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List of Abbreviations 

AEA   Anandamide 

2-AG   2-Arachidonoyl glycerol 

NAPE   N-acylphosphatidylethanolamine 

NAPE PLD  N-acylphosphatidylethanolamine phospholipase D 

NAAA   N-acyl ethanolamine-hydrolysing acid amidase 

FAAH   Fatty acid amide hydrolase 

MAGL  Monoacylglycerol lipase 

DAGL   Diacylglycerol lipase 

LPS   Lipopolysaccharide 

TEER   Transepithelial electrical resistance 
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BACKGROUND:The endocannabinoid system has previously been shown to play a role in the 

permeability and inflammatory response of  the human gut.  Our study was to determine the 

effects of endogenous AEA and 2-AG on the permeability and inflammatory response of intestinal 

epithelium under normal, inflammatory and hypoxic conditions.   

 

METHODS:Human intestinal mucosa was modelled using Caco-2 cells. Human tissue was 

collected from planned colorectal resections. Accumulation of AEA and 2-AG was achieved by 

inhibiting their metabolising enzymes URB597 (FAAH inhibitor) and JZL184 (MAGL inhibitor).  

Inflammation and ischaemia were simulated with TNFα and IFNγ and oxygen deprivation.  

Permeability changes were measured by transepithelial electrical resistance (TEER).  The role of 

the CB1 receptor was explored using CB1 knock down (CB1Kd) intestinal epithelial cells. 

Endocannabinoid levels were measured using LC-MS. Cytokine secretion was measured using 

multiplex and ELISA. 

 

RESULTS: URB597 and JZL184 caused a concentration-dependent increase in permeability via 

CB1 (p<0.0001), and decreased cytokine production.  Basolateral application of JZL184 decreased 

permeability via CB1 (p<0.0001).  URB597 and JZL184 increased the enhanced (worsened) 

permeability caused by inflammation and hypoxia (p<0.0001 and <0.05).  CB1Kd cells showed 

reduced permeability response to inflammation (p<0.01) but not hypoxia.  2-AG levels were 

increased in response to inflammation and hypoxia in Caco-2 cells.  In human mucosal tissue, 

inflammation increased the secretion of GM-CSF, IL-12, IL-13 and IL-15, which was prevented 

with ex vivo treatment with URB597 and JZL184, and inhibited by a CB1 antagonist. 

 

CONCLUSION: Endogenous AEA and 2-AG production and CB1 activation play a key 

modulatory roles in normal intestinal mucosa permeability, and also in inflammatory and hypoxic 

conditions.   

 

Keywords: Gut, Endocannabinoids, Anandamide, 2-AG, Inflammation  
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Introduction 

A key function of the gastrointestinal tract is to form a barrier between the noxious exterior 

environment and sterile submucosa, whilst actively absorbing the vital nutrients necessary for 

homeostasis  (1). This selective permeability is achieved through a set of complex mechanisms 

including the secretion of a mucous barrier at the epithelial layer, production of mucosal antibodies 

by immune cells and through a continuous layer of epithelial cells bound together by specialised 

tight junctions  (2–5). Dysregulation of these mechanisms has been shown to lead to intestinal 

diseases such as Crohn’s disease, Ulcerative Colitis, Coeliac disease, and Irritable Bowel Syndrome  

(6–9). Despite increasing interest in the factors governing permeability and inflammation within the 

gut, the responsible mechanisms have not yet been fully elucidated. 

Endocannabinoids are intercellular lipid signalling molecules derived on demand from membrane 

precursors, themselves derived from arachidonic acid  (10). The two most well described ligands 

within this system are anandamide (AEA) and 2-arachidonoyl glycerol (2-AG). AEA production 

commences with the activation of N-acyltransferase, promoting the conversion of the membrane 

lipid phosphatidylethanolamine to N-acylphosphatidylethanolamine (NAPE). This in turn is 

converted by NAPE phospholipase D (NAPE-PLD) into AEA  (11). AEA is transported across into 

the intracellular compartment and catabolised by fatty acid amide hydrolase (FAAH) and N-acyl 

ethanolamine-hydrolysing acid amidase (NAAA)  (11, 12).  2-AG is produced by the hydrolysis of 

phosphatidylinositol to diacylglycerol (13). This is converted to 2-AG by the action of 

diacylglycerol lipase (DAGL). Following its biological effects, 2-AG is transported to the 

intracellular compartment and catabolised to arachidonic acid by monoacylglycerol lipase (MAGL), 

though may also be catabolised by FAAH, serine hydrolase α-β-hydrolase domain 6 (ABHD6) and 

serine hydrolase α-β-hydrolase domain (ABHD12)  (12, 14).  Both AEA and 2-AG are agonists of 

the two major cannabinoid G-coupled protein receptors CB1 and CB2, but also at other non-classical 

sites including TRPs, PPARs, and GPR55. 

AEA and 2-AG have been shown to play roles in gut motility, nausea, and nociception  (15). We 

have also shown that AEA and 2-AG, acting at CB1, increase intestinal permeability in healthy 

Caco-2 cells, and worsen the increased permeability caused by hypoxia and cytokine-induced 

inflammation  (16, 17). These findings, taken with evidence showing that patients with active colitis 

have increased colonic levels of AEA and 2-AG, and that endocannabinoid production is increased 
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during sepsis, suggested that AEA or 2-AG acting at the CB1 receptor increase permeability and 

may act to decrease inflammation  (18, 19).  Blockade of the CB1 receptor has been shown to limit 

the hypotensive and vasodilator effects of lipopolysaccharide (LPS) in rats, and to protect the rat 

liver from endotoxaemia and prolonged the survival of rats with severe acute pancreatitis  (20–22). 

However, several studies have also shown that AEA protects against gastrointestinal disease  (23–

26).  Engel et al. found that intraperitoneal administration of AEA to mice with trinitro 

benzosulphonic acid (TNBS) induced colitis reduced macro- and microscopic colitis scores, 

reduced pro-inflammatory cytokine production and also reduced immune cell infiltration, 

suggesting decreased gut permeability  (23). More recently two similar studies showed that 

inhibition of FAAH, causing accumulation of AEA, will decrease production of pro-inflammatory 

cytokines and reduce proliferation of leucocytes and lead to decreased colitis scores in experimental 

murine colitis induced by dextran sodium sulphate (DSS)  (27, 28).  However data regarding the 

effects of AEA and 2-AG in human tissue are lacking.  We hypothesised that endogenously 

produced AEA and 2-AG may act to increase permeability via CB1 as per our previous findings  

(16, 17), whilst having a separate but simultaneous anti-inflammatory effect. 

To address the hypothesis, the aim of the present study was to determine the effects of endogenously 

produced AEA and 2-AG on the permeability and inflammatory response of intestinal epithelial 

cells under normal, inflammatory and hypoxic conditions. To achieve this we caused accumulation 

of AEA and 2-AG by inhibition of their metabolising enzymes with URB597 (a FAAH inhibitor) 

and JZL184 (a MAGL inhibitor). The role of the CB1receptor was explored using CB1 knock down 

(CB1Kd) intestinal epithelial cells and CB1 and TRPV1 antagonists in explant human colonic tissue.   
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Materials and Methods 

Caco-2 cells (European Collection of Cell Culture, Wiltshire, UK; passages 62-86) were cultured 

in T75 cell culture flasks in Minimal Essential Medium Eagle supplemented with 10% fetal bovine 

serum (FBS), 1% penicillin/streptomycin and L-glutamine at 37°C in 5% CO2 and 95% air.  In some 

experiments, the CB1 receptor was knocked down as previously described  (29). For this, wild type 

Caco-2 cells were seeded at 2x105 cells per well in a 6-well culture plate overnight before 

transfection with 29-mer shRNA corresponding specifically to the human Cnr1 receptor gene in 

retroviral HuSH pRS plasmid vector (Gene ID = 1268; OriGene product code: TR316500; Insight 

Biotechnology Limited, Middlesex, UK) for 48h, termed CB1Kd-Caco-2. Vector control cells 

(termed control-Caco2) were transfected with non-effective 29-mer scrambled shRNA cassette in 

the pRS plasmid vector. All procedures were performed based on the manufacturer’s protocol using 

TurboFectin 8.0 transfection reagent (OriGene product code: TF81001; Insight Biotechnology 

Limited, Middlesex, UK). After 48h, cells were transferred to 96-well plates and maintained in 

complete medium with puromycin (0.06µL/mL) for selection. Within two weeks, 3 to 4 clonal 

populations of cells were selected, passaged and cultured for experiments with continued selection 

pressure. Transfection efficiency was checked by immunoblotting for CB1 receptor expression (see 

method below) using (CB1 receptor antibody (1:1000; Cambridge Bioscience # 10006590) (Koay 

et al, 2014). Two clones were further assessed for CB1 receptor knockdown by the [35S] GTPγS 

binding assay using the synthetic CB1 receptor agonist, arachidonyl-2'-chloroethylamide (ACEA) 

as per Shore et al. 2014  (30). One clone was taken forward for further experiments. 

For permeability studies, cells were seeded at 20,000 cells on 6.4mm diameter, 0.4µm pore size 

polyethylene terephthalate inserts (BD Biosciences, Bedford, UK) and grown for 14-18 days. 

Transepithelial electrical resistance (TEER) was measured using a voltohmmeter (EVOM2) (World 

Precision Instruments, Sarasota FL, USA) as an indicator of cellular permeability. Caco-2 cell 

monolayers with TEER value greater than 1000 Ω.cm2 were used. Caco-2 cell monolayers were 

washed twice in HBSS (+ N-2-hydroxyethylpintestinal permeabilityerazine-N'-2-ethanesulfonic 

acid or HEPES and P/S) and baseline TEER measured. 

To establish the effect of endocannabinoid degradation inhibition on Caco-2 permeability, URB597 

(FAAH inhibitor, IC50 low nM), JZL184 (MAGL inhibitor, IC50 low nM) (1nM-10 µM) or DMSO 

(vehicle 0.01%) were applied to the Caco-2 monolayer apical or basolateral membranes. TEER 
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measured every 30 minutes for the first 2 hours and at 8, 24, 36 and 48 hours. To identify the target 

sites of action, the receptor antagonists AM251 (100nM), AM630 (100nM), GW9662 (100nM), 

GW6471 (500nM), capsazepine (500nM), SB 366791 (100nM) and O-1918 (500nM) were co-

applied with URB597 or JZL184. The effects of 10 µM URB597 and JZL184 were also tested in 

CB1Kd Caco-2 cells. 

To investigate the effects of AEA and 2-AG basolaterally on Caco-2 cell permeability, cell 

monolayers were washed twice in HBSS and baseline TEER in each insert was measured. 

Endocannabinoids AEA and 2-AG (10µM) or vehicle (0.1% ethanol) were applied to the basolateral 

compartment of inserts and TEER was measured every 30 minutes for 2 hours and after 8, 24, 36 

and 48 hours. 

Inflammatory model 

Caco-2 cell monolayers were grown on transwell inserts. 10 ng.ml-1 interferon-gamma (IFNγ) was 

added to the basolateral compartment and after 8 hours, 10 ng.ml-1 of tumour necrosis factor-alpha 

(TNF) was added to the media for another 16 hours as previously described  (17). URB597, 

JZL184 or vehicle (DMSO 0.01%) were applied to either the apical or basolateral membranes as 

indicated. In some experiments, this protocol was carried out in the CB1Kd cells. 

Ischaemia/reperfusion model 

Caco-2 cell monolayers were grown on transwell inserts. Hypoxic conditions were simulated using 

a GasPak™ EZ Anaerobe Pouch System (BD Biosciences, Bedford, UK) for 4 hours after which 

time the cells returned to normoxia. URB597 10µM, JZL184 10µM or vehicle were applied to the 

Caco-2 membranes.  In some experiments, this protocol was carried out in the CB1Kd cells and for 

more prolonged periods of hypoxia (6 and 8 h). 

Measurement of cytokine production 

To quantify the effect of AEA, 2-AG, URB597 and JZL184 on the inflammatory response in caco-

2 cells we measured the media concentrations of two key cytokines involved in the cell stress 

response, interleukin 8 (IL-8) and IL-6, after 24 hours of incubation. Concentrations were measured 
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using ELISA according to manufacturer’s instructions (IL-8 and IL-6, both DUOSET ELISA kits 

R&D Systems Minneapolis, US).  

Measurement of endocannabinoid levels  

A quantitative LC-MS/MS method was used for analysis of AEA and 2-AG levels in cell samples, 

based on a previously reported procedure  (31).  For these experiments, Caco-2 cells were grown in 

T75 flasks and subjected to the inflammatory or ischaemia/reperfusion protocols. Cell lysates and 

medium were stored at -80°C before analysis. Internal standard (0.42 nmol AEA-d8) was added to 

a 0.4 ml aliquot of each sample followed by solvent extraction (ethyl acetate: hexane; 9:1 v/v), 

centrifugation and evaporation. Prior to analysis, each sample extract was reconstituted in 

acetonitrile. An Applied Biosystems MDS SCIEX 4000 Q-Trap hybrid triple-quadrupole–linear ion 

trap mass spectrometer (Applied Biosystems, Foster City, CA, USA) operated in positive 

electrospray ionisation mode was used in conjunction with a Shimadzu series 10AD VP LC system 

(Shimadzu, Columbia, MD, USA) using an ACE 3 C8, 100 x 2.1 mm, 3 µm particle size column 

(Advanced Chromatography Technologies Ltd., Aberdeen, UK). Quantification was performed by 

measuring specific AEA and 2-AG precursor and product ions together with a calibrated internal 

standard method. 

Human Tissue Experimentation 

Experiments on ex vivo human colonic tissue were performed by obtaining healthy colonic tissue 

from patients undergoing elective bowel resection for bowel cancer at Royal Derby Teaching 

Hospital NHS Trust, Derbyshire (n=7).  After gaining informed consent, samples of normal colon 

at least 10cm proximal to any bowel tumour were obtained immediately after resection within the 

operating theatre.  Sections of tissue 2cm x 2cm were removed from the operative sample and 

transferred on ice to the laboratory within ten minutes, in pre-chilled Eagle’s Minimum Essential 

Medium supplemented with 1% FBS 1% penicillin/streptomycin and 1% non-essential amino acids 

mixture (Sigma-Aldrich).  Once in the laboratory, samples were pinned on Stylgard plates (Living 

Systems Instrumentation, VT, US) and the mucosa with submucosa was dissected free from the 

underlying muscularis layer.  Mucosal samples were then further dissected into approximately 20 

2mm x 2mm sections and placed in individual wells of 24-well polystyrene plates (Corning 

Incorporated, USA), each containing 1ml of media, treatments with inflammation as described 
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above (IFNγ and TNFα over 24 hours), in the absence or presence of URB597 and JZL184 or 

vehicle as appropriate in duplicate (DMSO 0.01%), and in the presence of antagonists of CB1 

(AM251) and TRPV1 (SB366791). Samples were incubated for 24 hours at 37°C in 5% CO2 and 

95% humidity.  At the end of the 24 hour experimental period media was collected and stored at -

80 °C until analysis.   

Levels of the cytokine Granulocyte Macrophage-Colony Stimulating Factor (GM-CSF), IL-12, IL-

13 and IL-15, IL-1β, IL-10, MCP-1 and MIP1α were measured from undiluted media using a 

Multiplex human cytokine assay according to the manufacturer’s instructions (Merck Millipore 

Catalogue No. CYTOMAG-60K) using a Magpix plate reader (MAGPX 11326002, Luminex, 

Texas US).   

Chemicals  

AEA, 2-AG, AM251, AM630, GW9662, GW6471, SB366791 and capsazepine were purchased 

from Tocris Bioscience (Bristol, UK). JZL184 and URB597 were purchased from Sigma-Aldrich 

(Poole, UK). IFNγ and TNFα were purchased from Invitrogen (Paisley, UK). 

Statistical analysis 

TEER values are stated as the mean ± standard error (SEM). Data recorded at each time point and 

for ELISA and mass spectrometry determinations of molecular concentrations were compared using 

one-way or two-way ANOVA as indicated. The overall effect over time of each drug was measured 

using area under the curve (AUC) values. Statistical significance between manipulations and 

controls were determined by Dunnett’s post-hoc test. Significance was set at the 5% level. 

Differences between experimental groups in human tissue experiments were compared using 

repeated measures-ANOVA, using post hoc Freidman testing where appropriate.  All statistical 

analysis was performed using GraphPad Prism 7.01 (GraphPad Software Inc, La Jolla, USA). 
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Results  

The effect of FAAH and MAGL inhibition on TEER 

To determine whether inhibiting the breakdown of AEA and 2-AG had an effect on TEER, URB597 

and JZL184 were applied to the apical and basolateral compartments of Caco-2 monolayers. When 

applied to the apical membrane, URB597 (FAAH inhibitor) decreased Caco-2 monolayer resistance 

in a concentration-dependent manner, which was significantly different from vehicle at 1, 3 and 10 

µM concentrations (Figure 1A). AUC analysis of the 48hr time course showed the effect of URB597 

at the apical membrane was only inhibited by the CB1 receptor antagonist AM251 (Figure 1B). At 

the basolateral membrane, inhibition of FAAH activity with URB597 also caused a fall in TEER in 

a concentration-dependent fashion, significantly different from vehicle at 1, 3 and 10µM 

concentration after 30 minutes of incubation and 300nM after 2hr of incubation (Figure 1C), and 

this effect was inhibited by CB1 antagonist AM251, and the TRPV1 receptor antagonist capsazepine 

(Figure 1D).  

Apical application of the MAGL inhibitor JZL184 caused a decrease in TEER in a concentration-

dependent manner, which was significantly different to vehicle at 300nM, 1µM, 3µM and 10 µM 

concentrations (Figure 2A). This effect was only inhibited by the CB1 antagonist AM251 (Figure 

2B). In contrast, application of JZL184 to the basolateral membrane increased TEER in a 

concentration-dependent manner after 2 hours (Figure 2C), again inhibited by AM251 (Figure 2D).  

Effects of basolateral application of AEA and 2-AG on TEER 

We have previously reported that apical application of AEA and 2-AG to Caco-2 monolayers 

decrease TEER but basolateral application was not examined previously  (16). Based on the findings 

that basolateral application of JZL194 increased TEER, we examined the effects of basolateral 

application of AEA or 2-AG on TEER and found that 2-AG (10µM), but not AEA, increased TEER 

when applied to the basolateral membrane which was significantly different from vehicle after 2 

hours (Figure 2E). 
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Effects of FAAH and MAGL inhibition on hyper-permeability induced by cytokines or 

hypoxia 

Since increasing cellular endocannabinoid levels with either URB597 or JZL184 increased Caco-2 

permeability, we examined the effects of these compounds in times of increased permeability 

associated with inflammation or hypoxia. As expected, application of inflammatory cytokines to 

Caco-2 cells decreased TEER (Figure 3A). Application of URB597 (10 µM) or JZL184 (10 µM) at 

the apical membrane caused a further decrease in TEER beyond the effect of cytokines alone (Figure 

3A). 4h hypoxia also caused a fall in TEER of Caco-2 monolayers with recovery occurring over 

68h (Figure 3B). Application of URB597 (10µM) or JZL184 (10µM) at the apical membrane 

prevented recovery of TEER over the experimental period compared to control. The recovery in 

TEER was reduced in the presence of both URB597 and JZL184 (p<0.05 for both inhibitors at 72 

hours).  

Effects of FAAH and MAGL inhibition on CB1Kd Caco-2 TEER 

To confirm the pharmacological data suggesting that the effects of FAAH and MAGL inhibition 

on permeability were CB1-mediated, we examined these compounds in CB1Kd Caco-2 cells.  No 

effects of URB597 or JZL184 (10 µM) were found when applied to the apical or basolateral 

membranes of CB1Kd Caco-2 cells (Figure 4A).  

Effects of cytokine and hypoxia on wild type and CB1kd Caco-2 cells  

Because endogenous production of AEA and 2-AG appeared to govern paracellular permeability 

through CB1 (Figure 1B, 2B), we sought to find the effect of reducing the CB1 receptor expression 

on Caco-2 permeability under inflammatory and hypoxic conditions. Basolateral application of 

cytokines to both CB1Kd and control cells caused a decrease in TEER (Figure 4B). However, the 

fall in TEER in CB1Kd cells was significantly less compared to control cells from 36h to 72h 

(p<0.05 and 0.01 respectively, Figure 4B).  By contrast, oxygen deprivation caused a similar fall in 

TEER in control and CB1Kd cells after 4h, 6h or 8h of hypoxia (Figure 4C). In both CB1Kd and 

control cells, a recovery in TEER occurred after 4h of hypoxia, though not after 6 or 8h periods. 
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Effects of hypoxia and inflammation on the endogenous production of AEA and 2-AG 

Because inflammatory conditions and hypoxia caused a fall in TEER similar to the effect of FAAH 

and MAGL inhibition in non-inflamed Caco-2 cells, we sought to find the effect of hypoxia and 

inflammation on the endogenous production of AEA and 2-AG. Neither hypoxia nor inflammatory 

cytokines had any significant effect on the production of endogenous AEA (Figure 5A), however 

both conditions caused a significant increase in the production of 2-AG (p<0.0001, Figure 5 B). 

Effects of AEA and 2-AG on the production of inflammatory cytokines 

As inflammation, hypoxia, application of AEA or 2-AG, or inhibition of their degradation, caused 

a fall in TEER in Caco-2 monolayers, we sought to find if AEA or 2-AG have any pro-

inflammatory effects after 24 hours of exposure.  Externally applied AEA, URB597 and JZL184 

caused a decrease in the production of IL-8 compared to vehicle (figure 5C), and AEA, 2-AG, 

URB597 and JZL184 all caused reduced levels of IL-6 (figure 5D), confirming their previously 

establish anti-inflammatory effects. 

Effect of URB597 and JZL184 on the production of inflammatory cytokines in human 

colonic tissue 

We then sought to find the effect of FAAH and MAGL inhibition on the inflammatory response in 

human colonic tissue, using Multiplex analysis to measure a range of cytokines.  Inflammation 

caused a significant rise in the secretion of GM-CSF, IL13 and IL-15 (all p<0.05, fig 6 A, C & D) 

and IL-12 (p<0.01, fig 6 B), and a non-significant increase in the secretion of IL-1β and MIP-1α 

(fig 6 E & F).  IFNγ and TNFα did not affect the secretion of IL-10 and MCP-1 (data not shown). 

Both URB957 and JZL184 significantly prevented an increase in secretion of GM-CSF, IL-12, IL-

13 and IL-15 in the presence of inflammation.  URB597 and JZL184 also prevented the non-

significant increase in the secretion of IL-1βα and MIP-1α.    URB597 and JZL184 alone had no 

effect on any of the measured cytokine levels. The anti-inflammatory effects of URB597 and 

JZL184 were prevented by the AM251, but not SB366791 (fig 6).   Alone, the CB1 and TRPV1 

antagonists did not affect cytokine secretion. 



13 

 

Discussion 

We have previously shown that exogenously applied endocannabinoids increase the permeability 

of the intestinal epithelium  (16, 17). In the present study, we sought to investigate the effects of the 

endogenously produced endocannabinoids AEA and 2-AG, by inhibiting their degradation, on 

intestinal permeability under control, inflammatory and hypoxic conditions, and explore the role of 

CB1 in modulating gut permeability. Our data show that FAAH and MAGL cause an increase in 

epithelial permeability through activation of CB1 at the apical surface in control conditions, or when 

permeability is increased by inflammation or hypoxia, whilst simultaneously reducing 

inflammatory cytokine levels in Caco-2 cells.  Knockdown of the CB1 receptor reduced the 

permeability response to inflammation. In contrast, blocking endocannabinoid degradation under 

hypoxic conditions reduced the recovery of epithelial resistance. We also found that 2-AG is 

produced by intestinal epithelial cells in response to inflammation and hypoxia, but not AEA.  

Finally, we compared the anti-inflammatory effects of FAAH and MAGL inhibition seen in Caco-

2 cells to their effect on the inflammatory response in human tissue.  We found that FAAH and 

MAGL inhibition in explant human colonic tissue were anti-inflammatory, and that CB1 blockade 

prevented their effects.  We suggest that endogenous production of endocannabinoids by intestinal 

epithelial cells increases permeability and simultaneously prevents inflammation through CB1.   

We previously reported that apical application of exogenous AEA and 2-AG increased permeability 

in Caco-2 monolayers and sought to examine in the present study whether upregulation of cellular 

endocannabinoids by inhibition of their degradation would have a similar effect. In agreement with 

our previous study we found that inhibition of FAAH and MAGL at the apical membrane causes 

increased permeability and this effect was inhibited by CB1 receptor antagonism or knockdown, 

confirming the role for CB1 in modulating gut permeability. As URB597 and JZL184 do not activate 

CB1  (32, 33), this suggests that accumulation of endogenously produced AEA and 2-AG at the 

apical epithelial layer increase permeability via CB1  (16).   

Treatment of Caco-2 cells with inflammatory cytokines caused nearly a 20% drop in TEER 

(increased permeability). Apical treatment with both URB597 or JZL184 caused a further decrease 

in TEER in addition to the effect of the cytokines, in line with our previous studies in which falls in 

TEER caused by inflammation were exacerbated by the apical application of AEA and 2-AG   (17). 

Furthermore, hypoxia caused ~35% drop in TEER, with recovery and return to baseline 
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permeability over 72 hours. As in the inflammatory protocol, treatment with URB597 and JZL184 

delayed the recovery of TEER compared to control cells. We therefore hypothesise that 

endocannabinoids, via CB1, play a key role in the development and recovery from permeability 

increases caused by inflammation. To investigate this hypothesis, we conducted similar 

permeability experiments with CB1Kd cells and found that CB1Kd monolayers exposed to 

inflammatory cytokines do not exhibit as great a decrease in permeability compared to control cells. 

However, no differences were seen between control and CB1Kd cells subjected to hypoxic 

conditions. This suggests that in the gut, CB1 is a critical component of the permeability changes 

seen in inflammation but not hypoxia.  

Interestingly we have found that basolateral FAAH inhibition increased permeability and this was 

inhibited by antagonism of both CB1 and TRPV1. However, in the presence of CB1 knockdown, 

FAAH inhibition had no effect on permeability, i.e. no contribution of TRPV1 remained after CB1 

knockdown.  This suggests that at the basolateral layer the ability for TRPV1 to modulate 

permeability is dependent on the presence and activation of CB1.  This may be because AEA 

agonism of CB1 causes positive allosteric modulation of the TRPV1 receptor. Alternatively, 

stimulation of CB1 may cause accumulation of a second ligand, which may occupy or positively 

modulate TRPV1.  Supporting this, it has been shown that CB1 activation increases the secretion of 

palmitoylethanolamide (PEA), which then may cause a conformational change in the TRPV1 

receptor, greatly increasing its affinity for AEA  (34, 35). This “entourage effect” has been seen in 

the endocannabinoid system, though has not yet been fully defined  (34, 36).   

Another finding within this study is that JZL184 caused increased permeability at the apical layer, 

but decreased permeability at the basolateral layer. Both effects were prevented by CB1 antagonism 

with AM251. We also confirmed that exogenous application of 2-AG (but not AEA) decreased 

permeability at the basolateral membrane.  Not only is it interesting that 2-AG has differential 

effects on permeability at each membrane, but also that activation of the same basolateral CB1 

receptors with AEA caused an increase in permeability, the opposite effect. The latter observation 

may be explained by structural differences between AEA and 2-AG at the CB1 binding site, as it 

has previously been observed that 2-AG can produce greater differences in intracellular [Ca2+]  (37–

39). It is conceivable therefore, that differential permeability effects at the same receptor sites are 

due receptor bias at CB1, in addition to the effects of TRPV1 co-dependency described above. What 
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is yet to be determined is the physiological mechanism that causes opposing permeability effects at 

different sides of the epithelium with the same ligand.   

Hypoxia and inflammation in this study both caused an increase in the production of intracellular 

or secreted 2-AG. This supports previous suggestions that increased of endocannabinoids in human 

intestinal tissue acting at CB1 can lead to alterations in gastrointestinal permeability and have an 

anti-inflammatory in response to an inflammatory stimulus  (40).  For example in samples from 

patients with Ulcerative Colitis, Crohn’s disease and Coeliac disease, all diseases of inflammation 

and increased permeability, levels of AEA or 2-AG have been found to be raised  (26, 41, 42). 

Furthermore, inflammatory bowel disease patients with the highest disease scores were found to 

have the highest gut AEA concentrations  (43).  This suggests that there may be an association 

between high levels of AEA and 2-AG, acting at the CB1 receptor in response to an inflammatory 

stimulus, leading to increased gut permeability and its secondary consequences such as 

translocation of bacterial and lipopolysaccharide, but also simultaneously decreasing the 

inflammatory response.   

We found that AEA and 2-AG, or inhibition of their catabolism, exert an anti-inflammatory effect 

on Caco-2 epithelial cells manifesting as a reduction in IL-6 and IL-8 secretion. To support these 

findings we repeated parallel experiments in explant human colonic tissue and found for the first 

time that inhibition of FAAH and MAGL had significant anti-inflammatory effects. We found these 

effects were blocked by antagonism of the CB1 receptor.  Coupled with our permeability findings 

in the Caco-2 cells, we hypothesise that the permeability-enhancing effects of AEA and 2-AG are 

therefore likely to be distinct from their anti-inflammatory role.  In support of the anti-inflammatory 

effect of CB1 agonism, CB1 deficient mice are more susceptible to experimental colitis  (44) and 

administration of AEA or FAAH to mice with TNBS-induced colitis decreases the inflammatory 

response  (23, 27). Additionally, studies in explant human tissue treated with pro-inflammatory 

cytokines have shown that AEA appears to prevent inflammation of the epithelium measured by 

macro and microscopic colitis scores, and levels of matrix metalloproteinase activity  (45, 46).  The 

effect of 2-AG in human colonic tissue has not yet been reported.  This is the first study to report 

the anti-inflammatory effect of endogenously enhanced AEA and 2-AG concentrations in human 

colonic tissue.  AEA and 2-AG therefore are likely to have dual roles as anti-inflammatory and pro-

permeability agents. As the CB1 receptor may be a target for treating diseases such as Ulcerative 

Colitis and Crohn’s disease further work must focus on how these two agents cause their effects 
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downstream from receptor activation.  Additionally we investigated for a role for TRPV1, as seen 

in basolateral Caco-2 cells, but found that its blockade did not affect the inflammatory response. 

In conclusion we have shown in a Caco-2 model of intestinal permeability that endogenous 

production of AEA and 2-AG increases the permeability of epithelial monolayers, both in health 

and disease states, despite simultaneously producing anti-inflammatory effects both in cell culture 

and explant human tissue.  However, our data also showed that 2-AG has opposite effects on 

permeability at the apical and basolateral membranes, and that AEA and 2-AG activation of CB1 

receptors at the basolateral membrane have opposite effects on permeability. 2-AG is upregulated 

by inflammation and hypoxia in this model. This complex pharmacology suggests further studies 

are required to fully understand the role of the endocannabinoid system in modulating gut 

permeability, and that pharmacological manipulation may lead to effective new therapeutic 

approaches to serious intestinal diseases. 
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Figure Legends 

Figure 1.  Increasing anandamide concentrations (using URB597) increases Caco-2 

permeability via CB1.   

The effects of URB597 applied apically (A) or basolaterally (C). Integrated response over time 

(area under curve) on the effects of URB597 in the presence of various receptor antagonists (B 

and D), on Caco-2 permeability as measured by TEER.  Data are given as means and standard 

error bars S.E.M (n=3).  Concentration response curves were compared by two-way repeated 

measures ANOVA with Dunnett's post-hoc test comparing against the vehicle response (*). 

Integrated response over time (AUC) data were compared using one-way ANOVA with post hoc 

analysis of selected pairs (* verses vehicle, † verses URB597 3µM alone; * p<0.05, ** p<0.01, 

*** p<0.001, **** p<0.0001, ††††<0.0001). 

Figure 2. Increasing 2-AG concentrations (using JZL184) modulates Caco-2 permeability via 

CB1.  

The effects of JZL184 applied apically (A) and basolaterally (C) on Caco-2 permeability as 

measured by TEER. Integrated response over time (area under curve) on the effects of receptors 

antagonists on JZL184 apically (B) and basolaterally (D). The effects of basolateral application of 

AEA and 2-AG on Caco-2 permeability (E). Data are given as means and standard error bars S.E.M. 

(n=3). Concentration-response curves were compared by two-way repeated measures ANOVA with 

Dunnett’s post-hoc test comparing against the vehicle response (*). Integrated response over time 

(AUC) data were compared using one-way ANOVA with post hoc analysis of selected pairs (* 

denotes verses vehicle; * p<0.05, ** p<0.01, *** p<0.001, **** p<0.0001). 

Figure 3. Increasing AEA or 2-AG causes further increases in permeability after inflammation 

or hypoxia.  

A. The effect of URB597 and JZL184 applied after 24 hours inflammatory cytokine treatment on 

Caco-2 permeability as measured by TEER. B. The effect of URB597 and JZL184 after 4 hours of 

hypoxia on Caco-2 permeability as measured by TEER (B). Data are given as means with error bars 
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representing SEM (n=3,* P<0.05, ** P< 0.01 *** P<0.001), comparing between control and 

experimental data by two-way ANOVA with Dunnett's post-hoc test. 

Figure 4. CB1 contributes to increased permeability associated with inflammation but not 

hypoxia.   

The effect of URB597 and JZL184 (apical and basolateral) in Caco-2 CB1kd cells on permeability 

as measured by TEER (A). The effect of pro-inflammatory cytokines (B) and hypoxia (C) in wild 

type and CB1KO Caco-2 cells on permeability as measured by TEER.  Data are given as means 

with error bars representing SEM (* p<0.05, ** p<0.01 *** p<0.001 compared to control, # 

p<0.05, ## p<0.01 ## compared to wild type Caco-2 cells). Data were compared by ANOVA with 

Dunnett's post-hoc test. 

Figure 5.  2-AG is increased by hypoxia and inflammation, and both AEA and 2-AG are 

anti-inflammatory in Caco-2 cells.  

The effects of hypoxia and inflammation on the endogenous production of AEA (A) and 2-AG 

(B) in cultured Caco-2 cells determined by LC-MS. The effects of AEA and 2-AG on cytokine 

production in Caco-2 cells determined by ELISA (C and D respectively).  Data are given as means 

and standard error bars S.E.M, (n=6, * P<0.05, ** P< 0.01 *** P<0.001), comparing control and 

experimental data by one-way ANOVA with Dunnett's post-hoc test. 

Figure 6: URB597 and JZL184 are anti-inflammatory in the human colon, acting via CB1  

The effects of URB597 and JZL184 on the secretion of GM-CSF (A), IL-12 (B), IL-13 (C) IL-15 

(D), MIP-1a (E) & IL-1b (F) in response to an inflammatory protocol in explant human colonic 

tissue in the presence of antagonists of CB1 (AM251) and TRPV1 (SB366791),  measured by 

multiplex (compared using repeated measures ANOVA, n=7). Data presented as mean +/- SEM 

per condition. * represent significant difference from vehicle, *<0.05, **<0.01, ***<0.001. 


