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Abstract

We use asymptotic techniques to describe the bifurcatiom steady-state to a periodic solution
in the singularly perturbed delayed logistic equatixit) = —x(t) + A f(x(t — 1)) with € < 1. The
solution has the form of plateaus of approximately unit tiséparated by narrow transition layers.
The calculation of the period two solution is complicatedhwy presence of delay terms in the equation
for the transition layers, which induces a phase shift tlagttio be calculated as part of the solution.
High order asymptotic calculations enable both the shidt thie shape of the layers to be determined
analytically, and hence the period of the solution. We showmerically that the form of transition
layers in the four-cycles is similar to that of the two-cydbt that a three-cycle exhibits different
behaviour. Asymptotic analysis, Differential-delay etipm, transition layers

1 Introduction

The differential-delay equatiom(E)

o

has been used by a variety of authors to model a wide rangeysiqath phenomena, from population
dynamics, as discussed by Gurretyal (1980), to physiology, where the production of red bloodscel
has been described by Mackey (1979); Mackey & Glass (1971a59& Mackey (1988) and Wazewska-
Czysewska & Lasota (1976), to the behaviour of an opticaitgaesonator, as studied by Ikeda (1979,
1985); Ikedeet al. (1980). In all these cases, the feedback funcfiphis nonlinear, having the form of a
‘humped’ function, that is, asincreasesf rises to a maximum and then decays. Variants of this system
include a delayed logistic equation of the form/dt = Ax(t)[1— x(t — 1), analysed by Fowler (1982),
who used asymptotic methods to explain the periodic saluifdarge amplitude spikes separated by long
small amplitude plateaus.

Equation (1.1) has been analysed using a range of mathei@iotiniques, for example, Ernesix
al. (2004) analyse the bifurcation to periodic solutions inlttexla system. Chow & Mallet-Paret (1983)
investigate chaotic behaviour in singularly perturbededéntial-delay equations. Hale & Huang (1994)
proved the existence of periodic orbits of (1.1) in certaant® of parameter space. The form of periodic
solutions has been investigated by Cheival. (1992) who note that as— 0, the waves become square,
and have period approximately equal to two. Fowler & Mack&§0R) also note that the limg < 1 is
singular, and use asymptotic analysis to describe thedliersolution in terms of relaxation oscillations.

Various properties about the form of the solution in the éatigne limit, and properties of the con-
vergence to the square wave in the limit—~ 0 have been rigorously established by Mallet-Paret and

—X(t)+ f(x(t—1)), (1.1)
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Nussbaum. Nussbaum (1982) proved the existence of slogdijtating periodic solutions. Bounds on
their shape were established by Mallet-Paret & Nussbau®a)1 2ogether with the fact that there may
be multiple periodic solutions and multiple extrema in epehiod of oscillation. Mallet-Paret & Nuss-
baum (1986) went on to prove that the period of the two cyck+tig/(€) and, by considering a coupled
problem for the two transition layer functions of the twcelg; they establish bounds on the overshooting
behaviour. They note that such behaviour is reminiscentiob$&phenomena in truncated Fourier series.
The dependence of qualitative properties of the solutidh on the form of the nonlinearity (-) was
analysed by Mallet-Paret & Nussbaum (1989); in this papey thscuss how the solution profile approx-
imates the square wave solution in the limit- O for several example functiong-). Mallet-Paret &
Nussbaum (1993) consider the DDE (1.1) in the case whepds a step function, and show that in this
case solutiong(t) do not converge to solutions &f, 1 = f(X,) in the limite — 0, but rather to a modified
map. In contrast to this rigorous work, the approach taker fseto use asymptotic techniques to give
simple explicit expressions for the shape of the transityers.

Adhikari et al. (2008) also perform an asymptotic expansion of the wavefolrtaining an approx-
imation in terms of elliptic functions and an expression tloe period. Using global continuation of
heteroclinic orbits, Chovet al. (1989) prove that transition layers in the periodic orb#& amonotone,
provided the nonlinearity (x) is monotone. Fowler (1997) speculates that the onset olsdBassociated
with a homoclinic connection of a periodic orbit in phaseca

These examples and analyses use a variety of nonlineardeledinctions,f (x); in this paper we
focus on the simplest case, whdre) = Ax(1— x), which corresponds to the logistic map. This function
is chosen for its mathematical simplicity, as it allows tregipd two cycle of the underlying difference
equation to be explicitly determined.

In the limit € — 0, the differential delay equation (1.1) reduces to thedtigimap, whose properties
we summarise in the remainder of this section. We also rethewHopf bifurcations in the DDE which
occur for fixedA ase > 0 is reduced, and which lead to smooth periodic solutionsefition 2, we show
that whens = 0 the solutiorx(t) has the form of a sequence of plateaus separated by diseneps j For
0< £ < 1, these plateaus are connected by narrow transition laj/bts the bifurcation has quite distinct
properties which the standard Hopf analysis fails to expldi is the purpose of this paper to describe
this bifurcation in more detail and, in particular, to arsdythe form of these transition layers. In order to
facilitate analysis of the transition layers, we introdaceformulation of the problem, both for the general
transition layer, and in particular for the two-cycle. Irt8en 3 we construct asymptotic approximations
to the solutions obtained when< 1 andA is increased through = 3, which is the bifurcation point
where the period two solution is created. Our analysis of tlaise shares some similarity with that of
Adhikari et al. (2008); however, we avoid the use of elliptic functions. tiec4 contains a numerical
investigation of the transition layers in the period 3 andquk4 cycles. In Section 5 we conclude the
paper with a discussion of the key results.

1.1 Properties of the map
Whene = 0 the differential-delay equation (1.1) reduces to thedtigimap
Xnt1 = AXn(1—Xn), (1.2)

which has been extensively studied, for example by May (188 Holton & May (1993). Here we
summarise the results and properties of this map that aseam to our later calculations, quoting the
behaviour which is observed in each rang@ ofalues:

e for 0 <A <1, there is only one fixed point ii®, 1], namelyx = 0, and this is stable.

e for 1 < A < 3, there are two fixed points, namedy= 0, which is unstable, arnd=1—1/A, which
is stable.
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for 3 < A, the two fixed pointx = 0 andx =1—1/A are both unstable. In this parameter regime,
there is a two-cycle, given by

o1

T2

[A t1+ VA —3)(A+ D). (1.3)

for 3 < A < 1+ /6~ 3.449 the two-cycle (1.3) is stable and is thus the attractotHe largen
iterates. In this paper, we are predominantly interestedigrange ofA.

for 1+/6 < A < 3.544... the two fixed points and the two-cycle (1.3) are all unstadotel a four-
cycle forms the stable long-time attractor.

as A increases furtherA( > 3.544), there is a succession of bifurcations to increasingtyplex
behaviour.

1.2 Hopf bifurcation

Chow & Mallet-Paret (1983) consider the differential-gedmuation (1.1) and show that there is a Hopf
bifurcation curve in 4, €)-parameter space. We reproduce these results here, foarthe sake of com-
pleteness, but mainly to illustrate the qualitative digiece between (i) the bifurcation and the form of
solution obtained when one fixds> 3 and reduces, as Chow and Mallet-Paret consider, and, (ii) the
case when & € < 1 andA increases through the valde= 3, which we focus on in Section 3.

Here we make no specific assumptions on the valuds ef we treat them both ag(1) parameters.
We seek the region of parameter space where the uniform@obgt=1—1/A is stable, by substituting
X=1—1/A + de"t% into the governing equation (1.1) withw € R and takingd < 1. At ¢(5) we
obtain

ey+1=—(A —2)e Ycosw, ew= (A —2)eVsinw. (1.4)

This system of equations fgt w can be rearranged to give

Ew 2, 2,2 2.2
t =— 1 =A-2 v, 15
anw Trey (1+ey)“+e“w = ( )€ (1.5)
A bifurcation occurs when the growth ratge,changes sign: the curve on whigh= 0 is given parametri-
cally by

1
£E= —Z)tanw, A =2—seww. (1.6)

For smallg, solutions of the former equation can be approximatedby nri(1 — & + £2) for anyn € N.
Substituting this approximation into the latter expressib (1.6) leads to a family of curves i\, €)-
parameter space which are approximated by

An(€) = 3+ In?r2e?, or en()\):%\/z()\ =3, for odd n. (1.7)

The first few curves are illustrated in Figure 1. The solidveurorresponds to the primary Hopf bifurca-
tion, n = 1; the curves correspondingo= 3,5, ... yield solutions with higher frequencies.

As well as finding the location of the Hopf bifurcation (A, €) parameter space, this method enables
us to explicitly find an approximation for the solutiott). Fixing A with 0 < A —3 <« 1, and reducing
so that only the primaryn(= 1) Hopf bifurcation curve is crossed, in (1.7), that is,

i\/z()\ —3)=¢&(A)<e<eA)= I—lTVZ(/\ —3), (1.8)
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Figure 1: lllustration of the first few Hopf curves (i, €) parameter space, as given by (1.6). To the left
of the solid line, the steady-state is stable. The solid lepFesents the primary Hopf bifurcation curve.
The dashed curves represent higher frequency instabilitiech mean that whea is arbitrarily small,
the transition that occurs asincreases from < 3toA > 3 involves crossing many Hopf curves almost
simultaneously.

results in a solution of the form
X(t) ~1-A "t asin(nt(1-¢)), (1.9)

with a < 1. On the bifurcation curve, the period of the oscillatiBnis given by the frequencsgp, which
corresponds ta = 1, namely

2 2
P— "~2+2e:2+7—T\/2(/\—3), (1.10)

w

with € < 1. If € is reduced further, so that several{in < J) other Hopf curves are crossed, thatsss

given by
1 1
m\/ Z(A —3> :$2J+1<8<823_1: m\/ Z(A —3>, (111)

then a solution of the form

X(t) :1—%+ i ajsin((2j—1)mt(1—¢)), (1.12)
=1

is obtained, which has the form of a truncated Fourier sefieese series are known to be subject to Gibbs
phenomenon, which is a term that describes the overshoogihgviour occurring when a discontinuous
function is approximated by a Fourier series, for more tigtaee Gibbs (1898, 1899); Arfken (1985).

It should be noted that the solution (1.12) has been gernebgtéxing A > 3 and reducing, crossing
several of the Hopf curves illustrated in Figure 1. In thetrs@ction, we analyse the less standard case of
fixed € > 0 with € < 1 and increasing through the valu@d = 3. Since a large number of Hopf curves
are crossed almost simultaneously, the description ofd@bkelting periodic orbit is complicated by the
nonlinear terms. In Section 3 we propose a different metifatescribing the transition from a stable
steady-state solution to an oscillatory state which ocitutisis case.
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Figure 2: lllustration of a numerical solution of the DDEX),.for the cas@ = 3.4 (left) andA = 3.8335
(right); in both casess = 0.01.

2 Preliminaries

2.1 General numerical results

Figure 2 shows a numerical solutiox(t), of (1.1) for two values oA (produced using matlab solver
dde23). The left panel shows a periodic solution with akéng high and low plateaus — a period 2
solution, which occurs wheA = 3.4 ande = 0.01. There are sharp transition layers between the two
plateausx_ andx; with x; given by (1.3), so that, = f(x_) andx_ = f(x;). Whene = 0, that is, for
the one-dimensional map (1.2), this solution is stable farB < 1+ /6. When the solution of thepe
(1.1) is considered witls > 0, the period of the oscillation is greater than two.

The right-hand panel of Figure 2, illustrates the solutiér§lol) whenA = 3.8335, a value which
corresponds to the stable 3-cycle of the one-dimensionpl(tha). In theDDE (1.1), the plateaus clearly
follow the 3-cycle; however, in theDEe (1.1) the intervening transition layers do not show any fafm
periodicity, instead they become increasingly complidatgining both in their width and the number of
oscillations. Thus the transition layers clearly show astahility. Our aim is to describe the initial stage
of this development of complexity in the transition layers.

2.2 An approximate Poincagé map

In order to describe and analyse the form of the transitigerlawe rescale the time variable so that
changes within the layers occur on &i1) timescale. To achieve this, we write= n+ €1, so that
ed/dt = d/dr, and we describe each layer via a different functjeiit) = x(t), withn=0,1,2,.... Thus
the DDE (1.1) can be rewritten as

dyin(T)
dr

We note that this transformation completely remogésom the problem.

The form ofyn(T) is such that for = ¢'(1), Yn(1) describes tha transition layer. For large positive
and negative, with 1 < |1| < €71, @i (1) will be a constant, with potentially different constantézae
positive and large negative valuestofFor 1< 1 <« 1/¢, we have

Wn(T) + =AUn-1(T) (1= Pn-1(7)). (2.1)

Ll’n(—T> ~ w—°°7 l.Un(T> ~ L»U+°°7 with w+°° =A Ll’—ce(l— ‘-U—oo)- (22)

We make a distinction betwean— « and 1< 1 < 1/€ sincet = ¢/(1/¢) corresponds to subsequent
(or previous) layers, before whicly, has relaxed to the constants given in (2.2) with expondysahall
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corrections. At leading order, the matching conditionstteem be written in the form

S =2y a-y") as 1 +o. (2.3)

In addition, we havewi”w_ U _ g andg™Y — w(ﬂ,.
The solution of (2.1) is

Un(T) = n(0)e” " ‘f‘AeT/OT Un-1(9)[1— Yn-1(s)] s, (2.4)

for arbitraryo, which, in the limito — —o, leads to

T
Un(0)=2€" [ &Y 1(5)[1—gn2(9)dsi= Fln-a(1)) @5)
Due to its integral form, this version of the Poincaré mapyrba useful for numerical simulations;

however, our asymptotic analysis presented later will heeformulation (2.1). We will call the map

Un = Z[Wn-1) defined by (2.1) or (2.5) the ‘fast map’ since it describessti@pe of the transition layers
which occur on the fast timescale. This has a similar form toa@ used by Mallet-Paret & Nussbaum
(1993).

2.3 Simulations of the 2-cycle’s transition layers

For 0< € <« 1 and 3< A < 1+ /6, we observe from numerical simulationsxgf), that there is a
periodic solution, with period slightly larger than two. figure 3 we illustrate the transition layeys (1)

as calculated using (2.5), for= 0,1,2,19,20,21. This figure shows that successive applications of
the map.# on the discontinuous initial functiogyp(7) = x_ + (X3 —x_)H(T), produces increasingly
smooth iterates. For large the iterates are, modulo a phase shift, periodic with petea that is
Uni2(T) = Yn(T +29) for some shift, which we write ass2Note that in the right-hand panel of Figure 3,
for largerA, the transition layers amgt monotone, just before the descending layer starts its dedte
first increases and slightly exceeds the level of the plat@aus, in this parameter regime, the fast map
(2.5) exhibits periodic behaviour with a period of two witklaift, s; that is

Yon(T)
Wony1(T)

and our aim now is to find the form of the functioﬁs@.

— P(t—2ns) asn— oo, (2.6)

@(T—(2n+1)s) asn— co. (2.7)

2.4 Instability of the fixed point of the fast map

The fast map (2.5) has a fixed poig{t) = 1 — A1, which is the same as the fixed point of the one-
dimensional map (1.2). To investigate the stability of tixedi point of the fast map, we introduce

Un(T) =1— A" 482, (1), (2.8)

with & <« 1 and linearising yields
a0 = ZLn(0)] =~ -2 [ (o) (2.9)

Since this equation is a linear difference equation, it has solutions of the fornfi,(1) = p"{ (1), where
Z[{(1)] = p{(T1). Due to the form of the operatd?, its eigenfunctions have the forfi{t) = €%’. An
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Figure 3: lllustration of the iterateg, (1) plotted against for n =0,1,2,19, 20,21 for the case ok =
3.03 (left panel) andA = 3.4 (right panel). In both panelsjg is the left-most dotted liney; is the
left dashed line» is the left-most solid liney g is the right dotted liney,q is the right dashed line,
yr1 is the right solid line. The curves correspondingite: 0,1, 2 have transitions centred on0t < 5
(black curves, on the left side of the graph); whilst thosthwiansitions arouna ~ 20 correspond to
n=1920,21, (red curves on the right). The online version is in calour

instability occurs whenp| > 1. The eigenvalues are given py= —(A —2)(1 —iw)/(1+ w?), which
have magnitudép| = (A —2)/v/1+ w?. Maximising|p| overwto find the first unstable mode, we obtain
w = 0, corresponding td (1) =1 andp = —(A —2). Thus, as\ increases through the valdg =3, p
decreases throughl and there is a period-doubling bifurcation.

After the bifurcation in the nonlinear equation (2.1), trexidative term is small and, to ensure it is
involved in the leading order balance, we requife= &'(d), hence we introduce a long timescale given
by T = dr.

2.5 Two-cycle of the fast map

The period-two oscillation of the solution of the DDE coperds to a two-cycle of the fast map, by
which we mean that the second iterate of the fast map comespo a shift in the wave form, with no
change in shape. That ig§n.2(T —2S) = Yn(T) for some shifts, so that if, sayyn(0) = 1—1/A then
Uni2(2s) =1—1/A, that is, the crossing of the unstable fixed poiat 1 —1/A will occur at largert
whenn is larger; equivalentlypn2(7) = Un(T+2s) or F[Z[Y(1)]] = Y(T + 23).

From the numerics shown in Figure 3, we observe that

Won(T+2ns) — Y(1), Wont1(T+2ns+S) — @(1), asn— oo, forfixedr. (2.10)

Estimatings = 1, we obtain the results plotted in Figure 4. We observe thiat¢ads to an almost com-
plete cancellation of the shiftpy1(T+21) is close to being coincident witf o( T + 19); however, there is
still some difference, hen&s not exactly unity. This estimate ef= 1 in fact slightlyovercompensates
for the shift. In the following section, we use asymptotichieiques to extract a more accurate expres-
sion for the shifts, and obtain explicit approximations for the shape of thaditgon regionsy(7) and
(1) = Z[Y(1 —s)]. In particular, note that figure 4 shows that the transitayrets are nonmonotone at
larger values ofA. Both the increasing and the decreasing layers exploreetfierr outside that bounded
by the two plateaus, see in particular the region arousd—6.
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Figure 4: lllustration of the iterateg, (7 — n) plotted against for n=0,1,2,19,20,21 for the case of
A =3.03 (left) andA = 3.4 (right). In both panels, the dotted square wave repreggntshilst ; is the
steeper dashed curve containing a corner, gt the steeper solid curvd g is the other dotted line,
yro, the other dashed curve, aggs, the other solid curve, almost coincident withg. Note the different
scales on the horizontal axes. The transition layers\fer 3.03 are considerably more slowly varying
than those foA = 3.4; also note that at largekr, there is greater asymmetry in the shape of the transition
layers. Left panel: the more slowly-varying curves corgegpton = 19,20, 21, whilst the steeper curves
illustraten = 0,1,2. Right panel: the layers correspondingte- 0,1,2 are centred at2 < 1 < 0 are
shown in red, whilst those far = 19,20,21 are centred om ~ —3 and are shown in black. The online
version is in colour.

3 Asymptotic approximation of the 2-cycle of the fast map

3.1 Problem formulation

Given the form of the two-cycle (1.3), we put

A =3+06° (3.1)
and write the transition layers as
Un(T) =M+ aWn(1), (3.2)
where
o Atl_ 4+ g VAFDA-3)  5V4+8 (3.3)
20 64267 N 2A - 6+202 '

so that¥,, — +1 or¥1 ast — +. To be precise, we requikl,(+o) = +(—1)" so that ifn is even then
Y, is an ‘up’-layer (that is, increasing), andnfis odd, thert¥,, is a ‘down’-layer, (decreasing).

Note that in this subsection, no assumption is made aboumtémgmnitude ofd. Only in the next
subsectiony3.2) do we assume thatis small. The effect of the fast map, which determines onesitin
layer as a function of the previous layer is given by

CNJn+1
dr

To analyse the two-cycle, with some phase shifte introduce

+ W1+ Wh=36(1- W24+ 82 (3.4)

W(1) = rI]i_ronIJzﬂ(r+2ns), d(1) = rI]i_r}rgo—kIJZnJrl(TJFZnSJrs), (3.5)

so that both transition layer function8(7),®(7) are increasing. The boundary conditions are thus
P(+oo) = P(£oo) = +1.
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RequiringW,,. 2 to equal¥,, modulo the phase shifs, means that the shape of the transition layers
are governed by the coupled pair of differential-delay #qna

Wr-9+W(T-9-P(1) = 36(1-D(1)?)V4+62, (3.6)
P(1-9+P(1-9-W(1) = —35(1-W(1))V4+82 (3.7)

where the determination afis part of the problem. Next we write
Y1) =&(1)+<(1), and (1) =¢&(1)— (1), (3.8)

so thaté (1) = %(CD(T) +¥(1)) is the average shape of the transition layer, &) = %(LP(T) —P(1))
accounts for the asymmetry in the shape of the layers. Thetijeaé (7),{(7) are governed by

E(T—9)+&(1—9)—&(1) = O&(1){(T)V4+d2, (3.9)
{(r-9+(1-9+(1) = 306(1-&(1)°-{(1)*)V4+&?, (3.10)

together with the boundary conditiof$+o) = +1 and{ (+) = 0.
Thus far, we have not made any use of asymptotic approximatineyond the fast map in Section
2.2, nor have we assum€ 1) = W(1), or ®(1),¥(1), & (1) have odd symmetry, af (1) is even.

3.2 Asymptotic expansion

We now make use of the approximation< 1. Equation (3.10) implie§ = ¢(5), however, for the
simplicity of later calculations we introduce a slightly difled small parameter;, and write

v=16V4+062  T=vr, &(1)=6(T), (1)=vn(T), with 8,n=0(1). (3.11)
We note that the boundary conditiog+c) = +1 and{(+) = 0 imply

6(T) — 1 asT—ow, O(T) - -1 as T — —oo, (3.12)
n(t) — 0 as T — +oo. (3.13)

Thus equations (3.9)—(3.10) imply
O(T —vs)+ve' (T—vs)—B(T) = 2v28(T)n(T), (3.14)
N(T—vs)+vn(T—vs)+n(T) = 1-6(T)>—v?n(T)> (3.15)

Note that if we just consider the leading order terms in (. obtain(T) — 6(T) = 0. If we go to the
next order terms, we finfll —s)0’(T) = 0, and sincé®’ = 0 is not a possible solution, we requie- 1,
to leading order. However, this has still not generated gma¢gmation for@(T). To proceed further, we
expand the delagas

s=S+ VS + VS +O(V3), (3.16)

whereS = 1 has already been determined. We also write
O(T)=060(T)+v6(T)+..., and n(T)=no(T)+vni(T)+..., (3.17)

where6y(T), No(T) are the leading order solutions.
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3.3 Leading order approximation of the 2-cycle

From the leading order terms in equation (3.15) it is cleat tjp(T) = %(1— 6(T)?) and expanding
equation (3.14) ta’(v?) yields

V(1—-9)04(T) + 2v2s(s—2)0(T) = v26o(T) (1~ 6o(T)?). (3.18)
Using (3.16) withS = 1 we obtain an autonomous problem &t namely
66 (T) +2%165(T) = —260(T)(1— 60(T)?). (3.19)

Multiplying through by8)(T) and integrating fronT = —c to T = +o0 we find S; [*,, 63(T)2dT = 0;
henceS; = O (since the integral must be strictly positive). This is $leeularity condition required by the
Fredholm alternative. TheDE (3.19) then simplifies and is solved By = tanhT). More generally, the
dynamics of this equation can be understood using phasegl#me system has a centre(8, 6)) =
(0,0) and saddles &b, 6;) = (+1,0). The homoclinic trajectory joining the two saddles is gil®n
0} = +(1— 62) and corresponds to the transition layers, which are our ingénest here.

Retracing our steps to find leading order approximation®fdr) andW¥(T ) we recovetl(T ), d(T) =
60(T)+vno(T) and, sincen(T) = %Gé(T), the approximations fo#(T) and®(T) are simply phase
shifts of By(T). Furthermore, since= 1+ ¢(v?), we have also shown that the phase shift is unity to
leading order. In order to determine a more accurate apmition for the phase shift, we go to higher
order inv, where we will also find a correction term for the transitiagér. This more accurate shape
will explain the overshooting behaviour and asymmetry efshape of the layers seen in Figures 3 and 4.

3.4 Higher-order terms
Substituting the expansions (3.17) into (3.14)—(3.15, r&calling that the delay term (3.16) simplifies to
s= 1+ v2S,, we obtain the equations

65(T) =—460(T)no(T),  2no(T)=1-60(T)%  nu(T)=—60(T)6w(T), (3.20)

201 (T) +2n0(T)61(T) = 366" (T) — 260(T)N1(T) — S260(T). (3:21)
Using the leading order solutiofls = tanh(T), o = %secH(T) to simplify (3.21), we obtain

67 +26,(1-3tanfT) =2(1 - tankf T)(2tanF T - 2 - S,). (3.22)

As before, to find the correction to the phase slgft,we multiply through byd; and integrate overF, to

obtain
S = —/_wZSecH(T)(Ztanﬁ(T) —2)dT //_wZSecﬁ(T)dT = —1i5. (3.23)

Thus, for 0< A — 3 <« 1 the shift per iterate of the fast map can be approximated by
svl-Avial-48%~1— (A -3). (3.24)

This explains why the unit shift applied between Figures @ avery slightly overcompensates for the
shift.

Furthermore, the perturbation to the shape of the soluigfT,), can be calculated explicitly. The
complementary function for (3.22) has the form

01(T) = Aosech(T) +Bou(T),  u(T) =3TsecH(T)+3tanKT)+2sinhT)cosHT),  (3.25)
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Figure 5: lllustration of the transition region functios ® plotted againsT including the first correc-
tions to the tanh profile. The dotted lines represént W = +1 and® = W = tanh(T); the solid line
shows tanfil) 4+ v 6 (T ), which is nonmonotone, having values below -1Tdn the range foil <—1.18.
Here we have chosen a reasonably large value ndmely 046 to illustrate the behaviour. We also plotin
dashed lines the functions taft + v[6y(T) +0.5seck(T)], which include the effect afig = Ssech(T)

in (3.29) and (3.30). At smaller values of this simply causes a phase shift in the profile, but thisdarg
value ofv causes a more significant alteration to the shape. The ragielps a blow-up of the left, to
show more clearly the effect of including the nonmonotoaicpvershooting’ behaviour.

with Ag, Bg being arbitrary constants. A particular solution can bestmeted by writing
01(T) = A(T)secl(T) 4+ B(T)u(T), (3.26)
and using the method of variation of parameters, which gield

A(T) = Ao+ glog(sechT))+ sech(T) [1— iseck(T) + 3T tanh(T)seck(T)], (3.27)
B(T) = Bo— itanh(T)sech(T). (3.28)

Since the functioni(T) ~ €T asT — 0, and we require boundary conditions in whigh— 0 asT — oo,
we chooséy = 0. The combinatio(T)u(T) then decays to zero ds— oo, with B(T)u(T) ~ &(e727).
The constanky is left arbitrary, as adding a small component, namelgsect?(T), to the leading order
60(T) = tanh(T) solution merely corresponds to a phase shift, nanfglyl + vAy) = tanhT + VAy).
Note that whileA(T) grows linearly withT asT — oo, the combinatiorA(T )sect(T) is bounded. This
product has the asymptotic decay@af~ Te 2T asT — . The decay of this perturbation is thus slightly
slower than that of the leading order term, whose asympbeti@viour is tanfi ) ~ 1 — &'(e2T).

Inverting the transformations (3.8) to regéakh ®, we find

W(1) = tanh(vt)+ 3v[261(vT) +seck(vT)], (3.29)
®(1) = tanh(vT)+ 1v[261(vT) —seck(vT)). (3.30)

These functions are plotted in Figure 5. Since, for smathe two-cycle exists for ¥ A < 1+ /6, the
maximum relevant value fad is 6 = 0.449, which yields a maximum value forof v = 0.46, which is
the value used in plotting Figure 5.

Relating our final time variabl& back to the original variable we find

T T
t—n:srzs—:‘g— (3.32)

vV o 3/1+6%/4
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Figure 6: lllustration of the numerical solution of the fasap (2.1) whem = 3.5, corresponding to the
4-cycle of the logistic map. Top left, iterates 1, 5, 9, 13 tight, iterates 2, 6, 10, 14; bottom left, iterates
3,7, 11, 15; bottom right, iterates 4, 8, 12, 16; in each pHreeiterates are denoted in the order ‘e,
‘x"and ‘C’; in each panel the third and fourth iterates appear idahtic

We are interested in points in the transition layer, where ¢'(1) andt — n is small. Since botld ande
are small parameters, and we expect the above expressierstodll, we require < +/1+ 02/4 < 1.
In the next section we explore cycles with longer periods eically.

4  Transition layers in the period 3 and 4 cycles

In Figure 6 we plot the transition layers for the four cycledasermined by a numerical solution of (2.1).
In the logistic map the four-cycle is stable for-1y/6 ~ 3.449< A < 3.544. Results are presented for
the cased = 3.5 which is in the centre of this parameter range; the plateaeigiven byx; = 0.521,

xo = 0.884,x3 = 0.362,x4 = 0.819. We apply a numerically determined horizontal shifsef 0.9 to

the results to show the convergence in shape of transitigerdaat later iterates. Although six curves
are plotted in each panel, most of those corresponding ¢o it@rates cannot be seen as they lie on top
of each other. The top left panel shows undershooting ofdlierl( < x;) before converging to the
higher plateauy = x2, whilst the layer plotted in the lower right panel exhibitst overshooting and
undershooting, that i > x4 and ¢ < x; for differing . Thus much of the behaviour discussed in
Sections 2.3, 2.5 and 3 persists in a qualitative fashiothiperiod four cycle.

Figure 7 shows the corresponding results for the threescydere there is no convergence in shape
of the transition layers. Instead, with each iterate, tigedsiincrease in width, gaining additional internal
oscillations. If we attempt to find a shift to superimposeelsgyon top of each other, there are two natural
choices. Firstly, using= 0.35, the start of each layer can be made to coincide, as shaiva laft panels
of Figure 7. The shape of the start of the transition layeosvaio similarity once the move away from the
initial plateau has occurred. More interestingly, a valtis-e 2 leads to the right-hand panels of Figure 7,
where the right-hand edges of each layer are superimposesisfiows greater similarity in the shape of
the later parts of the transition layer. For example, naaette dashed and solid black lines are coincident
not just in the final convergence to the plateaus, but alsedweeral oscillations beforehand, as shown by
iterates 19 and 22 in the top right panel, iterates 20 and #3middle right panel, and iterates 21 and
24 in the lower right panel.
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Figure 7: lllustration of the numerical solution for thetfasap (2.1) wherA = 1+ 2v/2, corresponding

to the 3-cycle of the logistic map. On the left, a shiftsof 0.35 is applied so that the left hand edges of
the transition layers coincide. Top left, iterates 1, 4,d,113, 16; middle left: iterates 2, 5, 8, 11, 14, 17,
bottom left: iterates 3, 6, 9, 12, 15, 18; in each case, therardwhich the iterates are plotted is given by
solid thick line, dashed thick line, medium solid line, madidashed line, thin solid line and thin dashed
lines. In the right-hand panels, a shift ®& 2 is applied so that the right edge of the transition layers
coincide. Top right: iterates 1, 4, 7, 10, 13, 16, 19, 22; daddyht: iterates 2, 5, 8, 11, 14, 17, 20, 23;
lower right: iterates 3, 6, 9, 12, 15, 18, 21, 24; in each cheeotder in which the iterates are plotted is
given by: very thick solid line, very thick dashed line, thisolid line, thick dashed line, medium solid
line, medium dashed line, narrow solid line, narrow dasies |

5 Conclusions

Any differential-delay equation of the form (1.1) which wrdoes a bifurcation whereby the steady-state
becomes unstable can be approximated by a quadratic. Thesiana the logistic map thus has a wider
relevance to singularly perturbed differential-delay &tpns. We have studied such a differential-delay
equation which, in the singular limit of smal) reduces to the well-known one-dimensional logistic map.
We have shown that as the 1D map undergoes a bifurcation toi@dpevo state, so does the delay
equation.

The analysis of Section 1.2 results in the formula (1.10}lerperiod of the oscillation on the bifur-
cation curve. This formula only predicts the period of datibn on the bifurcation curve (1.7), and is
only valid for the case where harmonic solutions are produitet is, away from the limit & € < 1.

The solution of the singularly perturbed delay equatioth)thas plateaus of approximately unit length,
separated by narrow transition layers. In Section 3 we gthebifurcation which occurs asis increased
through the valuel = 3 with € <« 1. In this case, square wave solutions are produced, andetinedp
depends on both ande, and these parameters are treated independently in the (&4) which holds
for more generad -3« 1, e <« 1.

By introducing the ‘fast map’, which is an approximate Pairec map, relating the form of each
transition layer to the previous one, we have generatedlagiusystem of differential delay equations for
the shape of the transition layers in the period-two cyclé)(3In this system, the delay is an unknown
parameter, for which we have generated an asymptotic ekpanBhe first few terms of this expansion
are given in (3.24). In the original time variablg the period is

P=2+2es=2+2¢—5e(A —3). (5.1)
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This agrees with the result derived by Adhikeiral. (2008). For any particular choice of parameters, the
period of the periodic solution depends on bathnde.

Analysing the fast map using asymptotic techniques, we bhwe/n that, to leading order, the layers
have a tanh shape, as might be expected. More significantlygétion 3.4 we have shown that the
higher order perturbation terms give rise to more compléxab®ur. In particular, the profile has an
asymmetric shape, with nonmonotonic behaviour, and sloaerergence to the plateaus than the leading
order solution suggests. All these effects become moreopieed ag increases beyond the bifurcation
pointA = 3.

The form of the transition layers have been further explahedugh a numerical solution of the fast
map in the cases of the four cycle and three cycle of the liogisap. In the four cycle, the transition
layers again rapidly converge to one of the four steady shapenoting the plateaus by, Xo, X3, X4,
there are four attracting shapes for the transition layars,for each of the; — xo, Xo — X3, X3 — X4, and
X4 — X1 layers illustrated in Figure 6. The transition layers betwéhe three-cycle plateaus, however,
do not converge to a steady form. Instead, they grow in widthlst showing some convergence in the
shape of their right-hand edges. This increasing compigxitvides considerable challenges for more
theoretical analyses.
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