and seat?” and they mainly wanted to set the temperatures between 29C and 39. In addition, 

comparing the temperature settings on the chair and the status of thermal sensation before and 

after using the chair suggests that occupants preferred thermal conditions warmer than neutral for 

their overall thermal sensation, the thermal sensation on their back and their seat. This suggested 

that occupants preferred to feel slightly warm or warm and not necessarily neutral in order to feel 

comfortable.  

 

The thermal chair energy consumption was relatively low (0.03kW) when compared with that of 

typical personal heaters, which are about 1-1.5kW. This has a good potential for energy savings in 

buildings particularly during cold winter where the device could be used. This study recommends the 

further investigation of the thermal chair performance during different periods of the day and year. 

This study also recommends improvement in the CFD modelling and analysis particularly in regard to 

the modelling of the manikin models. Furthermore, thermal sensations other than neutral are 

required to be considered in thermal comfort research, CFD analysis and field studies of thermal 

comfort. Finally, the design of the chair requires improvement to include heating for other body 

parts as well as sensors for energy efficiency. 
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