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Abstract 

 

Cell-cell adhesion junctions are essential for the maintenance of epithelial cell polarity 

and thus tissue integrity. However, the role of such proteins in collectively migrating 

mesenchymal cells has not yet been investigated. Here, I investigate the role of the 

polarity protein Par3 in the neural crest, a collectively migrating embryonic cell 

population. Par3 is localised to the adhesion complex and is important in the 

definition of apico-basal polarity in epithelial cells, but the localisation and function 

of Par3 in mesenchymal cells is not well characterised. Here, I show that Par3 is 

localised to the cell-cell contact in neural crest cells and is important for contact 

inhibition of locomotion, a phenomenon essential for appropriate migration of neural 

crest cells. Par3 promotes contact inhibition of locomotion by controlling microtubule 

dynamics at the site of cell-cell contact. A morpholino designed to inhibit Par3 

reduces microtubule depolymerisation at the site of cell-cell contact and abrogates 

contact inhibition of locomotion. This can be rescued by a low concentration of the 

microtubule depolymerising drug nocodazole, by inhibiting Rac1, or by coinjection 

with a morpholino against the Rac1-GEF Trio. Further, Trio and Par3 interact, as 

shown by co-imunoprecipitation, and localise at the cell contact, as shown by 

immunofluorescence. I propose that Par3 sequesters Trio and prevents Rac1 

activation at cell contacts, thus inhibiting Rac1 promotion of microtubule stability.  
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1.   The neural crest 

The neural crest is a transient, migratory cell population that is found in all vertebrate 

embryos. It is induced at the neural plate border and, as neurulation progresses, 

becomes located within the elevating neural folds. Neural crest cells delaminate from 

the dorsal neural tube and migrate extensively throughout the embryo, then 

differentiate into a wide variety of cell types (Fig. 1.1; reviewed in Theveneau and 

Mayor, 2012).  

Due to the wide variety of tissues to which the neural crest contributes, its aberrant 

development can lead to many different congenital diseases. Investigation of the 

neural crest naturally contributes to an understanding of these conditions, termed 

neurocristopathies, and to potential therapies to treat them. However, since the neural 

crest was first described by Wilhelm His (1868), embryologists have also used the 

neural crest as a model for studying tissue induction, fate determination and cell 

migration. More recently, the neural crest has caught the attention of those interested 

in stem-cell-based therapies due to its multipotency and ability to regenerate following 

ablation (reviewed in Crane and Trainor, 2006). Furthermore, the development of 

neural networks has been studied using subpopulations of neural crest cells (for 

example, Landman et al., 2011). Research into neural crest cell delamination, 

collective cell migration and invasion of the embryo has also been used to develop an 

understanding of cancer metastasis (reviewed in Theveneau and Mayor, 2012). Thus, 

the study of neural crest migration provides knowledge that can be applied across 

disciplines. 

The neural crest population can be divided based on position along the anterior-

posterior axis into the cranial, cardiac, vagal, trunk and sacral neural crest 



20 

 

 

 

Figure 1.1. Neural crest migration and derivatives 

Neural crest cells migrate from the dorsal aspect of the neural tube to many parts of 

the developing embryo. Once they have reached their targets, they differentiate to 

form smooth muscle, bone and cartilage, connective tissue, pigment cells and 

components of the nervous system.  

(From http://web.biologie.uni-bielefeld.de/cellbiology/index.php/research/neural-crest-

derived-stem-cells) 
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populations. The focus of this thesis is the cranial neural crest in X. laevis, which 

arises at the anterior neural plate border and differentiates into craniofacial structures 

including the cranial nerves and ganglia, smooth muscle and connective tissue, bone 

and cartilage, and dermis (reviewed in Theveneau and Mayor, 2011). As such, 

neurocristopathies associated with the cranial neural crest involve cleft lip, cleft 

palate, ear defects and eye defects. The cardiac neural crest contributes to the arteries 

and heart and the trunk neural crest forms the parasympathetic nervous system, while 

the vagal and sacral neural crest populations give rise to the enteric nervous system. 

Much of this introduction regards concepts relevant to all neural crest populations; 

nonetheless, relevant differences will be noted. 

 

1. 1.  Formation of the neural crest 

The complex process of neural crest formation from naïve ectoderm has been 

described using a two-step model of neural crest induction followed by neural crest 

maintenance (Sauka-Spengler and Bronner-Fraser, 2008; Steventon et al., 2009; 

Steventon et al., 2005). This leads to an epithelial-to-mesenchymal transition (EMT), 

the delamination of neural crest cells and their subsequent migration. 

1. 1. 1.  Neural crest induction 

Patterning of the embryonic ectoderm at the late blastula stage involves differentiation 

of neural from non-neural ectoderm. During gastrulation, high levels of retinoic acid 

(RA) and fibroblast growth factor (FGF) and low levels of Wnt pattern the embryonic 

ectoderm and lead to the formation of the neural plate border, which demarcates the 

boundary between neural and non-neural ectoderm (Mancilla and Mayor, 1996; 

Moury and Jacobson, 1990; Selleck and Bronner-Fraser, 1995). Neural crest 
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induction subsequently occurs at the neural plate border, and requires an increase in 

Wnt activity. It is the inhibition of Wnt signalling that restricts neural crest formation 

in the anterior neural fold (Carmona-Fontaine et al., 2007). Neural crest induction 

also requires inhibition of bone morphogenetic protein (BMP) signalling. Before 

gastrulation, BMP signalling occurs throughout the ectoderm. During neural crest 

induction, a dorso-ventral gradient of BMP signalling forms, with intermediate levels 

of BMPs at the presumptive neural crest between high levels in the epidermis and low 

levels in the future neuroectoderm. This is required - but not sufficient - to induce 

neural crest formation (Delaune et al., 2005; Garcia-Castro et al., 2002; LaBonne and 

Bronner-Fraser, 1998; Linker and Stern, 2004; Marchant et al., 1998). 

Both of these requirements - Wnt activity and BMP inhibition - are facilitated by the 

dorsolateral marginal zone (DLMZ), which is located adjacent to the presumptive 

neural crest at gastrula stages (Fig. 1.2). The DLMZ expresses Wnt8 and chordin (a 

BMP inhibitor) and is both required and sufficient for neural crest induction 

(Steventon et al., 2009). FGF and RA are also required for neural crest induction, 

although it has been shown that FGF activity is mediated via Wnt8 (Begemann et al., 

2001; Kengaku and Okamoto, 1993; Mayor et al., 1995; Villanueva et al., 2002). 

Another important signalling pathway is Notch-Delta, which has been suggested to 

control BMP expression in D. rerio, G. gallus and X. laevis and may promote neural 

crest development by repressing neurogenensis (Cornell and Eisen, 2000; Endo et al., 

2002; Glavic et al., 2004).  

This combination of neural crest inducers - intermediate levels of BMP signalling and 

the activity of Wnt, FGF, RA and Notch - sets in motion a genetic programme in the 

targeted ectodermal cells to express transcription factors that control cell 

specification. Three of the first genes activated in the presumptive neural crest and 

required for its specification in M. musculus, D. rerio and X. laevis are Msx1/2, Dlx5 
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Figure 1.2. Neural crest induction 

A diagramme summarising the temporal requirement for Wnt and BMP pathways 

during development. (A) At gastrula stage, the DLMZ is found adjacent to the 

presumptive neural crest and releases Wnt and chordin, a BMP antagonist. (B) At 

neurula stage, the intermediate zone is found adjacent to the neural crest and releases 

Wnt and BMP.  

(From Steventon et al., 2009) 
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and AP2 (Luo et al., 2002; Tribulo et al., 2003; Woda et al., 2003). These genes are 

initially expressed in a broad area and then restricted to the neural folds. This pattern 

corresponds with the assumed BMP gradient, and cys-regulatory elements in these 

genes suggest that they may be targets of BMP (Alvarez Martinez et al., 2002; Park 

and Morasso, 2002; Takebayashi-Suzuki et al., 2007). Further neural crest specifiers 

include Zic1/3 (Nakata et al., 1997; Nakata et al., 1998), Pax3 (Bang et al., 1997; 

Monsoro-Burq et al., 2005), Pax7 (Mansouri et al., 1996) and c-Myc (Bellmeyer et 

al., 2003). Zic1/3, Pax3, Pax7 and c-Myc are expressed in a more restricted domain 

than Msx1/2, Dlx5 and AP2 but in a wider area than the premigratory neural crest 

cells. 

1. 1. 2.  Neural crest maintenance 

The second step of neural crest development is maintenance, which occurs during 

neurulation. Wnt activity is required for neural crest maintenance (Carmona-Fontaine 

et al., 2007) and Wnt8 is expressed by the intermediate mesoderm (IM) in X. laevis 

(Steventon et al., 2009). In contrast to the induction step, BMP activity also is 

required for neural crest maintenance (Steventon et al., 2009). Chordin is no longer 

expressed adjacent to the neural crest at this stage, thus BMP activity increases (Sasai 

et al., 1994). Other survival signals are also upregulated during this time, such as FGF 

and RA. Interestingly, the IM is derived primarily from the DLMZ and, due to 

embryonic morphogenesis, becomes located directly underneath the neural crest at the 

neurula stage (Steventon et al., 2009). That the appropriate tissue changes both its 

position relative to the neural crest and the release of signals required by the neural 

crest during development is an illustration of the complex nature of embryogenesis 

and the importance of spatial and temporal regulation.  
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A gene network becomes activated to maintain the neural crest precursors. In X. 

laevis, Snail2 responds directly to Wnt signalling (Vallin et al., 2001). Snail1 is 

expressed slightly earlier than Snail2 and appears to work upstream of it (Aybar et al., 

2003) but both are required and sufficient for neural crest development (del Barrio 

and Nieto, 2002; Labonne and Bronner-Fraser, 2000; Mayor et al., 2000). Snail2 

promotes expression of other maintenance genes, including FoxD3, Sox9, Sox10, Id3 

and Twist (Aybar et al., 2003; Honore et al., 2003; Labonne and Bronner-Fraser, 

2000; Sasai et al., 2001). These genes ensure maintenance of the population by 

inhibiting apoptosis and reducing proliferation (Tribulo et al., 2004; Vega et al., 

2004). For example, Snail1 stops cells in the transition between G1 to S phases of 

mitosis. Interestingly, trunk neural crest cells must enter S phase synchronously as 

they delaminate, suggesting that this control of the cell cycle may be important for 

trunk neural crest cell delamination (Burstyn-Cohen et al., 2004).  

Following the maintenance phase, neural crest cells undergo an epithelial-to-

mesenchymal transition (EMT) and delaminate from the neuroepithelium. These 

processes will be discussed in more detail later in this Introduction. Briefly, EMT 

refers to the transition from a fully polarised epithelial tissue to a mesenchymal cell 

population, whereas delamination describes the movement of the neural crest cells 

away from the neuroepithelium. Some cell maintenance genes, such as Sox10, Sox9, 

Snail2 and FoxD3, are involved in these processes. For example, Sox10 and Sox9 

promote delamination; in fact, Sox9, Snail2 and FoxD3 can induce ectopic generation 

and delamination of neural crest cells when overexpressed together (Cheung et al., 

2005).  

Neural crest specification, EMT and delamination may be all coordinated by 

maintenance genes, but they are separate processes. Ectopic Sox9 expression, for 

example, can induce neural crest but not EMT (Cheung and Briscoe, 2003). Further, 
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inhibiting trunk neural crest cells from entering S-phase as they delaminate aborts 

delamination but does not affect the induction of genes involved in EMT, such as 

Snail2 (Burstyn-Cohen et al., 2004), indicating that EMT and delamination are two 

separate events, at least in the trunk. Nonetheless, in some cases the roles do overlap: 

Sox9 is important in specification and survival, but also coordinates with Snail2 to 

trigger EMT (Cheung et al., 2005).  

By stages 19-20 in the X. laevis embryo, the cranial neural crest has been defined to a 

specific region, adjacent to the neural tube. It has converted from a fully polarised 

epithelial tissue to a migratory, mesenchymal cell population. Migration commences 

shortly before closure of the anterior neural tube. Cranial neural crest cells migrate 

between the basal lamina beneath the epidermis and the developing dermomyotome, 

remaining close to the surface ectoderm. The population migrates ventrally down the 

side of the head and splits in the mandibular, hyoid and branchial streams, which 

enter the branchial arches and migrate extensively and invasively throughout the 

embryo towards their many targets. 

 

1. 2.  Neural crest migration 

This section will present an overview of cell migration and then focus on cranial 

neural crest migration. Cranial neural crest migration is facilitated by a number of 

mechanisms that can be separated into three broad groups: restriction, co-attraction 

and contact inhibition of locomotion (CIL). Both cell-cell and cell-environment 

interactions are important and cranial neural crest cells integrate these multiple inputs 

to achieve directional migration.  
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1. 2. 1.  Cell migration 

Cell migration is essential for many aspects of embryonic development and it also 

plays a key role in other processes such as wound healing and immune system 

function. Consequently, it has been intensely studied. Cell polarity and directional 

migration are intertwined concepts, as directional migration requires establishment 

and maintenance of polarity by the cell. Indeed, the first step of directional migration 

is the polarisation of the cell at both the morphological and molecular levels, leading 

to a cell with distinct front and rear ends. This can be in response to an external 

signal such as growth factors or the extracellular matrix (ECM), but can also occur 

spontaneously (reviewed in Sohrmann and Peter, 2003; see also Altschuler et al., 

2008). Thus, the mechanism controlling spontaneous polarisation needs to be 

integrated into the cellular response to external cues. To do this, small differences in 

the concentration of signalling molecules in the cytoplasm are amplified; this is 

sufficient to polarise cells (Altschuler et al., 2008). Common molecular pathways 

controlling cell polarity include the localisation of PI3K at the front of the cell and 

PTEN at the back (reviewed in Kay et al., 2008), polarised distribution of members of 

the Wnt planar cell polarity (PCP) pathway (for example, Carmona-Fontaine et al., 

2008), small GTPases (reviewed in Etienne-Manneville and Hall, 2002) and 

partitioning-defective (Par) proteins (reviewed in Goldstein and Macara, 2007). These 

pathways control cell structures and processes including the cytoskeleton, and will be 

discussed in more detail within this Introduction.  

Rho GTPases 

To polarise, a protrusion is extended at the front of the cell and protrusive activity is 

reduced elsewhere. A protrusion could be a large, flat lamellipodium or thin, rod-

shaped, actin-based filopodia. Typical Rho GTPases - RhoA, Rac1 and Cdc42 - 

control cell polarity by regulating different aspects of cytoskeletal dynamics, so are 
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important for migration (Fig. 1.3). Rac1 promotes the formation of lamellipodia by 

regulating actin polymerisation (Ridley et al., 1992), and Cdc42 controls the actin 

cytoskeleton in filopodia (Kozma et al., 1995). RhoA is generally localised at the back 

of the cell, particularly as Rac1 and RhoA mutually inhibit each other (Rottner et al., 

1999). However, all three GTPases can be activated at the front of migrating cells, 

where RhoA initiates the formation of a protrusion, which Rac1 and Cdc42 

subsequently reinforce and stabilise (MacHacek et al., 2009; Pertz et al., 2006). 

Rho GTPases are thus major regulators of cell polarity and migration. Cdc42 is active 

at the front of migrating cells and has been suggested to be required for cell polarity 

(Etienne-Manneville and Hall, 2002). However, in cranial neural crest cells, 

disrupting cell polarity by inhibiting PCP has no effect on the activity of Cdc42 

(Matthews et al., 2008). These results cannot rule out a contribution by Cdc42 in 

influencing polarity; nonetheless, Cdc42 activity appears not to be sufficient to 

regulate polarisation and protrusion formation in all cell types. 

Rac1, on the other hand, has been consistently implicated in protrusion extension and 

thus migration. D. melanogaster oocyte border cells are unable to migrate when they 

express dominant negative Rac (Murphy and Montell, 1996), and their motility and 

protrusion by leader cells can be induced by polarised activation of a photoactivatable 

Rac1 (Wang et al., 2010). Rac1 inhibition in D. rerio germ cells inhibits protrusion 

formation and migration (Kardash et al., 2010). Although M. musculus neural crest 

cells do not require Rac1 for homing (Fuchs et al., 2009), D. rerio neural crest cell 

chemotaxis is regulated by Rac1 (Theveneau et al., 2010). Thus, Rac1 appears to be 

an important controller of migration in vivo, including in the neural crest of some 

species. 



29 

 

 

 

Figure 1.3. Rho GTPases in cell migration 

Cell polarity, and thus directional migration, is influenced by polarised activity of 

small GTPases. Rho GTPases control actin dynamics and cell-substrate adhesion as 

well as microtubule dynamics. At the front of the cell, Cdc42 activity promotes 

filopodia formation, and Rac1 activity promotes lamellipodia formation. RhoA 

promotes retraction at the back of the cell.  

(From Mayor and Carmona-Fontaine, 2010). 
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Cell-substrate interactions 

The protrusion is stabilised by cell-substrate adhesions called focal complexes that, at 

least in vitro, have a punctate distribution. Rac1 is required for focal complex 

assembly at the front of the cell (Rottner et al., 1999). Most of these quickly turnover 

as the lamellipodium moves over them, but some are induced by RhoA to mature into 

larger, more stable focal adhesions (Rottner et al., 1999). Focal adhesions at the front 

of the cell are mostly stationary relative to the substrate, whereas those at the rear and 

sides of the cell can move inwards with the retracting edge before disassembling 

(Kaverina et al., 2000; Smilenov et al., 1999). Focal complexes and adhesions are 

made up of integrins and a range of adaptor proteins, through which they are linked 

to the actin cytoskeleton. Actin filaments associate with myosin motors to form stress 

fibres, which can be induced by RhoA and which pull on focal adhesions to provide 

traction and contraction forces (Ridley and Hall, 1992). Traction pulls the cell along 

the substrate, extending the cell. RhoA acts via Rho-associated protein kinase 

(ROCK) to phosphorylate myosin and inhibit its phosphatase, promoting actomyosin 

contractility at the back of the cell, where focal adhesions are disassembled and the 

rear is retracted. 

Upon delamination from the dorsal neural tube, neural crest cells express the 

appropriate integrins to attach and migrate along the ECM. ECM proteins 

fibronectin, collagen and laminin are involved in trunk neural crest cell migration in 

G. gallo (Bilozur and Hay, 1988), whereas in X. laevis, fibronectin is located in the 

cranial neural crest migratory streams (Epperlein et al., 1988), and acts as a 

permissive substrate. Integrin-α5β1 upregulated in migrating X. laevis neural crest 

cells, possibly due to the activity of neural crest specifiers FoxD3 and Sox10 (Cheung 
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et al., 2005), allowing them to migrate on fibronectin rather than vitronectin, laminin 

or collagen (Alfandari et al., 2003). 

Neural crest cells also interact with fibronectin through Syndecan-4. Syndecan-4 binds 

fibronectin and negatively regulates Rac1 in cranial neural crest cells. It is necessary 

for directional migration (Matthews et al., 2008) and appears to be required for the 

formation of focal adhesions (Woods et al., 2000). It may be involved in reducing 

Rac1 activation at lateral and trailing edges; indeed, loss of Syndecan-4 increases 

Rac1 activation and lamellipodia protrusion around the whole cell (Matthews et al., 

2008). However, the effect of the syndecan-4—fibronectin interaction cannot be 

explained solely by Rac1 inactivation, so Syndecan-4 might also be involved in the 

PCP pathway (Matthews et al., 2008).   

Neural crest cells not only attach to the ECM to facilitate their migration, but also 

degrade it in order to form a path along which to migrate. Remodelling of the ECM is 

achieved by the expression of a number of matrix metalloproteinases (MMPs) and the 

related a-distintegrin-and-metalloproteinases (ADAMs). MMPs are endopeptidases 

that degrade ECM proteins and are involved in processing molecules such as cell 

surface receptors. ADAMs are cell-surface-bound glycoproteins that both remodel the 

ECM and participate in cell-cell adhesion by cleaving transmembrane proteins. A 

number of ADAMs are expressed in X. laevis cranial neural crest cells, of which only 

ADAM13 is known to be required for neural crest migration (Alfandari et al., 2001). 

As both integrins and Syndecan-4 - which are both involved in cell-fibronectin 

interactions - are able to interact with ADAMs, it has been suggested that proteinases 

may facilitate neural crest migration by degrading the ECM to reveal cryptic cell-

binding sites (Theveneau and Mayor, 2011).  
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Degradation of the ECM can also release otherwise trapped growth factors and 

signalling molecules. Indeed, positive signals involved in cranial neural crest migration 

and expressed along the neural crest migratory pathway, including Sdf1 and members 

of the FGF, VEGF and PDGF families, interact directly with fibronectin (Martino and 

Hubbell, 2010; Pelletier et al., 2000). MMPs and ADAMs could help to shape 

gradients from homogenous expression patterns; for example, MMP2, which is 

expressed by X. laevis cranial neural crest cells (Tomlinson et al., 2009), can cut and 

inactivate the chemokinetic molecule stromal-cell derived factor (Sdf) 1 (or C-X-C 

chemokine ligand (Cxcl) 12; McQuibban et al., 2001). So, theoretically, neural crest 

cells could digest Sdf1 as they migrate to create a gradient in front of themselves. It is 

interesting to note that some molecules relevant to cranial neural crest cell migration, 

such as PDGF, stimulate expression of MMPs (Robbins et al., 1999). This might form 

a feedback loop in which MMPs and ADAMs access and degrade ligands trapped 

within the ECM in order to form a gradient, in turn eliminating the signals that 

regulate proteinase expression (Theveneau and Mayor, 2011). 

Cell-cell interactions 

Thus, neural crest cells interact with the ECM as they migrate. However, as cranial 

neural crest cells delaminate almost simultaneously and migrate as a group, they also 

interact with neighbouring neural crest cells through transmembrane glycoproteins, 

cadherins. N-cadherin is localised to cell-cell contacts, where it indirectly inhibits 

Rac1 and promotes protrusion extension in the opposite direction (Theveneau et al., 

2010). Downregulating N-cadherin expression increases in ectopic protrusions 

between cells and promotes dispersion of cells (Theveneau et al., 2010). Another 

cadherin, cadherin-11, is expressed in cranial neural crest cells before and during 

migration in X. laevis (Vallin et al., 1998). It localises to cell-cell contacts like N-

cadherin, but also to protrusions and the cell-substrate interface in vitro (Kashef et al., 
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2009). Knocking down cadherin-11 prevents migration in vivo and cells in vitro have 

reduced filopodia and cell spreading, but overexpression of cadherin-11 also prevents 

neural crest migration (Borchers et al., 2001; Kashef et al., 2009). The binding 

partners of cadherin-11 and its precise role have not yet been elucidated. However, 

two interactions through intracellular domains are important for migration: one is 

with the cell-cell adhesion molecule β-catenin and the other is with the Rac1 and 

RhoA guanine-nucleotide exchange factor (GEF) Trio (Kashef et al., 2009). The 

interaction with Trio is presumed to regulate small GTPase activity, as Trio, RhoA, 

Rac1 or Cdc42 are sufficient to rescue cell spreading and migration in cadherin-11 

knockdown cells and embryos (Kashef et al., 2009). As such, it may be that cadherin-

11 promotes the activation of, or otherwise controls, small GTPases to regulate 

protrusion. Interestingly, ADAM13 is able to cleave cadherin-11 extracellularly to 

separate the extracellular domain from the transmembrane-cytoplasmic domains 

(McCusker et al., 2009). In doing so, it decreases cadherin-11-dependent adhesion 

without affecting cell signalling (McCusker et al., 2009). As MMP2 can digest N-

cadherin, it seems that, as well as ECM structure and cell-ECM adhesions, MMPs and 

ADAMs can influence cell-cell adhesions (McCusker et al., 2009; Monsonego-Ornan 

et al., 2012). Another cadherin, the protocadherin PCNS, is also expressed in X. 

laevis cranial neural crest and is required for migration in vivo (Rangarajan et al., 

2006); however, the exact function has not yet been elucidated. 

1. 2. 2. Restriction of the neural crest streams 

Shortly after delamination from the neuroepithelium, the cranial neural crest cell 

population splits into three distinct streams, leaving two neural crest-free areas 

between them. The migratory route of each stream is well defined: it may be, in part, 

that neural crest cells migrate through permissive spaces between structures such as 

the branchial pouches. However, although this could be an important factor, it is not 
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sufficient to restrict migration to the pathways. Rather, neural crest cells express 

proteins whose complementary, restrictive factors are expressed by the surrounding 

tissue. These include semaphorin/neuropilin, Eph/ephrin and Slit/Robo interactions. 

Restrictive cues define the migratory streams by lining corridors within which neural 

crest cells migrate. They are expressed differently along the body axis and the 

receptors expressed by neural crest cells seem to change accordingly. Thus, these 

molecules may also be involved in directing different neural crest subpopulations to 

their respective targets. 

Semaphorins/neuropilins 

Members of the class 3-semaphorin family - 3A, 3F and 3G - are expressed by tissues 

surrounding the cranial neural crest streams and their associated neuropilin receptors 

- Npn1 and Npn2 - are expressed by cranial neural crest cells (Eickholt et al., 1999; 

Gammill et al., 2007; Koestner et al., 2008; Osborne et al., 2005; Yu and Moens, 

2005). Semaphorins are inhibitory to cranial neural crest migration; as such, this 

juxtaposition keeps neural crest cells in their appropriate streams. Indeed, neural crest 

cells preferentially avoid semaphorin-containing areas and inhibition of semaphorin 

signalling causes ectopic migration of cranial neural crest cells between the normal 

streams in M. musculus (Gammill et al., 2007). However, this signalling pathway is 

not restricted to the cranial neural crest. In M. musculus, Npn2-/- and Sema3-/- 

embryos show that SEMA3F-NPL2 signalling also guides migration of trunk neural 

crest cells through the anterior half of the somite (Gammill et al., 2006). X. laevis 

cranial neural crest cells have also been shown to express neuropilins (Koestner et al., 

2008), although the role of semaphorin-neuropilin signalling in X. laevis has not yet 

been elucidated.  
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Ephs/ephrins 

Bidirectional signalling occurs between the receptor tyrosine kinase Ephs and their 

ephrin ligands. Eph-ephrin interactions are promiscuous and there is variation in the 

combinations of ephrins and Eph receptors expressed by the cranial neural crest and 

the surrounding mesoderm in animal models (Mellott and Burke, 2008; Smith et al., 

1997; Winning and Sargent, 1994). Nonetheless, their functions appear to be 

conserved. Ephs and ephrins are involved in sorting cells into a specific stream 

according to their origin along the anterior-posterior axis and provide repulsive cues 

to restrict neural crest migration into specific areas of the embryo. This is illustrated 

by experiments showing that interrupting normal Eph or ephrin expression can lead 

to either invasion of the surrounding tissue by neural crest cells or the mislocalisation 

of neural crest cells into the wrong stream without perturbing neural crest-free areas 

(Smith et al., 1997). For example, ephrin-B2 is expressed in the second branchial arch 

and acts as a repellant for neural crest cells expressing EphA4 and EphB1, such as 

those that migrate to the third and fourth branchial arches (Smith et al., 1997). This 

signalling pattern appears to prevent intermingling between streams. However, as well 

as Ephs, M. musculus neural crest cells also express ephrin-B1, which is required cell-

autonomously in cranial neural crest cells and controls directional migration towards 

the target tissue (Davy et al., 2004). 

Eph-ephrin signalling is also important in the migration of trunk neural crest cells. 

Ephrin-B1 and -B2 are expressed in the posterior half of each somite in G. gallo and 

M. musculus and restrict the migration of neural crest cells, which express cognate 

Eph receptors, to the anterior somite half (Krull et al., 1997; Santiago and Erickson, 

2002; Wang and Anderson, 1997). Eph-ephrin signalling in G. gallo also repels those 

trunk neural crest cells that delaminate first, which express EphB, from the 

dorsolateral pathway, which contains the opposing ephrin (Santiago and Erickson, 
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2002). Thus, early migrating trunk neural crest cells take the ventromedial pathway 

and differentiate into dorsal root and sympathetic ganglia and neural crest cells that 

delaminate later migrate along the dorsolateral pathway to become melanoblasts 

(Santiago and Erickson, 2002). 

Slit/Robo 

Slit ligands and their Robo receptors are involved in the migration of truck neural 

crest, but they have not yet been investigated in cranial neural crest cell migration. In 

the trunk, Slit2 is expressed in the dorsolateral pathway and restricts early migrating 

trunk neural crest cells, which express Robo1 and 2, to the ventromedial migratory 

pathway (Giovannone et al., 2012; Jia et al., 2005). As with Eph/ephrin signalling, 

this prevents premature migration into the dorsolateral pathway. 

1. 2. 3. Chemoattraction 

A number of molecules are involved in the positive regulation of neural crest cell 

migration; nonetheless, the existence of a chemoattractant for neural crest cells is still 

controversial. G. gallo cranial neural crest cells migrate towards a VEGF source in 

vitro and to an endogenous source, the second branchial arch, in vivo (McLennan et 

al., 2010). Nonetheless, it is not necessarily clear that VEGF acts as a 

chemoattractant, as an ectopic source of VEGF in vivo slightly changes migration but 

does not induce ectopic migration. Likewise, PDGF receptor (PDGFR) α is expressed 

by cranial neural crest cells in X. laevis and M. musculus (Ho et al., 1994; Schatteman 

et al., 1992; Takakura et al., 1997) and its ligands, PDGFA and PDGFC, are 

expressed in the branchial arches and oral and nasal cavities (Ding et al., 2000; 

Tallquist et al., 2000). Mutations in PDGFRα in M. musculus lead to defects 

associated with a disruption in neural crest development, such as cleft palate and 

cranial bone defects (Tallquist and Soriano, 2003).  However, neural crest cells are 
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still able to colonise the face in these mice, suggesting that the role of PDGFRα is 

either to regulate differentiation or to promote migration of only a small subset of 

neural crest cells (Tallquist and Soriano, 2003). Thus, the precise influence of PDGF 

on cell migration, if there is one, is yet to be elucidated. Later in development, netrins 

expressed by the submucosal ganglia and pancreas may act as chemoattractants for 

enteric neural crest cells, which express the netrin receptor DCC (Jiang et al., 2003). 

Enteric neural crest cells are attracted towards these tissues or pure netrin. However, 

netrin also has an effect on cell survival (Jiang et al., 2003) and migratory ability is 

linked to population size (Simpson et al., 2007). This makes it difficult to determine 

definitively the contribution of chemoattraction to neural crest migration 

Another factor that has been studied as a potential neural crest attractant is Sdf1. 

Neural crest cells express the Sdf1 receptor, C-X-C chemokine receptor (Cxcr) 4. Sdf1 

signalling is required for the positioning of a neural crest derivative, the dorsal root 

ganglia, in M. musculus (Belmadani et al., 2005). Craniofacial development and 

melanophore patterning are dependent on Sdf1 in D. rerio (Olesnicky Killian et al., 

2009; Svetic et al., 2007) and D. rerio melanocytes will migrate to an ectopic Sdf1 

source (Svetic et al., 2007).  Sdf1 also promotes migration of trunk neural crest cells 

as they invade the hair follicles (Belmadani et al., 2009). Sdf1 attracts X. laevis cranial 

neural crest cells in vitro (Theveneau et al., 2010). Cxcr4 is activated by Sdf1 and 

promotes Rac1 activation at the leading edge of the cell, stabilising lamellipodia and 

promoting directional migration. Unsurprisingly, its expression is also required for 

normal neural crest migration in vivo in X. laevis and D. rerio embryos and 

misexpression can lead to either ectopic cranial neural crest cell migration or the early 

halt of migration as the cells cluster around an Sdf1 source (Olesnicky Killian et al., 

2009; Theveneau et al., 2010). 
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Nonetheless, the question as to whether or not these proteins act as chemoattractants 

in vivo remains unresolved. Some evidence suggests the contrary: for example VEGF, 

PDGFA, PDGFC and FGF ligands appear to be expressed homogeneously along the 

migratory pathways rather in a gradient. This is also true of Sdf1 mRNA, which 

appears to be distributed homogeneously in the ectoderm surrounding the neural crest 

(Theveneau et al., 2010), and along the path of melanocytes migrating into hair 

follicles (Belmadani et al., 2009). However, it is possible that there is a protein 

gradient and, in X. laevis embryos, Sdf1 expression alters as development progresses, 

moving ventrally to remain in front of neural crest cells as they migrate and appearing 

between them as they split into streams. Nonetheless, individual neural crest cells in 

vivo can migrate in the opposite direction to the main population of neural crest cells, 

which would be against the supposed gradient. Thus, it is not yet determined whether 

these signals are chemokinetic or chemotactic cues. 

A novel method of interaction between neural crest cells has recently been established. 

The complement factor C3a is released by neural crest cells and the same cells also 

express the C3a receptor (C3aR; Carmona-Fontaine et al., 2011). These two 

molecules facilitate the co-attraction of neural crest cells to each other: neural crest 

cells both release the chemoattractant and express its receptor. Activation of the C3a 

receptor leads to Rac1 activation and so promotes migration towards the C3a source. 

This appears to be a mechanism to maintain neural crest cells in a group as they 

migrate. Interestingly, these molecules have, until recently, been described only in the 

immune system, where they form part of the complement cascade of proteins released 

upon recognition of a foreign cell. Such a mechanism of co-attraction has not 

previously been reported in animal cells, making it particularly novel. 
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1. 2. 4. Contact inhibition of locomotion 

The molecular interactions described above provide mechanisms for cellular 

migration itself and for the restriction of neural crest cells within their appropriate 

migratory paths. However, this is not sufficient to drive directional migration. A 

phenomenon known as contact inhibition of locomotion (CIL) is also required (Fig. 

1.4).  

CIL was first described by Abercrombie and Heaysman (1953). They cultured two 

embryonic G. gallo hearts close together and analysed collisions between fibroblasts 

emerging from the opposing explants. They observed that fibroblasts lower their 

speed in proportion to the number of cells that they encounter; illustrating that 

contact with other cells reduces cell motility. They also noticed that fibroblasts 

coming into contact with each rarely migrate on top of each other, but instead stop 

migrating or disperse elsewhere. They concluded that a fibroblast would preferentially 

adhere to the substrate than to a neighbouring cell and named this contact inhibition 

of locomotion. They also noticed that neighbouring cells tended to align with each 

other and that explants tended to form a monolayer and suggested that this was also 

due to CIL. CIL was suggested to facilitate wound healing, in that constraints on 

fibroblast migration at cell-cell contacts were released upon wounding, and that 

fibroblast migration into the free space after wounding would lead to wound closure 

(Abercrombie, 1970). In further work, Abercrombie and Ambrose (1958) observed 

that cell protrusions were retracted upon contact and that a protrusion was then 

extended in another part of the cell. These details were added to the previous 

observations to lead to the more complete definition of CIL as: “the phenomenon of a 

cell ceasing to move in the same direction after contact with another cell”. 
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Figure 1.4. Contact inhibition of locomotion 

(A) When two individual neural crest cells come into contact, contact inhibition of 

locomotion leads them to stop migrating, repolarise and migrate away from each 

other in another direction. This diagramme illustrates the process of contact 

inhibition of locomotion as occurring in distinct steps for simplicity, but in actuality 

this is not necessarily the case. (B) In a group of neural crest cells, contact inhibition 

of locomotion prevents cells within the group from extending protrusions in any 

direction. Only cells at the group edge are able to extend protrusions, and they are 

only able to do so away from the group. In this way, contact inhibition of locomotion 

can promote cell dispersion.  

(From Mayor and Carmona-Fontaine, 2010).    
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Neural crest cells also exhibit CIL (Carmona-Fontaine et al., 2008; Erickson, 1985). 

Indeed, the first description of CIL in vivo was by Carmona-Fontaine and colleagues 

(2008), who observed CIL between cranial neural crest cells of X. laevis and D. rerio. 

Cranial neural crest cells from X. laevis also exhibit CIL when cultured on a 

fibronectin matrix in vitro (Carmona-Fontaine et al., 2008). In the context of neural 

crest cells, CIL is described as leading to two individual colliding cells stopping 

migration upon contact and then migrating in another direction. This is has been 

proposed to correlate with the collapse of protrusion at the site of contact and the 

subsequent extension of a protrusion in another direction (Carmona-Fontaine et al., 

2008).  

At the molecular level, the Wnt-PCP pathway appears to mediate CIL in neural crest 

cells (Carmona-Fontaine et al., 2008). Wnt signalling is complicated as it involves a 

number of different pathways that each involve many different proteins. However, in 

CIL in neural crest cells, the non-canonical PCP pathway is required (Carmona-

Fontaine et al., 2008; De Calisto et al., 2005), and will thus be the only pathway 

explained here. When two neural crest cells contact each other, Wnt11 from each cell 

appears to bind to Frizzled7 in its neighbour. This leads to the recruitment of 

Dishevelled to the membrane of both cells at the site of cell-cell contact. Dishevelled 

activates a number of other proteins including RhoA (Matthews et al., 2008). RhoA 

activation reorganises the actin cytoskeleton, leading to the collapse of protrusions at 

the site of cell-cell contact, and inhibits Rac1. Asymmetrical activation of Rac1, with 

higher activation of Rac1 away from the contact, promotes protrusion away from the 

site of cell-cell contact and leads to a change in cell polarity and in the direction of 

migration. 
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Disturbing the activity of Wnt-PCP pathway components in X. laevis or D. rerio 

inhibits neural crest migration in vivo and in vitro (Carmona-Fontaine et al., 2008; 

De Calisto et al., 2005). This was first illustrated by De Calisto et al (2005), who 

showed that downregulating PCP signalling in X. laevis embryos inhibits neural crest 

migration. The authors concluded that the PCP pathway was necessary for correct 

polarisation of neural crest cells. Wnt signalling between neural crest cells is thought 

to activate the PCP pathway in both cells at the site of contact (Carmona-Fontaine et 

al., 2008).  

As well as being able to interact with fibronectin in neural crest cells, Syndecan-4 is a 

modulator of PCP signalling during convergent extension in X. laevis gastrulation, 

perhaps through direct interaction with Dishevelled and Frizzled7 (Munoz et al., 

2006). Syndecan-4 has been shown to activate a pathway that, in parallel with PCP 

signalling, also leads to Rac inhibition (Matthews et al., 2008). Levels of Rac 

signalling are thus tightly regulated in neural crest cells, perhaps reflecting that front-

back polarity of small GTPase activity is vital for the initiation and maintenance of 

cell polarity. Indeed, the importance of regulating small GTPase activity may explain 

why both inhibition and overexpression of Syndecan-4 or PCP signalling inhibit 

neural crest cell migration (De Calisto et al., 2005; Matthews et al., 2008). N-

cadherin is also required for CIL at cell-cell contact (Theveneau et al., 2010). 

Inhibition of N-cadherin leads to an increase in Rac activity at the site of cell-cell 

contacts. It is interesting to note that PCP, Syndecan-4 and N-cadherin signalling all 

converge to regulate small GTPase activity at the cell-cell contact, by either promoting 

RhoA or inhibiting Rac1 at this site. Nonetheless, direct interactions between N-

cadherin, Syndecan-4 and PCP signalling have not yet been elucidated. 

Importantly, CIL does not occur between neural crest cells and other cell types 

(Carmona-Fontaine et al., 2008). This presumably allows neural crest cells to invade 
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the surrounding tissue as they migrate towards their targets. This is reminiscent of 

malignant mesenchymal cells: sarcoma cells do not exhibit CIL upon contact with 

fibroblasts but continue to extend processes and are able to move on top of them 

(Abercrombie and Ambrose, 1958). As such, it has been suggested that CIL could be a 

control mechanism that fails in the case of metastatic cancer (Abercrombie, 1979; 

Vesely and Weiss, 1973). That is, if a cell is usually constrained to a certain location 

by contact with the cells surrounding it, a loss of CIL could allow it to migrate away 

from this location and into other tissues as is seen in metastasis. 

Some (Paddock and Dunn, 1986), but not all (Abercrombie and Ambrose, 1958), 

malignant cells maintain the ability to undergo CIL when contacting one another but 

do not exhibit CIL upon contact with other cell types. When a group of malignant 

cells migrate together, this might enhance metastasis by promoting cancer cell 

dissemination (by encouraging the malignant cells to move away from each other) 

without impeding invasion (by allowing the cells to move through tissues consisting of 

other cell types). The role of CIL in collective migration will be discussed in more 

detail in the following section. As a brief aside, it is interesting to note that Eph-

ephrin signalling has also been associated with CIL in tumourigenic cells (Astin et al., 

2010), considering the role of Eph-ephrin signalling in neural crest migration (see 

Restriction of neural crest migration, page 33),. However, a possible role for Eph-

ephrin signalling in CIL has not been investigated in neural crest cells. 

1. 2. 5. Collective migration 

The work of Abercrombie and colleagues was ultimately the study of how the 

behaviour of one cell is influenced by others. Nonetheless, the appreciation that most 

motile cells do not move in isolation in vivo but interact with their neighbours is a 

relatively new concept and exactly how cells interact with each other during 

migration is not yet fully understood. 
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In the multicellular organism, cells can move in groups rather than individually. The 

term ‘collective cell migration’ describes groups of cells that move together and in 

contact with each other, and that influence each other while migrating (reviewed in 

Rorth, 2009). Variations of collective migration have been described: sheets of 

mesenchymal cells, as found the developing head mesoderm in amphibians 

(Winklbauer and Selchow, 1992); clusters of epithelial cells, such as the lateral line in 

D. rerio embryos and border cells in D. melanogaster embryos (Haas and Gilmour, 

2006; Inaki et al., 2012); chains, as observed in endothelial cells in angiogenesis 

(Wimmer et al., 2012); and streaming, in mammalian endoderm (Migeotte et al., 

2010). There is an element of diversity between the different modes of collective 

migration, but there are also common themes. They often migrate directionally and 

all exhibit protrusions at the leading edge. Although it has not been definitively 

determined, it may be that aspects of CIL, such as protrusion inhibition, occur within 

cell clusters during collective cell migration (Theveneau and Mayor, 2011). 

It is the last form of collective cell migration mentioned above - streaming - that has 

been described for cranial neural crest cells. Cranial neural cells delaminate 

continuously and in large numbers; as such, they experience maintain contact with 

each other as they commence migration. The cells move together in a loose cluster, 

within which individual cells can be identified but are constantly interacting with each 

other. CIL means that cells in the middle of the group – surrounded on all sides by 

other neural crest cells - are inhibited from extending protrusions on all sides and only 

cells at the edge of the group are able to extend protrusions (Fig. 1.4B). Once one 

takes into account the repulsive factors on each side of the migrating neural crest 

streams, which prevent sideways migration of cells into these areas, only the “leader” 

cells at the front of the stream are able to effectively extend protrusions. Furthermore, 

leader cells are only able to extend protrusions away from the group due to CIL 
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preventing extension towards the cells contacting them from behind. As leader cells 

extend protrusions and migrate forward, they leave a gap between themselves and the 

cells directly behind them. The second row of cells can now extend a protrusion in 

this direction and so migrate into and close the gap, making contact again with the 

leader cells. This again promotes forward movement of the leader cells, and so on. 

Inert beads inserted into the neural crest region ‘migrate’ in a manner similar to 

neural crest cells, suggesting that at least some of the mechanisms driving neural crest 

cell migration are passive and that non-motile cells, such as those undergoing mitosis, 

can be carried by their motile neighbours (Jesuthasan, 1997). 

External cues including both repulsive (Sema/Npn, Eph/ephrin) and attractive factors 

(such as VEGF and Sdf1; McLennan et al., 2010; Theveneau et al., 2010), play an 

important role in directing neural crest migration. However, neural crest cells can also 

migrate directionally in vitro, where these signals – and, presumably, most others 

influencing neural crest migration - are absent. Thus, directional collective migration 

does not require external signals, but perhaps allows the cells to better integrate them. 

Indeed, chemotaxis is dependent on cell-cell interactions as it requires high cell density 

and is lost when cells are dispersed (Theveneau et al., 2010). But, groups of as few as 

three cells are able to migrate towards an Sdf1 source as effectively as large groups of 

hundreds of cells (Theveneau et al., 2010). Even increasing the density of individual 

cells (causing instances of cell-cell contact and so CIL to occur more frequently) 

increases the effectiveness of chemotaxis (Theveneau et al., 2010). Individual cells 

exhibit a number of small, short-lived protrusions in all directions, whereas cells in 

contact with other cells do not have protrusions at the cell contact, but rather have 

larger, stable protrusions oriented away from the site of cell-cell contact (Theveneau 

et al., 2010). As such, cells in contact with other cells are more polarised than 

individual cells. Sdf1 stabilises protrusions but does not induce the formation of 
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protrusions (Theveneau et al., 2010); it is, therefore, not surprising that cell-cell 

interaction leading to protrusion extension is required for collective chemotaxis. 

Thus, the intrinsic polarity of these cells, caused by CIL and mediated by co-

attraction, is required for the adequate response to extrinsic signals. Indeed, balances 

between repulsion (CIL) and attraction (co-attraction) have also been used to explain 

swarming behaviour in collective animal migration (Buhl et al., 2006; Romanczuk et 

al., 2009). 

A number of factors allow neural crest cells to migrate in a collective manner (Fig. 

1.5; Theveneau and Mayor, 2011). As discussed above, neural crest migration is 

facilitated by the restriction of streams by repulsive factors, keeping the neural crest 

within certain areas of the embryo. Co-attraction exhibited between neural crest cells 

keeps them together in a group. CIL is essential for neural crest migration (Carmona-

Fontaine et al., 2008), but CIL alone leads to cell dispersion and thus decreases the 

frequency of cell-cell contacts, with the consequence of more randomised cell polarity 

and inefficient directional migration. Cell density is essential for the efficient 

migration of neural crest cell populations (Carmona-Fontaine et al., 2011; Landman 

et al., 2011). One way of maintaining high cell density is to maintain strong cell-cell 

adhesion; however, this would also interfere with collective migration. So, 

coattraction counterbalances dispersion by maintaining neural crest cells at a density 

that allows interactions. Once neural crest cells make new contacts, cell adhesion 

could play a transient role in maintaining high cell density and cell-cell interactions, 

thus leading to cell polarisation and a full response to chemoattractants. Further, 

chemokinesis due to the presence of Sdf1 enhances neural crest cell migration. The 

sum of these signals and interactions drive the directional, collective migration of the 

cranial neural crest cells. Indeed, computer models have confirmed the results of wet 
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lab studies, that all of these factors are required for neural crest cell migration 

(Carmona-Fontaine et al., 2011). 
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Figure 1.5. Signal integration in neural crest migration 

A summary of different signalling pathways involved in regulating neural crest 

migration. External inhibitors and cell-cell interactions including Eph/ephrins and 

contact inhibition of locomotion lead to protrusion collapse and identification of the 

cell rear by promoting RhoA activation. Co-attraction through C3a and chemotactic 

or chemokinetic cues activate Rac1 and promote protrusion extension.  

(From Theveneau and Mayor, 2012). 
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2.   Epithelial cell-cell interactions 

Cell-cell adhesions are essential for the organisation of cells into tissues during 

embryonic development, as well as in cell growth, migration and differentiation 

(reviewed in Takeichi, 1991). Epithelial sheets consist of fully polarised epithelial cells 

with a basolateral cell surface alongside the basement membrane and an opposing 

apical edge. Full development of apicobasal polarity requires organisational cues from 

cell-cell and cell-ECM adhesions (reviewed in Yeaman et al., 1999). The boundary 

between the apical and basolateral sections is identified and reinforced by the apical 

complex, which forms asymmetrically at the apical region of lateral cell-cell contacts 

and is composed of three major adhesive structures: the tight junction, the adherens 

junction and desmosomes (Fig. 2.1; St Johnston and Ahringer, 2010). Each structure 

comprises at least one membrane-bound adhesion molecule linking neighbouring cells 

and bound to cytoplasmic scaffold proteins, each of which has multiple protein–

protein binding motifs. Scaffolding proteins can link various sub-complexes, organise 

signalling complexes and link to the cytoskeleton (for example Ligon et al., 2001; also 

reviewed in Fukata et al., 2002). Some proteins at the apical junctional complex also 

act as transcriptional factors of gene expression (Balda and Matter, 2003). Together, 

they maintain cell polarity and tissue structure. 

Desmosomes consist of transmembrane desmogleins, which anchor intermediate 

filaments such as vimentin to the cortex through desmoplakins. Desmosomes are 

required for a fully polarised epithelial phenotype (Perez-Moreno et al., 2003), but 

their formation is not well understood and they are not relevant to this thesis. Thus, 

they will not be discussed further in this Introduction. 
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Figure 2.1. The epithelial adhesion complex 

The vertebrate epithelial adhesion complex includes the adhesion junction and tight 

junction and is found at the apical region of lateral cell-cell contacts. (A) The tight 

junction includes proteins such as JAMs, occludins and claudins. Adherens junctions 

are found laterally to tight junctions and include cadherins and nectins. (B) A network 

of polarity proteins is required to establish and maintain the adhesion complex in the 

epithelial cell.  

(Adapted from St Johnston and Ahringer, 2010). 



 
 

 51 

 
2. 1.  Adherens junctions 

The formation of cell-cell contacts and the development of intercellular junctions 

begins with actin filaments from adjacent cells meeting and forming multiple transient 

contacts, which are subsequently stabilised (McNeill et al., 1993). These are thought 

to serve as a landmark, providing positional cues for membrane growth and the 

recruitment of other proteins (Yeaman et al., 1999). The first spot-like cell-cell 

contacts are primordial adherens junctions and contain typical adherens junction 

proteins such as E-cadherin, α-catenin and β-catenin, but also typical tight junction 

proteins including zona occludens (ZO)-1 and junctional adhesion molecule (JAM)-A 

(Ebnet et al., 2001; Suzuki et al., 2002; Yonemura et al., 1995). Multiple primordial 

adherens junctions at early contact sites fuse as the cells start to polarise, following 

which the primordial junctions separate into adherens and tight junctions as they 

mature (Ando-Akatsuka et al., 1999). 

2. 1. 1.  Components of the adherens junction 

Adherens junctions anchor neighbouring cells to one another through Ca2+-dependent, 

homophilic interactions between cadherins. Cadherins are absolutely required for cell-

cell adhesion formation: depletion of Ca2+ results in a loss of junctions despite the fact 

that other adhesion molecules such as catenins are not Ca2+-dependent (Takeichi, 

1977). Further, transfection of non-polarised fibroblasts with a construct encoding E-

cadherin induces polarisation into apical and basolateral domains (McNeill et al., 

1990). The cytoplasmic tail of classical cadherins (such as E-cadherin) binds to 

intracellular catenins such as α-catenin, β-catenin, γ-catenin and p120-catenin 

(reviewed in Kemler, 1993). The protein regions involved in this interaction are highly 

conserved, highlighting the importance of interaction between these proteins. Indeed, 

deletion of β-catenin in D. melanogaster embryos inhibits the formation of adherens 
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junctions and thus development of an epithelium and cellular structures (Cox et al., 

1996). The adhesive activity of E-cadherin is dependent on its association with β-

catenin (Ozawa et al., 1990), which is interesting as it implies that intracellular 

interactions affect extracellular adhesions. This association is also required to protect 

β-catenin from degradation. There is also a reciprocal regulation of localisation of E-

cadherin and p120-catenin, although in this case p120-catenin regulates E-cadherin 

turnover (Davis et al., 2003).  

Catenins are known to link cadherins to the actin cytoskeleton; however, it appears 

that α-catenin forms a heterodimer with β-catenin but can interact with F-actin only 

as a homodimer (Drees et al., 2005; Yamada et al., 2005). It has also been reported 

that cadherins can interact directly with actin (Ehrlich et al., 2002). The Ca2+-

independent cell adhesion molecules nectins are also found at the adherens junction, 

where they undergo homophilic or heterophilic interactions with other nectins or 

nectin-like molecules. One of these, afadin, may directly link nectins with F-actin, 

although it also interacts with other adherens junction proteins, including α-catenin 

(Tachibana et al., 2000; Takahashi et al., 1999). So, the link between adherens 

junctions and the actin cytoskeleton is not clear. Nonetheless, formation of cadherin-

mediated cell-cell contacts triggers reorganisation of the actin cytoskeleton. The ring 

of cell-cell junctions at the same level all around a cell within a monolayer form an 

apical belt called the zonula adherens. The actin filaments in many cells can thus form 

a network across the tissue that is mediated by cadherin-catenin complexes and 

allows mechanical force to be applied across the whole cellular sheet. This is 

important for morphogenetic events such as neural tube formation (Morita et al., 

2010).  
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2. 1. 2. Adherens junction signalling 

Protein complexes are dynamic in order to disassemble and reform quickly enough to 

maintain epithelial integrity, and their composition is subject to regulation depending 

on junctional maturation and integrity. p120-catenin influences Rho GTPases by 

interacting with the Rac GEF Vav2 (Noren et al., 2000), which may be important in 

the formation of cell-cell contacts, as Cdc42 and Rac are usually upregulated and 

RhoA inhibited during this time (Noren et al., 2001). Nectins can also activate Cdc42 

and Rac1 through FGD-1-related Cdc42 GEF and Vav2, respectively (Fukuhara et al., 

2004; Kawakatsu et al., 2005). As well as affecting the actin cytoskeleton, this might 

regulate the separation of tight and adherens junctions during adhesion maturation. 

As well as the actin cytoskeleton, adherens junctions also interact with microtubules. 

During the formation of an epithelium, the radial microtubule array of the cell is 

reorganised so that microtubules that run from the apical surface or cell-cell contacts 

to the basolateral surface. The microtubule-anchoring protein ninein is involved in 

this process (Mogensen et al., 2000). In mammalian cells p120-catenin, which can 

bind cadherins, recruits PLEKHA7 and Nezha to the zonula adherens (Meng et al., 

2008). Nezha binds microtubules and provides a site for microtubule anchoring and 

outgrowth independent of ninein (Meng et al., 2008). The microtubule-associated 

motor protein kinesin-14 is also localised to adherens junctions, in a manner 

dependent on Nezha and PLEKHA7 (Meng et al., 2008). Further, microtubule 

depolymerisation leads to the loss of kinesin-14 and Nezha and disruption of the 

zonula adherens, supporting the idea that the zonula adherens is a dynamic structure 

and must be actively maintained (Meng et al., 2008). 
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2. 2.  Tight junctions 

Tight junctions are a part of the epithelial junctional complex and situated apically to 

the adherens junction. The formation of tight and adherens junctions are linked. Tight 

junction proteins JAM-A and ZO-1 are associated with primordial adherens junctions 

during epithelialisation (Ando-Akatsuka et al., 1999; Ebnet et al., 2001; Suzuki et al., 

2002). Other tight junction proteins appear later, including occludin, claudin and 

Par3. 

Tight junctions have two functions. The first is a tissue-specific function, which is to 

regulate the paracellular permeability of the epithelial sheet for ions and small solutes 

(reviewed in Furuse and Tsukita, 2006). In a more generic manner, the direct contact 

between membranes, which forms a belt-like structure around each cell within a 

monolayer, physically separates the apical and basolateral membranes and is 

necessary for maintenance of asymmetric distribution of membrane components and 

so the development of membrane polarity (Tsukita et al., 2001).  

2. 2. 1.  Tight junction membrane proteins 

There are three classes of integral membrane proteins at tight junctions. One is 

comprised of occludin, claudins and tricellulin, all of which contain four 

transmembrane domains with two extracellular loops. Claudins provide the molecular 

basis of the tight junction strands and can induce the formation of strands upon 

ectopic expression in fibroblasts (Furuse et al., 1998). Within strands, hetero- and 

homophilic interactions between a variety of claudins form size- and charge-selective 

aqueous pores that are responsible for the selective permeability barrier (Furuse et al., 

1998; Furuse and Tsukita, 2006; Tsukita et al., 2001). Occludins are also 

incorporated into strands and may modulate some functions of tight junctions (Furuse 
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et al., 1998; Yu et al., 2005). Tricellulin is specifically localised to tri-cellular contact 

sites (Ikenouchi et al., 2005). 

The second class of integral membrane proteins are members of the immunoglobulin 

superfamily, including JAM-A, -B and -C. Apart for JAM-A, there is very little known 

about these proteins. JAM-A localises early during cell–cell contact formation (Ebnet 

et al., 2001; Suzuki et al., 2002), probably recruited by the scaffolding protein ZO-1 

(Ebnet et al., 2000). JAM-A in turn recruits the scaffolding protein Par3 to the tight 

junctions (Ebnet et al., 2001; Itoh et al., 2001). Downregulation of JAM-A or 

expression of a JAM-A dominant-negative leads to mislocalisation of Par3 and a 

general defect in tight junction formation, such as increased paracellular permeability 

and defects in the development of membrane asymmetry (Mandell et al., 2005; 

Rehder et al., 2006).  

The third membrane protein involved in tight junctions is Crumbs3, a homologue of 

the D. melanogaster Crumbs protein. It interacts directly with two peripheral 

membrane proteins, Pals1 (Roh et al., 2002) and Par6 (Lemmers et al., 2004), both of 

which are components of polarity protein complexes associated with tight junctions. 

Overexpression of Crumbs3 delays tight junction formation (Lemmers et al., 2004) 

and ectopic expression in a mammalian cell line that does not otherwise express 

Crumbs3 or form tight junctions can result in the development of functional tight 

junctions (Fogg et al., 2005). It may be that these effects are due to the association of 

Crumbs3 with cell polarity proteins and the regulation of their localisation. 

2. 2. 2.  Tight junction protein complexes 

Along with integral membrane proteins, tight junctions include scaffolding and 

adapter proteins, small GTPases, G-proteins, kinases and phosphatases, transcription 

factors and factors regulating RNA processing: thus, tight junctions are a signalling 
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focal point. The organisation of signalling networks is regulated by proteins 

containing multiple protein–protein interaction domains such as PDZ, SH2 or SH3 

domains. Although there is increasing recognition that tight junction proteins interact 

interdependently as a network, for the purposes of this Introduction they can be 

considered as forming three major tight junction protein complexes: the ZO protein 

complex, the Crumbs—Stardust–PATJ complex, and the Par3–atypical protein kinase 

C (aPKC)–Par6 complexes. 

ZO protein complex 

ZO-1 is a classical scaffolding protein that contains three PDZ domains, an SH3 

domain and a guanylate kinase domain (Funke et al., 2005). It can directly associate 

with the integral membrane proteins occludin, claudins and JAMs and may cluster 

them at the tight junctions. ZO-2 and ZO-3 can also interact with occludin and 

claudin (Itoh et al., 1999a; Itoh et al., 1999b). Between the individual ZO proteins, 

some redundancy might exist. Loss of ZO-1 delays tight junction formation (Umeda 

et al., 2004), but blocking tight junction formation requires loss of all three ZO 

proteins (Umeda et al., 2006). The exact composition of the ZO complex is not 

certain, but ZO-1 forms independent complexes with ZO-2 and ZO-3 and can 

interact with other cytoplasmic proteins, including F-actin (Itoh et al., 1997). 

ZO proteins are involved in receiving and delivering signals. ZO-1, for example, 

binds and sequesters regulatory molecules at tight junctions, influencing gene 

expression (reviewed in Matter and Balda, 2003). In this way, ZO-1 promotes 

proliferation of epithelial cells by indirectly regulating expression of proliferation 

genes and other cell cycle proteins (Balda et al., 2003; Balda and Matter, 2000). ZO-2 

contains nuclear localisation and nuclear export signals and can interact with 

transcription factors and other nuclear-associated proteins, and ZO-2 may restrict 

transcription factors to the tight junctions in confluent cells and relocate with them to 
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the nucleus in subconfluent cells (Betanzos et al., 2004). Thus, ZO-1 and −2 

regulation of proliferation is dependent on cell polarity. 

Par3-aPKC-Par6 complex 

The Par3-aPKC-Par6 complex is a highly conserved protein complex that is involved 

in the formation and maintenance of polarity in many cell types, including those 

without tight junctions. The Par complex appears to be more important in the 

formation of tight junctions rather than their maintenance, as dominant negative 

mutants of Par3, Par6 or aPKC affect tight junctions when expressed during the 

formation of cell-cell contacts, but not in cells that are already fully polarised (Chen 

and Macara, 2005; Gao et al., 2002; Nagai-Tamai et al., 2002; Suzuki et al., 2001; 

Yamanaka et al., 2001). 

During tight junction maturation Par3 appears to be recruited before, and serve as a 

scaffold for, aPKC and Par6 (Suzuki et al., 2002). Par3 binds specifically to JAM-A, -

B and -C (Ebnet et al., 2003; Ebnet et al., 2001), and it may be the interaction with 

JAM-A that recruits Par3 to the tight junctions (Itoh et al., 2001). Thus, Par3-aPKC-

Par6 is not required for the positioning of primordial adhesion sites in mammalian 

epithelia, but for their subsequent reorganisation. Once the Par3–aPKC–Par6 complex 

is localised at primordial contacts, the kinase activity of aPKC is required for their 

maturation into belt-like adherens and tight junctions (Suzuki et al., 2002; Suzuki et 

al., 2001). Activation of aPKC could be facilitated by the binding of active Cdc42 or 

Rac1 to Par6 and the subsequent conformational change of Par6, which allows aPKC 

to become activated (Garrard et al., 2003; Yamanaka et al., 2001). Both E-cadherin 

or nectin-2 can activate Cdc42 and Rac1 and so could potentiate activation of aPKC 

and so the Par3-aPKC-Par6 complex (Fukuhara et al., 2003; Kawakatsu et al., 2002; 

Nakagawa et al., 2001). Par3 can interact with the Rac1 GEF Tiam1 (Chen and 
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Macara, 2005), but the role of this in tight junction development is not clear. One 

study showed that knockdown of Par3 in MDCK cells increased Tiam1-Rac1 

signalling and inhibited tight junction formation (Chen and Macara, 2005). Another 

study, in keratinocytes, knocked down Tiam1 or Rac1 to demonstrate that the 

activity of these proteins is required for tight junction formation and act upstream of 

Par3 (Mertens et al., 2005). The discrepancy between these studies may reflect 

differences in cell type, but it is more likely to illustrate the fine spatiotemporal 

balance of polarity proteins and GTPases required for adhesion formation. 

Interestingly, aPKC expression in Tiam1 knockout keratinocytes rescues actomyosin 

reorganisation and tight junction formation (Mertens et al., 2005), indicating that 

aPKC acts downstream of Tiam1 and Rac1 in this situation. Indeed, Tiam1 associates 

with Par3 and aPKC in an interaction that leads to phosphorylation (activation) of 

aPKC in single keratinocytes (Pegtel et al., 2007). 

The activity of aPKC can then promote the maturation of cell–cell contacts and the 

development of tight junctions from nascent adhesions. The mechanism behind this is 

not clear. aPKC could phosphorylate tight junction proteins and regulate their 

localisation or function; indeed, it can phosphorylate occludin, claudin-1 and ZO-1 

(Nunbhakdi-Craig et al., 2002), but this has been only demonstrated in vitro. 

Alternatively, aPKC could indirectly influence tight junction formation by regulating 

cell polarity. In polarised epithelial cells, another serine-threonine kinase, Par1, 

localises to the basolateral membrane (Bohm et al., 1997). aPKC phosphorylates 

Par1, leading to dissociation from the membrane into the cytoplasm (Hurov et al., 

2004). In D. melanogaster epithelial cells, Par1 phosphorylates Par3/Bazooka, 

inhibiting its dimerisation and blocking its interaction with aPKC and Par6 (Benton 

and St Johnston, 2003). This reciprocal inhibition thus generates two distinct 

membrane domains - Par1 at the basolateral domains and Par3-aPKC-Par6 at 
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apicolateral sites - and it is possible that aPKC could indirectly promote tight junction 

formation in this way. However, it is not clear whether the involvement of Par3-

aPKC-Par6 in tight junction formation and cell polarity are actually linked. 

Rich-Amot complex 

In contrast to the Par3-aPKC-Par6 complex, the Rich1-Amot protein complex 

appears to regulate the maintenance rather than the formation of tight junctions 

(Wells et al., 2006). Rich1 is a Cdc42 and Rac1 GAP, but appears to selectively 

activate Cdc42 in epithelial cells (Richnau and Aspenström, 2001; Wells et al., 2006). 

Amot is a scaffolding protein that localises the complex to tight junctions by 

interacting with PATJ (Bratt et al., 2002). However, Rich1-Amot can also interact 

with Pals1, Par3 and aPKC (Wells et al., 2006). Two other Amot-like proteins are 

also components of the tight junction (Nishimura et al., 2002; Patrie, 2005). 

However, the precise function of these proteins and their interactions are not yet 

clear. 

 

2. 3.  Gap junctions 

Gap junctions are specialised cell junctions that allow passive diffusion of ions and 

small molecules between cells through intercellular channels (reviewed in Bukauskas 

and Verselis, 2004; Wei et al., 2004a). Each hemichannel is a hexamer of connexins; 

connexins are conserved proteins comprising of four transmembrane domains and a 

cytoplasmic C-terminus that carries out regulatory functions (Bukauskas and Verselis, 

2004; Wei et al., 2004a). Connexins are widely expressed and analysis of knockout 

mice suggests that different connexins may function differently in specific cells and 

tissues (reviewed in Wei et al., 2004a). 
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Hemichannels can localise at specific areas of the cell membrane to form plaques, 

often at adherens junctions (Angst et al., 1997). Connexin-43 can bind ZO-1 through 

its C-terminus, which modulates the trafficking and turnover of connexin-43 

(Giepmans et al., 2001). Connexin-43 also affects tight junction integrity, as 

connexin-43 knockout in epicardial cells leads to redistribution of ZO-1 to the 

cytoplasm and a disruption in epithelial sheet organisation (Rhee et al., 2009). Also, 

mislocalisation of connexin-43 plaques to the lateral surface can be associated with 

mislocalised adherens junction proteins (Matsushita et al., 1999).  

 

2. 4.  Epithelial-to-mesenchymal transition 

Epithelial cells are motile; for example, they are able to swap neighbours. 

Nonetheless, they do so while remaining within an organised epithelial layer and 

associated with the basal lamina, maintaining their apico-basal polarity. 

Mesenchymal cells contact their homotypic neighbours through looser cell-cell 

contacts, and this is reflected in their different organisation of junctional proteins and 

cytoskeleton when compared to epithelial cells. EMT refers to a series of changes 

encompassing the loss of apico-basal polarity and the transition to a mesenchymal cell 

type (reviewed in Nieto, 2012).  

EMTs are important for a range of embryological processes. In the context of neural 

crest cells, the transition from a fully polarised epithelial tissue, with relatively stable 

cell-cell adhesions, to a mesenchymal cell population, marks the change from a pre-

migratory to a migratory population. EMT of the neural crest is accompanied by 

delamination. Delamination can have varying definitions, depending on the context 

and on the author, and is sometimes considered to be a component of neural crest 

EMT. However, delamination is defined here as the splitting of a tissue into two 
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populations (Theveneau and Mayor, 2012). In the cranial neural crest in X. laevis, 

neural crest cells delaminate as a group from the surrounding neuroectoderm before 

undergoing EMT to become a migratory cell population (Theveneau and Mayor, 

2012). Nonetheless, it is important to note that the temporal relationship between 

EMT and delamination differs between neural crest cell populations in different 

species and at varying anterior-posterior locations. 

EMT is a dynamic process that requires complex alterations to cellular architecture. 

Overall, there is a change in cell-cell junctions and a disruption of apico-basal 

polarity, accompanied by changes in cytoskeletal organisation and regulation of a 

variety of targets, such as small GTPases. Proteins associated with the epithelial 

phenotype are downregulated and those required for cell migration upregulated. 

Neural crest maintenance genes are important for EMT of the neural crest and genes 

from the Snail family play a particularly important role (see Neural crest 

maintenance, page 24). 

As epithelial cells, premigratory neural crest cells have well-established adherens and 

tight junctions that must be downregulated. This is a key feature of EMT - indeed, 

EMT of neural crest cells can be stimulated by disruption of junctional complexes 

with collagenase treatment or Ca2+-free medium in vitro (Newgreen and Gooday, 

1985). Neural crest adhesion molecules are altered during EMT. For example, 

classical cadherins can be separated into type I, usually expressed in epithelial cell 

populations, and type II, usually expressed by mesenchymal cells. As such, type-I 

cadherins such as E-cadherin are generally downregulated during EMT and type-II 

cadherins such as cadherin-11 are often upregulated during EMT.  

Many signalling pathways that control EMT converge on the control of the type I 

cadherin, E-cadherin. Repression of E-cadherin by transcription factors Snail1 and 
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Snail2 leads to loss of E-cadherin-dependent junctional complexes (Bolos et al., 2003; 

Cano et al., 2000). Snail1 can also induce EMT in cultured M. musculus epithelial 

cells by suppressing claudin and occludin expression (Ikenouchi et al., 2003). 

Although E-cadherin is downregulated during EMT, adhesion molecules are essential 

for neural crest migration, as illustrated by the fact that some type-II cadherins are 

upregulated at this time. Type-II cadherins required for neural crest cell migration 

include cadherin-7, which is possibly upregulated by FoxD3 and Sox10, and 

cadherin-11 (Cheung et al., 2005; Hadeball et al., 1998; Nakagawa and Takeichi, 

1995). Although type-I classical cadherins are typically considered to be 

downregulated during EMT this is not always the case, as the type-I cadherin N-

cadherin is expressed in migrating cranial neural crest cells (Bronner-Fraser et al., 

1992; Theveneau et al., 2010; Xu et al., 2001).  

Stable cell-cell junctions being dissolved leads to lower adhesiveness and an increase 

in motility. However, cells are still able to form cell-cell contacts, allowing CIL and 

collective migration. Interestingly, connexin-43 is also upregulated during neural crest 

EMT (Lo et al., 1997), and is important for invasion into the embryonic heart (Rhee 

et al., 2009). Whether migration requires the gap junction channel is unknown; 

however, analysis of transgenic and knockout M. musculus lines have found no 

correlation between the level of gap junctional coupling and cell motility (Francis et 

al., 2011). 

EMT can be triggered by extracellular signals such as secreted ligands of the TGFβ 

and FGF families. For example, in epithelial cell cultures TGFβ receptors 

phosphorylate Par6, leading to Par6 association with the E3 ubiquitin ligase Smurf1 

(Ozdamar et al., 2005). Smurf1 controls local RhoA degradation by ubiquitinating it; 

thus, TGFβ receptor activation promotes tight junction dissolution (Ozdamar et al., 

2005). Further, tyrosine kinase signalling leads to sequestering of aPKC-Par6 away 
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from Par3 by Numb during EMT (Wang et al., 2009). Thus, polarity protein activity 

and relocalisation appears to be important in EMT. 

Cross-regulation occurs between cell-cell and cell-matrix adhesions. For example, 

endocytosis of E-cadherin activates the small GTPase Rap1, which in turn promotes 

focal-adhesion formation (Balzac et al., 2005). This sets in motion a positive-feedback 

loop, as integrin-linked kinase, which is activated by integrin-β1 and -β3 interactions 

with ECM and growth factors, downregulates E-cadherin expression (Oloumi et al., 

2004). Integrin-β1 can disrupt cadherin-mediated adhesions through activation of 

RhoA and Rac1 (Gimond et al., 1999). Rac activation is associated with lamella 

extension and constitutively activated Rac1 does not allow the establishment of 

contacts, while RhoA promotes actomyosin-mediated contraction, in turn 

strengthening focal adhesion association with the ECM and retraction of the cell rear 

(Chu et al., 2004). Thus, RhoA needs to be downregulated at sites of cell-cell contact 

(Ozdamar et al., 2005) but activated at focal adhesions (Gimond et al., 1999). Thus, 

the temporal and spatial activity of small Rho GTPases must be tightly regulated. 

These processes do not follow a strict series of checkpoints. Time-lapse imaging of 

trunk neural crest cells migrating away from the neural tube in G. gallo shows that, 

for example, α-catenin is usually downregulated before the cell rear is retracted, but 

that it sometimes remains at the tip of the tail during retraction (Ahlstrom and 

Erickson, 2009). In fact, the cell tail can tear distal to the α-catenin spot during 

retraction, illustrating that neither the adherens junction nor apicobasal polarity needs 

to be completely disrupted before commencement of neural crest cell migration 

(Ahlstrom and Erickson, 2009). 

EMTs occur normally in development but ectopic EMTs also play a central role in 

tumour invasion. Acquisition of mesechymal characteristics changes adhesive and 
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proteolytic properties, which allows invasion and thus the establishment of secondary 

tumours (reviewed in Theveneau and Mayor, 2012). 

As noted above, there are important differences in the EMT, delamination and 

migration of neural crest cell populations in various species and at various anterior-

posterior positions. Similarly, there are also variations between the many different 

types of cancer. For example, cancer cells can migrate collectively or as individual 

cells. Further, in cancer cells the acquisition of a mesenchymal phenotype can be 

stable or transient (reviewed in Hanahan and Weinberg, 2011). Nonetheless, the 

mesenchymal gene expression patterns acquired through EMT and involved in 

tumour progression are strikingly similar to those that regulate developmental EMT. 

Indeed, Snail genes, which were first described in the neural crest, have subsequently 

been found to be essential for EMT of cancer cells (reviewed in De Craene et al., 

2005). For example, Snail1 regulates the expression of EMT-associated genes in 

colorectal carcinoma cells. 
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3.   Par3 

3. 1.  Par proteins and the C. elegans zygote 

Of the three major tight junction proteins complexes, the Par3-aPKC-Par6 complex is 

the most ancient in evolutionary terms. The Par proteins are a group of structurally 

unrelated proteins that were first observed to establish the initial anteroposterior axis 

in the C. elegans zygote (Kemphues et al., 1988; Morton et al., 2002; Watts et al., 

1996). The embryos identified during the maternal-effect mutant screens in which the 

Par proteins were discovered had unusually synchronous and equal cell divisions 

(Kemphues et al., 1988). The term ‘Par’ represents ‘partitioning-defective’, as the 

embryos did not correctly partition cytoplasmic P granules into appropriate daughter 

cells during the first few mitotic events (Kemphues et al., 1988). Par proteins have 

turned out to be highly conserved, and homologues of all except Par2 have 

subsequently been shown to be key regulators in determination and maintenance of 

cell polarisation throughout the metazoa (Fig. 3.1). There are seven Par proteins in 

total: Par1, Par4 and aPKC are serine threonine kinases, Par2 is a ring-finger domain 

protein similar to E3 ubiquitin ligases, Par3 and Par6 are PDZ domain-containing 

scaffold proteins and Par5 is a member of the 14-3-3 family of signalling proteins 

(reviewed in Goldstein and Macara, 2007).  

In the C. elegans zygote, the sperm centrosome or its associated microtubules contact 

the cortex (Goldstein and Macara, 2007), providing a cue that identifies the posterior 

pole of the embryo and initiates the development of polarised cortical domains 

(Cowan and Hyman, 2004). This as-yet-unidentified signal appears to weaken the 

actomyosin network locally and transiently, which leads to asymmetrical contraction 

(Munro et al., 2004). The resulting flow of cortical actin transports Par3-aPKC-Par6 
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Figure 3.1. Par3 localisation in various cell types 

Par3 localisation is consistently polarised in various cell types. Par3, alone or in 

conjunction with Par6, aPKC, Cdc42 (or a combination thereof) is found at the areas 

shown in orange. Par1 is found at the areas indicated in blue.  

(Adapted from Goldstein and Macara, 2007). 
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towards the future anterior pole of the zygote; meanwhile, Par2 is recruited to the 

cortex close to the sperm centrosome (Etemad-Moghadam et al., 1995; Munro et al., 

2004; Tabuse et al., 1998). Interestingly, it seems that the Par3 complex is able to 

promote cortical flows and its own transport, whereas Par2 is able to inhibit its own 

recruitment to cortical myosin by an unknown mechanism. 

aPKC can phosphorylate Par1, inhibiting its cortical association and affecting its 

activity (Hurov et al., 2004; Kusakabe and Nishida, 2004); thus, the presence of Par2 

and absence of the Par3 complex allows Par1 to become active at the C. elegans 

zygote posterior cortex (Cheeks et al., 2004; Cowan and Hyman, 2004; Munro et al., 

2004). Par1 in turn is able to phosphorylate Par3, blocking its interaction with aPKC 

and the association of the Par3 complex to the cortex (Benton and St Johnston, 2003; 

Hurd et al., 2003). The competitive exclusion between Par1 and the Par complex is 

important not only in the development of polarity, but also for its maintenance. Par4 

and Par5 remain symmetrically localised, but Par5 facilitates cell polarity by binding 

the phosphorylated forms of both Par1 and Par3 and removing them from the cortex 

(Morton et al., 2002). Par4 is required for the asymmetry of other Par proteins, but 

the actual mechanism behind this is not clear. 

Interaction with microtubules is a common theme throughout studies into the effect 

of Par3 (and the Par complex) on polarity and migration. Even during symmetry 

breaking in the C. elegans zygote, microtubules and Par proteins interact. In the 

absence of cortical flows, embryos depend solely on Par2 for symmetry breaking, and 

Par2 localisation to the prospective posterior domain is dependent on microtubules 

(Zonies et al., 2010). Par2-microtubule interaction inhibits aPKC phosphorylation of 

Par2 in vitro. This might allow Par2 localisation to the cortex and establish polarised 

cortical domains, which can then be maintained by reciprocal inhibition between Par3 
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and Par1 (Zonies et al., 2010). Thus, in wildtype embryos Par2-microtubule binding 

may work in parallel with cortical flows to quickly load Par2 to - and displace Par 

complex proteins from - the future posterior cortex (Zonies et al., 2010). 

As well as being affected by microtubules, Par proteins are able to influence 

microtubules themselves, organising the microtubule array to regulate cell polarity 

(reviewed in Goldstein and Macara, 2007). Par3 stabilises microtubules at the 

anterior pole (Labbe et al., 2003), and spindle-severing experiments illustrate that 

Par3 regulates pulling forces on microtubules (Etemad-Moghadam et al., 1995; Grill 

et al., 2001). Asymmetry in the stabilisation of microtubules along the anterior-

posterior axis correctly positions of the mitotic spindle, which is essential for correct 

location of subsequent mitotic events. 

 

3. 2.  The Par complex(es) 

In the Par complex, Par3 and Par6 undergo direct interactions with aPKC and are 

thought to regulate the localisation and activity of aPKC, respectively (Ohno, 2001). 

Par3-aPKC-Par6 can bind Cdc42 to regulate cell polarity, cytoskeletal rearrangement 

and tight junction assembly (Gao et al., 2002; Lin et al., 2000). These proteins often 

act as a complex (Macara, 2004), but Par6 and aPKC can also form a complex with 

each other separate to Par3 (Chen and Macara, 2005; Harris and Peifer, 2005; 

Schmoranzer et al., 2009; Tabuse et al., 1998; Zhang and Macara, 2008). In NIH 

3T3 cells Par3, but not Par6 and only occasionally aPKC, localise to the cell-cell 

contact (Schmoranzer et al., 2009). This is in contrast to epithelial cells, where the 

three proteins strongly colocalise at cell-cell contacts (Macara, 2004). Even when they 

are localised close together, they may not always interact with each other. In D. 
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melanogaster embryos, Par6-aPKC can interact with marginal zone1 members Crumbs 

and Stardust (a homologue of Pals1), while Par3 localises separately to the adherens 

junction (Harris and Peifer, 2005; Hurd et al., 2003; Lemmers et al., 2004). Par3 and 

Par6-aPKC can affect the same pathways in different ways. For example, in epithelial 

cells, Par3 is required for apico-basal polarity and Par6-aPKC bind and inhibit the 

basolateral membrane protein, Lgl (Betschinger et al., 2005; Yamanaka et al., 2003), 

which reciprocally prevents movement of Par6-aPKC into the lateral cortex (Chalmers 

et al., 2005; Hutterer et al., 2004). In endothelial cells, two Par complexes have been 

identified: one containing Par3-aPKC-Par6, and another where Par3 and Par6 

associate with VE-cadherin but not aPKC (Iden et al., 2006). In other cell types, Par 

complex proteins are localised to opposing domains. For example, although Par3 is 

able to form a complex with Par6-aPKC and interact directly with JAM-C (Ebnet et 

al., 2003), Par3 is localised in a different area to JAM-C, Par6 and aPKC in polarised 

mice spermatids and JAM-C deficiency mislocalises Par6 and aPKC but not Par3 

(Gliki et al., 2004). Thus, it appears that there are differences in protein interaction 

depending on the requirements of specific cell types.  

As in the C. elegans embryo, Par complex proteins and Par1 tend to be located in 

different, if not opposing, locations in many situations. In polarised epithelial cells in 

vertebrates, Par1 localises to the basolateral membrane domain opposite the Par 

complex at the apicolateral junction (Bohm et al., 1997). In D. melanogaster 

epithelial cells, the Par complex is found in the marginal zone, whereas Par1 again 

localises to the basolateral domain (Benton and St Johnston, 2003). The reciprocal 

inhibition of the Par complex and Par1 leads competitive exclusion between them and 

                                            
1 The marginal zone is the most apical region of cell-cell contact. It is equivalent to the 
vertebrate epithelial cell tight junction. 
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so the establishment and maintenance of cell polarity through the formation of two 

distinct membrane domains. 

 

3. 3.  Par3 and cell polarity 

Exogenous Par3 expression does not affect the epithelial polarity of confluent cells, 

but transforms the morphology of cells cultured at low density into a fibroblastic 

form with high motility and protrusions that continues when the cells contact each 

other again, even though E-cadherin and ZO-1 localisation are not affected (Mishima 

et al., 2002). Low concentration of nocodazole, which depolymerises microtubules, 

also inhibits the effect of Par overexpression. This suggests that the effect of Par3 is in 

some way linked to the regulation of microtubule dynamics. Interestingly, both 

dominant negative and constitutively active forms of Rac1 also suppress the effect of 

Par3 overexpression (Mishima et al., 2002). These observations suggest that Par3 

overexpression causes abnormal activation of Rac1, perhaps by perturbing the 

balance of small GTPase activation, and thus induces cell migration even after 

forming extensive cell-cell adhesions. Such seemingly contradictory results, along with 

a link to Rac1 and the microtubule array, are common themes in studies of Par3. The 

role of Par3 in epithelial cells has been discussed previously in this Introduction (see 

Tight junction protein complexes, page 55). This sub-section will investigate Par3 in 

other situations. 

3. 3. 1.  Par3 and polarity in migrating cells 

During wound healing, the apicobasal polarity of epithelial cells is disrupted and the 

polarity proteins are redistributed. The tight junction protein occludin accumulates at 

the leading edge of migrating MDCK cells during wound healing (Du et al., 2010). 

Occludin can directly interact with aPKC, which may be the mechanism with which it 
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also recruits Par3-aPKC and PATJ to the leading edge and promotes directional 

migration (Du et al., 2010). Par3-aPKC localisation at the leading edge is required for 

centrosome polarisation and leads to the perpendicular orientation of microtubules 

with respect to the wound (Du et al., 2010; Shin et al., 2007). Par3 also regulates 

centrosome positioning in the other cell types, such as the developing D. rerio neural 

tube (Hong et al., 2010). 

However, in wound-edge fibroblasts, Par3 localises to cell-cell contacts, along with 

microtubule ends and dynein (Schmoranzer et al., 2009). LPA stimulates actomyosin 

contraction and cortical flow to push the nucleus towards the back of the cell, 

resulting in reorientation of the nucleus-centrosome axis and polarisation of the cell 

(Gomes et al., 2005). Knockdown of Par3 or dynein disrupts positioning of the 

centrosome; it moved rearward with the nucleus (Schmoranzer et al., 2009).  LPA 

stimulation does not affect microtubules at the leading edge, but causes microtubules 

at cell-cell contacts to become less dynamic (increase pausing) in a Par3-dependent 

manner (Schmoranzer et al., 2009). In starved cells, microtubules spend the same 

amount of time pausing at cell-cell contact and at the leading edge. These results 

suggest that Par3 interacts with dynein to tether microtubules to the cell-cell contact, 

perhaps generating tension on microtubule ends to allow them to resist forces (such as 

actin retrograde flow) that would otherwise displace the centrosome. Par3 and dynein 

are also required for wound closure and migration (Schmoranzer et al., 2009). 

Interestingly, Par6 was not observed at the cell-cell contact and aPKC was rarely 

found at the cell-cell contact (Schmoranzer et al., 2009), but aPKC-Par6 has been 

shown to be important for centrosome orientation in a previous study in the same cell 

types (Gomes et al., 2005). Thus, cytoplasmic aPKC-Par6 also appears to have an as-

yet-unidentified role in centrosome localisation. 
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In wounded astrocyte monolayers, endogenous Par3 localises to the cell-cell contacts, 

while Cdc42 binds Par6 and activates aPKC at the leading edge (Etienne-Manneville 

and Hall, 2001). But, in this case, Par3 does not appear to be involved in cell polarity 

at all (Etienne-Manneville and Hall, 2001). Instead, aPKC-Par6 promotes protrusion 

by recruiting Rac1 (Etienne-Manneville and Hall, 2001). aPKC-Par6 controls 

centrosome translocation through inactivation of the kinase glycogen synthase kinase 

(GSK) 3β (Etienne-Manneville and Hall, 2003), and/or by recruiting Disks large 

homologue (Dlg1) to the leading edge (Etienne-Manneville et al., 2005), which both 

promote the interaction of the microtubule-associated protein adenomatous polyposis 

coli (APC) with microtubule ends. APC-microtubule interaction has been suggested to 

anchor microtubule ends to the cortex and allow them to recruit dynein-dynactin 

(Etienne-Manneville and Hall, 2003; Etienne-Manneville et al., 2005), although this 

has not yet been tested. 

Par3 localises to the leading edge in keratinocytes and recruits the Rac GEF Tiam1 

(Pegtel et al., 2007). These two proteins, along with aPKC, are required for 

directional migration in single keratinocytes and MDCK cells (Pegtel et al., 2007). It 

is important to note that this affects directional migration but not migration per se 

(Pegtel et al., 2007), illustrating a role in polarity determination. Thus, Par3 seems to 

regulate two different polarity states: the relatively permanent apico-basal polarity 

and the more transient front-rear polarity during directional migration. Tiam1 

knockout in keratinocyte monolayers also inhibits polarisation after wounding and 

decreases healing, but the localisation of neither Par3 nor Tiam1 have been analysed 

(Pegtel et al., 2007). 
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3. 3. 2. Par3 and the microtubule array 

In single cells, Par3 and Tiam1 regulate keratinocyte polarity by controlling 

microtubule dynamics. Single migrating keratinocytes treated with nocodazole lose 

front-rear polarity and lose directional migration similar to Par3 or Tiam1 knockout 

cells (Pegtel et al., 2007). Loss of Par3, Tiam1 or aPKC does not seem to affect the 

number or length of microtubules, but does reduce the amount of stable microtubules 

(Pegtel et al., 2007). Rac activity was decreased in Tiam1-depleted cells (Pegtel et al., 

2007), suggesting that Par3-Tiam1 may control directional migration by activating 

Rac1 at the leading edge. Constitutively active Rac1 could not rescue the Tiam1-

depleted phenotype (Pegtel et al., 2007), suggesting that Rac1 may need to be 

activated in a polarised manner in order to promote directional migration. Par3 can 

also bind the Rac GEF Tiam2 in cultured neuroblastoma cells and hippocampal 

neurons, where they are localised to the axonal tip and act downstream of Cdc42 to 

activate Rac1 and so promote lamellipodial activity, axon outgrowth and neuronal 

polarisation (Nishimura et al., 2005). In turn, Cdc42 can be recruited to the Par 

complex, binding Par6 and locally promoting the kinase activity of aPKC. This 

illustrates that interaction between Par proteins and small GTPases can be 

bidirectional, allowing Par proteins to regulate their own (or each others) activity. 

Par3 itself can also be affected by Rho GTPase signalling. ROCK can phosphorylate 

Par3 to disrupt interactions between the two complexes of aPKC-Par6-Cdc42 and 

Par3-Tiam1 and so disrupt activation of Rac1 (Nakayama et al., 2008). This impairs 

cell polarity and directional migration. As ROCK is most active at the back of 

migrating cells (Nakayama et al., 2008), this may promote directional migration by 

inhibiting Rac activation and so lamellipodia extension away from the leading edge. 

Par complex proteins and the microtubule array also affect cell polarity by regulating 

vesicle trafficking. Two types of motor proteins are associated with microtubules: 
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kinesins, which move away from the centrosome, and dyneins, which move towards 

the centrosome. Both carry cargo along microtubules. Par proteins can directly 

interact with motor proteins or indirectly affect their destination by regulating the 

microtubule array. In D. melanogaster embryos, Cdc42, Par3, Par6 and aPKC 

regulate junctional integrity by preventing endocytotic uptake of apical proteins from 

the plasma membrane and promoting the processing of apical proteins from the early 

to late endosomal compartments (Georgiou et al., 2008; Harris and Tepass, 2008; 

Leibfried et al., 2008). Again, there are variations in different cell types, even within 

the same animal model: in the D. melanogaster dorsal thorax, Cdc42, Par6 and aPKC 

directly regulate endocytosis at adherens junctions but Par3 is not involved in 

trafficking (Georgiou et al., 2008; Leibfried et al., 2008). Par3 and/or the Par complex 

determine polarity of many neuronal cell types but, in developing neurones in D. 

melanogaster embryos in vivo, Par3/Par6/aPKC complex is not asymmetrically 

localised and is not required for their polarisation (Rolls and Doe, 2004).  

Conversely, motor proteins can regulate localisation of polarity proteins by 

transporting them along microtubules. For example, Par3-aPKC-Par6 can associate 

with the kinesin Kif3a to be localised to cilia in MDCK cells (Fan et al., 2004). Kif3a 

and the microtubule-associated protein APC mediate polarity of developing 

hippocampal neurons by transporting Par3-aPKC-Par6 to the tip of one immature 

neurite, which subsequently promotes growth cone extension by activating Rac1 

through Tiam2 (Shi et al., 2004a). However, the situation may actually be more 

complicated, as aPKC could promote the transport of Par3-aPKC-Par6 itself by 

facilitating the loading of Kif3a onto microtubules (discussed in Wiggin et al., 2005). 

Dynein-based transport also contributes to establishment and maintenance of apical 

Par3 localisation and thus epithelial polarity in D. melanogaster embryos (Harris and 

Peifer, 2005). In D. melanogaster epithelial cells, Par3 localises to the apicolateral 
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boundary independently of cadherins and is then required for cadherin and β-catenin 

recruitment (Harris and Peifer, 2004; Wei et al., 2005). Thus, dynein may be required 

for Par3 localisation in contexts where cadherins do not recruit Par3 to the cell-cell 

contact.  
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4.   Microtubules 

Microtubules are one of the three main types of cytoskeletal networks in cells, along 

with actin filaments and intermediate filaments. Microtubules provide shape and 

structure to the cell and form the mitotic spindle, segregating chromosomes during 

division. They are important in many dynamic cellular processes. For example, 

microtubules interact with and regulate cell-cell and cell-substrate adhesion machinery 

and contribute to cell polarisation and migration. 

 

4. 1.  Microtubule structure 

Microtubules are a combination of α- and β-tubulin monomers (Fig. 4.1). These 

monomers form α-tubulin and β-tubulin dimers, which polymerise head-to-tail in 

linear protofilaments. Protofilaments associate laterally with each other to form 

hollow tubes, but do not quite align parallel with each other. As α-tubulin-β-tubulin 

dimers are asymmetrical, the resulting microtubules are also asymmetrical, with so-

called ‘plus’ and ‘minus’ ends. The α-tubulin of each protofilament is at the minus 

end. The minus end has much slower dynamics than the plus end and is often 

anchored to the centrosome or other microtubule-organising centre. The centrosome 

is formed by two centrioles and surrounded by proteins necessary for microtubule 

nucleation and anchoring (Bornens et al., 1987).  

Interfering with the delivery of centrosomal proteins to the centrosome disrupts its 

integrity and the radial organisation of the microtubule array (Dammermann and 

Merdes, 2002; Quintyne et al., 1999). Nonetheless, the centrosome can be disrupted 

without affecting microtubule nucleation (Dammermann and Merdes, 2002; 
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Figure 4.1. Microtubule dynamics 

Microtubule plus-ends are in a state of dynamic instability. Tubulin dimers are added 

to the end of microtubule plus-ends during growth phases and GTP is hydrolysed to 

GDP. Release of tubulin dimers from a microtubule during catastrophe leads to loss 

of the GTP cap and protofilaments to peel off. Microtubules undergoing catastrophe 

can be rescued and recommence the growth phase. Microtubule-associated proteins 

can be found on growing and shrinking plus-ends, on tubulin dimers and on the 

microtubule shaft.  

(Adapted from Conde and Caceres, 2009) 
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 Quintyne et al., 1999). In some cell types, minus ends are not associated with the 

centrosome. This can be caused by microtubule severing (Odde et al., 1999; 

Waterman-Storer and Salmon, 1997), release from the centrosome (Keating et al., 

1997), or assembly in other parts of the cell, such as the Golgi complex (Efimov et al., 

2007). For example, in migrating newt lung cells up to 90% of the microtubules are 

not bound to the centrosome (Waterman-Storer and Salmon, 1997), and in epithelial 

cells microtubules form bundles parallel to the apico-basal axis with the minus ends 

localised to the adherens junctions (Bacallao et al., 1989). Also, axonal microtubules 

in neurones are not anchored to the centrosome (Baas and Ahmad, 1992). In these 

cells, minus-ends remain essentially static as they are capped by specialised factors 

such as γ-tubulin and Nezha (Meng et al., 2008). Nonetheless, this capping is 

stochastic, and microtubules can lose the cap and quickly depolymerise from the 

minus end (Keating et al., 1997).  

Plus ends grow from the microtubule-organising centre into the cytoplasm. 

Microtubule plus ends can exist in one of three states: growth, shrinkage or pause 

(Fig. 4.1). The growth phase occurs when the microtubule is being polymerised by 

tubulin dimers. Shrinkage is a synonym for depolymerisation. At times when the 

microtubule end is neither growing nor shrinking, the microtubule is referred to as 

being paused. A change from growth to shrinkage is known as catastrophe, while 

from shrinkage to growth is termed rescue. Plus ends can change stochastically 

between the states of growth, pause and shrinkage, in a non-equilibrium process that 

is known as dynamic instability (Mitchison and Kirschner, 1984). Plus end dynamics 

can be described by five parameters: the rates of growth and shortening, frequency of 

catastrophes, frequency of rescues, and time spent in pauses. It must be noted that it is 

as yet unclear whether pausing microtubules are completely stable or whether they are 
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actually undergoing phases of growth and shrinkage at either low speed or high 

transition frequency that cannot be resolved with current imaging techniques. 

Nonetheless, within any cell, one would expect to find coincident growing, shrinking 

and stable microtubules. Dynamic instability allows the microtubule array to 

continuously probe the cell’s three-dimensional space and adapt quickly to changing 

stimuli (Kirschner and Mitchison, 1986). 

Tubulin is a nucleotide triphophatase and, in the cytoplasm, each α-tubulin-β-tubulin 

dimer binds two GTP molecules (reviewed in Galjart, 2010). One GTP binds α-

tubulin and is non-exchangeable; the other binds an exchangeable site of β-tubulin. 

Incorporation of the tubulin dimer into the growing microtubule is thought to trigger 

hydrolysis of β-tubulin-bound GTP to GDP. Therefore, β-tubulin along the length of 

the microtubule is bound to GDP, while a growing plus end is capped by the most 

recently polymerised dimers containing GTP-bound β-tubulin (Carlier and Pantaloni, 

1982). GTP-bound tubulin is straight and allows polymerisation, whereas it is more 

energetically favourable for GDP-bound tubulin to adopt a curved conformation. So, 

the ‘cap’ of straight, GTP-bound tubulin, which also forms strong lateral bonds, is 

important in preventing microtubule depolymerisation. Without this cap, 

protofilaments tend to curve and ‘peel off’ from the microtubule, breaking lateral 

bonds and causing catastrophe. There is as yet no consensus regarding the size or 

indeed precise function of the cap; however, it is interesting that individual 

protofilaments within a microtubule can contain a varying amount of GTP-bound 

tubulin subunits at the plus-end cap, and that individual protofilaments can shorten 

when the microtubule is in growth phase (Schek Iii et al., 2007). Nonetheless, the 

GTP cap appears to be important in regulating dynamic instability of the 

microtubules.  
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4. 2.   Microtubule dynamics 

Microtubules form a highly dynamic and ever-changing array that reaches throughout 

the entire cell and can react quickly to stimuli. Dynamic instability is particularly well 

suited to restructuring and self-assembly of the microtubule network, but the high 

rigidity of microtubules would tend to limit such network plasticity (Brangwynne et 

al., 2007). In order for the microtubule array to explore the cell, microtubules must 

be able to grow along a variety of paths rather than repeatedly growing along the 

same straight path. Indeed, fixed microtubules show bends (Brangwynne et al., 2007), 

and the growing ends of microtubules are more flexible than the central region 

(Janson and Dogterom, 2004; Kurachi et al., 1995). During microtubule growth, 

intracellular forces cause fluctuations in the orientation of the growing microtubule 

tip, curving its growth trajectory (Brangwynne et al., 2007). Microtubules frequently 

change their direction of growth, suggesting a persistent random walk trajectory 

(Brangwynne et al., 2007). Once the microtubule has grown, the resulting bend is 

stabilised by the surrounding elastic cellular network (Brangwynne et al., 2007). 

Thus, microtubules are rigid and reinforced by the surrounding network but at the 

same time are deformable during growth (Brangwynne et al., 2007).  

The dynamics of microtubules are central to their biological functions and are 

different in different cell types: for example, microtubules are less dynamic in 

epithelial cells than fibroblasts (Wadsworth and McGrail, 1990). Microtubule 

dynamics can be altered by various situations. Differences in epithelial and fibroblast 

microtubule dynamics may reflect the relative stability of differentiated, polarised 

cells. Cultured human endothelial cells within a monolayer have a lower average 

microtubule growth rate than single cells because single cells have a subgroup of 

microtubules that grow particularly quickly (Alieva et al., 2010), illustrating that 

microtubule dynamics can be affected by the extracellular environment. Epithelial 
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cells and fibroblasts migrating directionally into a wound have a greater number of 

growing microtubules per unit area at sites of cell-cell contact than at the leading edge 

(Salaycik et al., 2005), showing that microtubule dynamics can be regulated 

differently in different parts of the cell and that this may also be influenced by 

extracellular factors such as the cell-cell contacts and/or cell polarity. 

A number of post-translational modifications are known to occur to tubulin, usually 

when it is polymerised.  The causes of these modifications are not well understood, 

although the consequences have been somewhat clarified. Stable microtubules in 

particular appear to accumulate a variety of post-translational modifications. 

Microtubules can be covalently modified by a carboxypeptidase, which removes the 

C-terminal Tyr residue of α-tubulin, and a tubulin Tyr ligase that subsequently ligates 

it again (Hammond et al., 2008). Only α-tubulin that has been incorporated into a 

microtubule lattice can undergo detyrosination, but Tyr ligation occurs on tubulin 

heterodimers after depolymerisation. Detyrosinated microtubules are considered to be 

more stable than tyrosinated microtubules (Schulze et al., 1987). Tubulin 

detyrosination in fibroblasts inhibits microtubule disassembly (Peris et al., 2009), and 

detyrosinated microtubules have been observed in the presence of low concentrations 

of nocodazole, a compound that promotes microtubule depolymerisation (Conde and 

Caceres, 2009). However, microtubule stabilisation appears to induce detyrosination, 

which is thus considered a consequence rather than a cause of microtubule 

stabilisation (Khawaja et al., 1988).  

Acetylation of a lysine on α-tubulin within microtubules is also associated with 

stability. Microtubule acetylation correlates well with a longer half-life but, as with 

detyrosination, it is thought that acetylation is a consequence rather than a cause of 

stability (Hammond et al., 2008). However, because deacetylation can occur on both 

polymerised tubulin or heterodimers, whereas tyrosination can only occur on tubulin 
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heterodimers, detyrosinated and acetylated microtubule populations may not 

necessarily overlap (Hammond et al., 2008). That is, microtubules of equivalent 

stability do not necessarily exhibit the same post-translational modifications. Indeed, 

both acetylated and detyrosinated microtubules more prevalent in axons than in 

dendrites, despite the fact that microtubules in axons and dendrites have similar 

stability (Hammond et al., 2010). This might be due to differences in the localisation 

of enzymes responsible for post-translational modifications and illustrates that post-

translational modifications may give rise to some type of subcellular cytoskeletal 

differentiation. Although it is thought that post-translational modifications are the 

consequence rather than the cause of microtubule stability, it is conceivable that they 

do have some function. Indeed, this is supported by findings that alterations in the 

balance between tyrosinated and detyrosinated tubulin can affect tumour growth 

(Mialhe et al., 2001), disorganise neuronal circuits (Erck et al., 2005) and cause 

abnormalities in morphogenesis and polarity (Peris et al., 2006). 

There are many isotypes of tubulin. These do have some function, as improper isotype 

expression leads to the loss of some axoneme function in D. melanogaster sperm 

(Raff et al., 1997). Different isotypes have different levels of stability, but dimer and 

microtubule polymer stability do not necessarily correlate (Panda et al., 1994). 

Nonetheless, it is interesting to note that cell lines exposed to taxol, a microtubule 

stabilising drug, can alter the distribution of isotypes (Downing and Nogales, 1998). 

The mechanism behind this is not understood, but it may be an adaptation to 

compensate for the change in microtubule stability induced by the drug. 
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4. 3.   Microtubule-associated proteins 

Microtubule dynamics are a fundamental component of the interaction between 

microtubules and the rest of the cell. This is underscored by experiments showing that 

even mild suppression of microtubule dynamics by low doses of microtubule 

stabilising or destabilising drugs can have a disproportionate effect on the 

organisation of the mitotic spindle and directional migration, as well as specific 

processes such synaptogenesis (Jaworski et al., 2009; Liao et al., 1995). It is thus 

understandable that microtubule dynamics are tightly regulated and that control is 

exerted at a number of levels. Increasing or decreasing the pool of free tubulin can 

change microtubule growth rate and catastrophe frequency. Microtubule dynamics 

are also influenced through interactions with a large number of microtubule-

associating proteins (MAPs), including proteins that promote microtubule assembly, 

stabilise or destabilise microtubules, cut microtubules and microtubule-based motors. 

MAPs can thus regulate microtubule dynamics spatially and temporally by influencing 

tubulin dimers, the microtubule wall lattice and/or the microtubule ends. 

4. 3. 1. Plus-end tracking proteins 

A specialised subgroup of MAPs is plus-end tracking proteins (+TIPs), which affect 

microtubule dynamics when they accumulate at the plus ends of growing 

microtubules. Since the first description of +TIPs, several theories have been proposed 

regarding the mechanisms leading to microtubule plus-end accumulation. The first 

was termed a ‘treadmilling’ mechanism, whereby the +TIP binds the growing 

microtubule and then dissociates after a couple of seconds due to modifications or 

conformational changes of the +TIP or a conformational change of the microtubule 

(Perez et al., 1999). An alternative explanation was that +TIPs co-polymerise with 

tubulin heterodimers. Subsequent experiments illustrated rapid association and 

disassociation of +TIPs with microtubule ends. This was shown by looking at the 
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single molecule level in vitro (Bieling et al., 2007) and by fast FRAP measurements in 

living cells (Dragestein et al., 2008). Increasing tubulin concentration in vitro 

increases microtubule growth rates without increasing association of +TIPs, and +TIP 

diffusion appears to be the rate-limiting factor for their binding to microtubule plus 

ends.  

These results, which support neither treadmilling nor co-polymerisation ideas, led to 

the development of the ‘fast exchange’ model. In this model, microtubule 

polymerisation provides a large number of binding sites for +TIPs at the microtubule 

plus end. Each binding site would bind and dissociate a number of times with +TIPs, 

and then the binding sites would disappear exponentially as the microtubule 

continued to polymerise. A likely explanation for the presence and then disappearance 

of binding sites at the end of the microtubule is a structural difference between the 

end and the remainder of the polymer. The most obvious candidate for this is the 

GTP cap; however, +TIPs accumulate on up to 2 μm of the microtubule (Komarova et 

al., 2005). This is much longer than the supposed GTP cap length of 320 nm (Zovko 

et al., 2008), and also indicates that +TIPs interact laterally with microtubules as well 

as at the very tip; indeed, lateral interactions are more likely to occur.  

Plus-tip tracking 

There are a many different +TIPs that bind growing microtubule plus-ends. They have 

varying rates of turnover at microtubule ends, microtubule binding domains and 

mechanisms of recognising microtubule ends, based on which they have been loosely 

classified. Fluorescently labelled +TIPs are used to track the growing ends of 

microtubules, a process known as plus-end tracking (Perez et al., 1999; Salaycik et al., 

2005; Stepanova et al., 2003). The first +TIP used for this purpose was a green-

fluorescent protein (GFP)-labelled form of CLIP-170 (Perez et al., 1999). In time-lapse 
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imaging experiments, the fluorescent protein was observed as “comet-like” 

fluorescent dashes moving throughout the cell. It is important to note that individual 

+TIPs bind and dissociate very quickly from the microtubule plus ends. As the 

microtubule plus end moves through the cytoplasm, +TIPs are transiently immobilised 

at the growing microtubule end and do not actually move. Thus, the comet is just an 

optical illusion.  

Previously, microtubule dynamics were observed using fluorescently labelled tubulin, 

but the density of microtubules in the cell body only allowed analysis at the cell 

periphery. Thus, imaging of +TIPs has the advantage of providing much more 

information about microtubule growth within the cell body. However, an inherent 

disadvantage of tracking microtubules using plus-tip tracking is that +TIPs bind only 

to growing microtubules. Nonetheless, details of phases of pause and shrinkage can 

be recovered from the growth trajectories: for example, two microtubule growth 

events that run along the same track and are separated by a short period of time are 

likely to be the same microtubule (Applegate et al., 2011). By linking such 

information from growth tracks, details about shrinkage and pause can be inferred 

(Applegate et al., 2011; Matov et al., 2010). Software (plusTipTracker) that provides 

this analysis and automatically tracks the +TIP comets has been recently developed, 

thus removing human error (Applegate et al., 2011). 

EB proteins 

Subsequent plus end tracking has also used fluorescently tagged end binding (EB) 

proteins. Like CLIP-170, three EB proteins (EB1, EB2 and EB3) are small dimers and 

each monomer contains conserved amino-terminal calponin homology (CH) and 

carboxy-terminal coiled-coil domains. Interestingly, CH domains, which are necessary 

and sufficient to recognise growing microtubule ends (Honnappa et al., 2005; Slep et 
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al., 2005), are typically found in actin-binding and signalling proteins (Gimona et al., 

2002), indicating some other proteins that might also interact with microtubules. EB3 

is upregulated in neurones and myocytes and is important in myotube differentiation 

and neuronal development (Jaworski et al., 2009; Straube and Merdes, 2007).  

Like other +TIPs, EB proteins have been shown to control microtubule behaviour, 

influencing microtubule dynamics, stability and nucleating microtubules. EB1 family 

members are conserved in plants, yeasts and mammals (Tirnauer and Bierer, 2000). 

There is conflicting evidence regarding the role of EB proteins in regulating 

microtubule dynamics. Fission yeast Mal3p and vertebrate EB1 decrease catastrophe 

frequency; however, D. melanogaster EB1 and the budding yeast homologue Bim1p 

increase catastrophe frequency (Rogers et al., 2002; Tirnauer et al., 1999). In vitro 

studies show that addition of EB proteins promotes both growth rate and catastrophe 

frequency (Komarova et al., 2009; Vitre et al., 2008). As EB proteins associate 

autonomously with growing microtubule-regulating factors and also interact with 

other +TIPs (reviewed in Bieling et al., 2007; Lansbergen and Akhmanova, 2006), it 

may be that changing the amount of EB protein in vitro only affects their primary 

roles in controlling microtubule dynamics, whereas changing the amount of EB 

protein in cells also affects their association with other microtubule-regulating factors, 

thus complicating attempts to define the exact function of EB proteins. Nonetheless, 

ectopic expression of fluorescent EB proteins (or CLIP-170) at levels that allow 

observation and tracking of microtubule plus ends do not appear to affect 

microtubule dynamics, at least not compared to the microtubule dynamics in cells 

expressing fluorescent tubulin (Komarova et al., 2002). 
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+TIPs and microtubule dynamics 

Although most +TIPs can bind directly to the microtubule, interactions with other 

+TIPs can influence their localisation and many ‘hitchhike’ on EB proteins, (reviewed 

in Lansbergen and Akhmanova, 2006). Alternatively, they can bind EB proteins at 

microtubule tip in order to be retained there, after arriving using another method. For 

example, the +TIP dynactin has a microtubule-binding domain that can move along 

microtubules (Culver-Hanlon et al., 2006). One-dimensional diffusion may cause plus 

end accumulation of at least two +TIPs, mitotic centromere-associated kinesin 

(MCAK) and X. laevis microtubule associated protein (XMAP) 215 (Brouhard et al., 

2008; Helenius et al., 2006). One dimensional diffusion was first proposed to help 

explain how a DNA-binding protein may find a particular target sequence, as 

movement in only one dimension - along the DNA molecule - decreases the time 

taken for a protein to reach its target.  XMAP215 regulates catastrophe rate and 

dramatically increases the growth rate (Tournebize et al., 2000). MCAK is a member 

of the kinesin-13 family, non-motile kinesins that are able to induce catastrophe by 

destabilising microtubule ends in an ATP-dependent manner (Desai et al., 1999). The 

catastrophe levels in XMAP215-depleted extracts could be rescued to control levels 

by the inhibition of MCAK in X. laevis egg extracts (Tournebize et al., 2000). This 

suggests that XMAP215 antagonises the microtubule destabilising activity of MCAK, 

and that they could oppose each other to regulate catastrophes without any extra 

input. They can both also bind EB1 (Jiang et al., 2009; Kronja et al., 2009), perhaps 

competitively, even though XMAP215 is the only protein apart from EB proteins that 

can autonomously track microtubules (reviewed in Bieling et al., 2007). So, MCAK 

may reach microtubule ends through diffusion and then bind EB1 (and other +TIPs) 

in order to stay there, while XMAP215 is able to associate with microtubule plus ends 
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by itself and perhaps inhibit the localisation of MCAK to the plus ends by inhibiting 

its interaction with EB1. 

Another type of +TIP is the collapsin response mediator protein (CRMP) family. 

There are five, highly related CRMPs (1-5). CRMP2 is the best studied. It self-

oligomerises (Wang and Strittmatter, 1997), but partly dissociates when it binds 

directly to tubulin heterodimers, leading to heterotrimeric complexes of CRMP2 and 

a tubulin heterodimer (Fukata et al., 2002). CRMP2 binds tubulin heterodimers with 

a much higher affinity than the polymer, so may copolymerise with tubulin dimers 

into the microtubules (Fukata et al., 2002). It is expressed exclusively in the 

developing nervous system, and is crucial for axonal growth and determination of 

axon-dendrite fate, establishing and maintaining neuronal polarity: dominant-

negative mutants of CRMP2 inhibit formation of the primary axon, whereas 

overexpression in cultured hippocampal neurones promotes neurite formation 

(Inagaki et al., 2001). In G. Gallo and M. musculus, the CRMP2 homologue is a 

mediator of semaphorin-induced growth-cone collapse, and in rodents and CRMP 

proteins are important in neurite pathfinding using neuropilin signalling (Deo et al., 

2004; Goshima et al., 1995; Shapovalova et al., 2007). 

4. 3. 2. Search and capture 

An important model of microtubule dynamic instability was proposed several decades 

ago. Entitled ‘search and capture’, dynamic microtubules were suggested to explore 

the cytoplasmic space to be ‘selectively stabilised’ at certain sites within the cell, for 

example at the cortex (Gundersen, 2002; Gundersen and Bretscher, 2003). They 

would then be momentarily stabilised in order to, for example, facilitate the directed 

transport of vesicles or the separation of chromosomes to daughter cells. Direct 

evidence for microtubule capture, as required for the search-and-capture model, has 

been obtained by observing changes in the dynamic behaviour of microtubules at the 
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cortex (Gundersen et al., 2004). The minus end directed motor protein dynein and its 

complex partner dynactin accumulate at microtubule plus ends, so that minus-end-

directed transport can be initiated when they encounter vesicles or other organelles 

(Vaughan et al., 2002; Watson et al., 2005). Localisation of +TIPs at plus ends means 

that they are in a strategic position to regulate interactions between microtubules and 

other intracellular structures. 

Once at the cortex, pushing or pulling forces can be generated by microtubule 

polymerisation and depolymerisation respectively (Inoue and Salmon, 1995), which 

are capable of pushing vesicles, cell membranes and centrosomes (Dogterom et al., 

2005). Accumulation of the minus end-directed microtubule-associated motor dynein 

at microtubule ends can exert a pulling force on the microtubule network if the 

dynein-associated membrane structure is large enough. Certain details, such as the 

link between dynein and the cortex, are not yet clear. Nonetheless, dynein can pull on 

the ends of cortically anchored microtubules to position the centrosome or mitotic 

spindle (reviewed in Dujardin and Vallee, 2002). CLIP-170 regulates dynein 

association with microtubule tips (Goodson et al., 2003; Lansbergen et al., 2004).  

APC, which can be transported by kinesin to the microtubule plus-ends where it can 

promote polymerisation, can also anchor microtubules to the cell cortex (Nakamura 

et al., 2001; Reilein and Nelson, 2005; Zumbrunn et al., 2001) and can do so by 

interacting with actin-binding proteins (Wen et al., 2004). CLASPs, on the other 

hand, bind the cortex independently from microtubules, then attach microtubule plus 

ends to the cortex and stabilise them by rescuing them from depolymerisation 

(Mimori-Kiyosue et al., 2005). EB3 can also bind the F-actin-binding protein debrin 

while associated with the microtubule plus end in an interaction that is important for 

growth cone formation and neuritogenesis (Geraldo et al., 2008). In D. melanogaster, 

at least one actin cytoskeletal regulator, RhoGEF2, associates specifically with 
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growing microtubule ends (Rogers et al., 2004), and in other organisms +TIPs can 

link microtubule ends directly to actin. In vertebrate cells, cytoskeletal linking 

proteins such as spectraplakins can bind growing microtubules end as well as actin 

filaments, organising directional growth of microtubules along actin fibres and 

stabilising microtubules (Kodama et al., 2003; Slep et al., 2005). CLIP-170 can also 

interact with actin-binding proteins to target microtubule plus-ends to the leading 

edge (Fukata et al., 2002). 

+TIPs also link microtubule plus ends to actin and intermediate filaments. 

Microtubule plus ends can also bind the cortex and intercellular junctions, focal 

adhesions, vesicles and intracellular membranes through +TIPs. This could establish 

the targeted delivery of vesicles to certain sections of the cell. For example, kinesins 

are required for the modulation of focal adhesion site dynamics in fibroblasts by 

dynamic microtubules plus ends, even though the kinesin does not affect the targeting 

of microtubules to adhesion sites or microtubule distribution or dynamics 

(Krylyshkina et al., 2002). This suggests that kinesin is required for the delivery of 

components that control adhesion site turnover (Krylyshkina et al., 2002).  

Not all +TIPs appear to directly influence microtubule dynamics, indicating that 

growing microtubule ends might serve more purpose than to randomly explore the 

cytoplasm. One interesting - albeit poorly explored - suggestion is the ‘raft’ model, in 

which the concentration of proteins at microtubule plus ends provides a platform for 

spatial organisation of protein interactions, allowing a cascade of signalling processes 

as they travel through the cell (Galjart and Perez, 2003). In this model, the 

microtubule plus end has been compared to having the organising capabilities of lipid 

rafts. The idea has been taken further with the suggestion that microtubule plus ends 

not only concentrate +TIPs but also that the regular pattern of the microtubule 

surface could orient them in a specific manner, enhancing the possibility of signalling 
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processes occurring (Galjart and Perez, 2003). For example, EB1 and CLIP-170 may 

unfold as they bind the microtubule end. One unknown feature of this model is 

whether the protein interactions persist after dissociation from the microtubule plus 

end. If so, this may explain how, for example, some +TIPs interact with microtubule 

plus ends but can promote rescue events: they may colocalise with other proteins at 

the growing microtubule end to form a relatively stable complex and dissociate from 

the microtubule, then function as a rescue complex when the microtubule shrinks 

back past the same place (Galjart and Perez, 2003).  

 

4. 4.   Microtubules, polarity and migration 

The functional organisation and thus polarity of a cell is reflected in the organisation 

of its microtubule array.  In fibroblasts, for example, microtubules are usually 

arranged in a radial array, with minus-ends anchored at the centrosome and the plus-

ends extending towards the edge of the cell (Kellogg et al., 1994). This is also true of 

non-polarised epithelial cells, but the microtubules of polarised epithelial cells have 

minus ends at the adherens junction and plus ends at the basal surface (Bacallao et al., 

1989). Thus, establishment of epithelial polarity is accompanied by a dramatic change 

in microtubule organisation.  

Actin polymerisation and contractility are often required for migration (Etienne-

Manneville and Hall, 2002; Raftopoulou and Hall, 2004), but microtubules are the 

cytoskeletal element that provide the framework for polarisation itself (Watanabe et 

al., 2005): disruption of microtubules perturbs the polarity of the actin cytoskeleton 

and cell, but actin depolymerisation often does not affect the polarity of the 

microtubule array (Omelchenko et al., 2002). Inhibition of microtubule dynamics 

through either global stabilisation or depolymerisation of the microtubule array 
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inhibits cellular polarity and directional migration (Redd et al., 2006; Takesono et al., 

2010; Xu et al., 2005). Microtubule orientation supports polarised vesicle trafficking 

and sorting of membrane components (reviewed in Kamal and Goldstein, 2000). The 

role of microtubules in cell polarity may also be due to other functions, such as 

morphogenesis and signalling to adhesions (Kaverina et al., 1998; Kirschner and 

Mitchison, 1986). However, microtubule array dynamics are regulated by MAPs, 

post-translational modifications and interactions with the actin cytoskeleton. The 

polarised organisation, dynamics and functions of the microtubule cytoskeleton are 

likely to reflect the temporal and spatial activity of MAPs. However, the precise 

cytoskeletal rearrangements that permit a change in front-rear polarity, and how these 

are regulated, are as yet unknown. 

4. 4. 1.  Centrosome reorientation 

In several cell types, the centrosome and Golgi complex are reoriented during 

polarisation. During polarised migration these structures are often reoriented to the 

front of the cell (Etienne-Manneville, 2004; Gomes et al., 2005), although this is not 

always the case (Pouthas et al., 2008; Ratner et al., 1997). During EMT of trunk 

neural crest cells in G. gallo, the centrosome stays at the apical end of the cell tail as 

the tail detaches from the neuroepithelium and is retracted by the cell (Ahlstrom and 

Erickson, 2009). In wound-healing assays of migrating astrocytes, where Par6 and 

aPKC orient the centrosome and Golgi close to the wound edge, it appears that 

centrosome orientation and protrusion, although both coordinated by Cdc42, are 

independent events (Etienne-Manneville and Hall, 2001). Thus, centrosome 

positioning may be a consequence of polarity rather than a requirement in this 

situation. However, in some cases, centrosome reorientation serves as a mechanism to 

establish a polarised microtubule network and thus directional and polarised flow of 

membrane and polarity proteins and cell polarisation. Dynein-dynactin centre the 
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centrosome in interphase cells and position the mitotic spindle by pulling on plus ends 

of cortically attached microtubules (Dujardin and Vallee, 2002). CLIP-170 may also 

contribute to pulling on plus ends, because it regulates dynactin association with 

microtubule tips (Goodson et al., 2003; Lansbergen et al., 2004), although the nature 

of the actual link between dynein and the cortex is not yet entirely clear. In mitotic 

keratinocytes, astral microtubules are positioned by dynein–dynactin, acting in 

concert with a number of polarity factors including Par3 (Lechler and Fuchs, 2005). 

In migrating cells, APC is localised to the leading edge and can anchor microtubules 

to the cortex through polarity proteins such as Dlg1 (Etienne-Manneville et al., 2005; 

Nakamura et al., 2001; Reilein and Nelson, 2005; Wen et al., 2004; Zumbrunn et al., 

2001). The ability of APC to stabilise microtubules in protrusions is reliant on it 

anchoring them to the cortex (Zaoui et al., 2010). In M. musculus embryonic 

fibroblasts, connexin-43 controls the orientation of the centrosome and Golgi 

complex during directional migration by stabilising microtubules in the direction of 

migration (Rhee et al., 2009; Xu et al., 2006). Microtubules can bind connexin-43 

and extend preferentially to connexin-43 gap junction plaques, remaining there longer 

than at other sites (Shaw et al., 2007). Microtubules are important in trafficking 

connexin-43 to the cell membrane (Thomas et al., 2005) and loss of connexin-43 

interferes with wound closure (Francis et al., 2011). Interestingly, this does not appear 

to be linked to channel activity, as cell-cell contact is not required for this interaction 

(Francis et al., 2011).  

The nucleation of microtubules can occur in a polarised manner. The centrosome 

itself nucleates microtubules symmetrically (Salaycik et al., 2005), but microtubules 

can also be nucleated at other parts of the cell. The Golgi complex acts as a 

microtubule-organising centre in migrating epithelial cells in a !-tubulin-dependent 

manner (Efimov et al., 2007). However, microtubules nucleated at the Golgi complex 
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differ from centrosomal microtubules in that they are only nucleated from the trans-

Golgi network and so are asymmetrically organised (Efimov et al., 2007). As the 

Golgi complex is often reoriented towards the leading edge in cells migrating on 2D 

surfaces (Etienne-Manneville and Hall, 2001), this has the effect of orienting 

microtubules nucleated at the Golgi complex towards the leading edge. These 

microtubules appear to be particularly stable as they are acetylated quickly (Chabin-

Brion et al., 2001). This polarisation of the microtubule array is important, as a loss 

of Golgi-nucleated microtubules inhibits migration in a wound-healing assay; 

however, the cells are still able to reorient their centrosome and Golgi complex 

towards the leading edge (Rivero et al., 2009), suggesting that Golgi-nucleated 

microtubules affect migration independently of centrosome and Golgi complex 

polarity. Indeed, centrosome localisation may influence microtubule (and so cellular) 

polarity indirectly by asymmetrically positioning the Golgi complex (Efimov et al., 

2007). 

In the "search and capture" model, a population of dynamic microtubules searching 

the cellular space are captured by various microtubule-binding proteins at the cortex, 

leading to cell asymmetry. However, there may be more regulation of microtubules 

that this model allows. APC is transported by kinesin to plus ends where it binds 

actin-binding proteins such as β-catenin or the formin mDia and facilitates 

microtubule transport along actin to the cortex (Wen et al., 2004). Movement and 

organisation of F-actin affects dynamic organisation of microtubules in migrating cells 

and it appears that microtubules and F-actin associate with one another in vivo, 

although whether this is a direct interaction or mediated by MAPs is as yet unclear 

(Salmon et al., 2002). Thus, microtubules may be guided towards the cortex to be 

captured, rather than relying on chance to lead to their localisation there. Despite the 

focus on the anchoring of microtubules to the cortex in localising the centrosome, 
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centring mechanisms can function without microtubules contacting the cortex (Wuhr 

et al., 2010). Further, to centre the nucleus in response to changes in cell shape, 

microtubules pull on the nucleus with a force proportional to microtubule length 

(Minc et al., 2011). This suggests that longer microtubules accumulate more motors, 

either because of their increased length, or because longer microtubules have 

accumulated more posttranscriptional modifications that can affect the affinity to 

MAPs to microtubules (Minc et al., 2011). 

4. 4. 2.  Microtubules and cell-cell contacts 

It is well established that microtubule populations within different areas of the same 

cell can have different dynamics and that +TIPs themselves can regulate microtubule 

dynamics. Microtubules adjacent to cell–cell contacts spend much more time in pause 

than microtubule plus-ends near non-contacted cell edges in squamous epithelial cells 

(Waterman-Storer et al., 2000). This is reminiscent of MDCK cells, where the 

microtubule half-life doubles upon contact (Pepperkok et al., 1990). However, cell-

cell contact seems to elicit a cell-type-dependent effect on the microtubule array; for 

example, cell-cell interactions leading to the formation of an epithelium stabilise 

microtubules but cell-cell contacts between migrating fibroblasts appear to 

depolymerise microtubules (Nagasaki et al., 1992). However, in individual cells there 

are also differences in microtubule dynamics in different parts of the cell, with 

microtubule ends close to the back and sides exhibiting shorter growth periods and 

more frequent catastrophes, whereas longer growth phases and fewer catastrophes 

occur in protruding regions (Wadsworth, 1999). This suggests that cell polarity can 

affect microtubule dynamics, but that cell-cell contacts define this polarity when 

present. Further, differences in microtubule dynamics have been illustrated between 

cells within a monolayer (that is, completely in surrounded by cell-cell contacts) and 

those that are at the edge of a monolayer (that is, have a cell-cell contact on one side 
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but also have a free edge). For cells at the edge of a monolayer, microtubules at the 

free edge have a unimodal distribution but microtubules at the cell-cell contact have a 

bimodal distribution: a subset have similar dynamics to microtubules at the free edge 

but a subset are more dynamic than those at the free edge (Waterman-Storer et al., 

2000). Interestingly, microtubules at the edge of cells within a monolayer have a 

unimodal distribution of dynamics (Waterman-Storer et al., 2000). This illustrates the 

complexity of microtubule dynamics and again suggests that cell polarity affects 

microtubule dynamics. 

The microtubule array can be polarised by its post-translational modifications. Cells 

at the leading edge of a wounded fibroblast monolayer orient their centrosomes and 

detyrosinated microtubules towards the leading edge, suggesting that cell-cell contact 

influences microtubule array polarity (Gundersen and Bulinski, 1988; Nagasaki et al., 

1992). Cells within the monolayer have detyrosinated microtubules, but they are 

coiled around the nucleus in a non-polarised manner (Nagasaki et al., 1992). In 

contrast, tyrosinated microtubules are found throughout the cells irrelevant as to their 

position in a wounded monolayer (Nagasaki et al., 1992). Following wounding, cells 

migrate forward to close the gap. As they touch cells on the other side of the wound, 

stable detyrosinated microtubules are lost in the vicinity of the cell-cell contact 

(Gundersen and Bulinski, 1988; Nagasaki et al., 1992). As such, polarisation of 

detyrosinated microtubules is lost and perinuclear localisation of detyrosinated 

microtubules increases coincidently (Nagasaki et al., 1992). Tyrosinated microtubules 

are also reduced at new contact sites in a low number of cells; however, whether this 

is due to inconsistency in the response to cell-cell contact or to a transient effect is not 

clear (Nagasaki et al., 1992).  

Microtubules also affect cell-cell contacts and are required for the maintenance of 

adherens junctions (Waterman-Storer et al., 2000). In rat embryonic fibroblasts, 
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microtubules and kinesin are required for N-cadherin localisation to adherens 

junctions but cell-cell contact promotes N-cadherin transport, suggesting that contact 

formation may in some way regulate kinesin activity (Mary et al., 2002). In 

centrosome-free cytoplasts, N-cadherin signalling at one part of the cell boundary 

appears to stabilise microtubule minus ends throughout the cell (Chausovsky et al., 

2000). Thus, the impact of cell-cell contacts on microtubule dynamics is not 

necessarily local, and the interaction goes in both directions. Nocodazole application 

leads to loss of cell–cell adhesions but, interestingly, this occurs even in low 

concentrations of nocodazole that inhibit microtubule polymerisation without causing 

microtubule depolymerisation. This suggests that the effect of nocodazole on cell-cell 

adhesions is not due to microtubule depolymerisation, but is instead due to the lack of 

microtubule polymerisation that occurs at both high and low concentrations of 

nocodazole (Waterman-Storer et al., 2000). Depolymerisation of microtubules or 

suppression of microtubule growth releases APC from the microtubule ends into the 

cytoplasm. This free APC then could compete with α-catenin to bind β-catenin, 

removing β-catenin from junctions and thus inducing the breakdown of adherens 

junctions (Waterman-Storer et al., 2000).  

It is also possible that adherens junctions are disrupted by microtubule mediation of 

small GTPases (Waterman-Storer et al., 2000). Small GTPase activity affects 

microtubule dynamics in a number of ways. Considering the polarised activity of 

these molecules, they can have a dramatic impact on the polarity of microtubule 

dynamics, of the microtubule array and of the cell. Rac1 can promote microtubule 

growth at the leading edge of migrating cells through Pak1, which phosphorylates and 

inhibits the microtubule-destabilising protein stathmin (Wittmann et al., 2003). 

Inhibiting RhoA signalling increases microtubule stability (Takesono et al., 2010) and 

ROCK can phosphorylate Tau and MAP2 in neurones, dissociating them from 
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microtubules and so promoting microtubule destabilisation (Amano et al., 2003). 

However, RhoA can also selectively stabilise microtubules through its effector mDia1 

at the leading edge by inducing the alignment of microtubules along stress fibres 

(Ishizaki et al., 2001), and increasing the number of detyrosinated microtubules 

(Palazzo et al., 2001). 

4. 4. 3.  Microtubules and Rho GTPases 

Considering the links between Rho GTPases, microtubules, cell-cell contacts and 

polarity, it is not surprising that RhoA and microtubules have been implicated in CIL. 

In G. gallo embryonic fibroblasts, microtubules increase the frequency of catastrophe 

and the rates of shrinkage and growth at the site of cell-cell contact (Kadir et al., 

2011). This reorganisation of the microtubule network is necessary to mediate 

successful CIL and is dependent on Rho and ROCK signalling. ROCK inhibition 

leads to an increase of detyrosinated or acetylated microtubules, increases 

microtubule persistence at cell-cell contacts and inhibits CIL (Kadir et al., 2011). 

ROCK inhibition also reduces actomyosin contractility and CIL, but the authors 

show that interfering with myosin contractility does not significantly affect CIL 

(Kadir et al., 2011). However, nocodazole could partially rescue the loss of 

microtubule dynamics and CIL by ROCK inhibition (Kadir et al., 2011), suggesting 

that RhoA activation at cell-cell contacts leads to depolymerisation of microtubules 

and so a change in the polarity of the microtubule array. RhoA is also activated at 

cell-cell contacts during CIL in neural crest cells (Carmona-Fontaine et al., 2008). In 

D. melanogaster hemocytes, the rapid repolarisation observed upon cell collisions is 

preceded by and requires the alignment of stable microtubule bundles in the colliding 

cells (Stramer et al., 2010). Although the microtubule array has not been investigated 

in this situation, Rho mutant hemocytes clump together and maintain cell–cell 
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contacts during migration (Stramer et al., 2005), again suggesting that RhoA may be 

important in CIL through the affect on the microtubule array. 

Microtubules can also affect Rac1. One theme is that Rac1 is activated at the front of 

the cell by penetration of microtubules into advancing regions. As GTP-bound Rac1 

binds tubulin dimers but not microtubules (Best et al., 1996), microtubule 

polymerisation could release active Rac1. Indeed, microtubule polymerisation leads to 

an increase in Rac1 activity (Waterman-Storer et al., 1999), which has lead to the 

suggestion that microtubules are directly involved in actin polymerisation at the front 

of the cell, inducing lamellipodial protrusion. Microtubule catastrophe leads to local 

release of a large group of MAPs, particularly +TIPs. These include APC, which can 

bind members of the Rac- and Cdc42-regulatory pathways (Kawasaki et al., 2000; 

Watanabe et al., 2004). Release of APC can induce degradation of β-catenin, silencing 

Wnt signalling (reviewed in Polakis, 2007), or potentially affecting adherens junctions 

(Waterman-Storer et al., 2000). Further, Rac1 may be activated by the Rac-GEF 

ASEF (Kawasaki et al., 2000). The GEF activity of ASEF is regulated by its binding to 

APC (Nathke et al., 1996). IQGAP, a Cdc42 and Rac effector, may also be 

transported to the leading edge via binding to the +TIP CLIP170 (Fukata et al., 2002). 

Again, this regulation may depend on cell types, as microtubules can lag behind 

protruding regions, and in rapidly migrating cells they may not enter them at all 

(Ballestrem et al., 2000). Regarding RhoA, microtubule depolymerisation leads to its 

upregulation (Bershadsky et al., 1996). Nocodazole disrupts the polarity of 

macrophages as they migrate towards wounds in D. rerio larvae, and this can be 

rescued by ROCK inhibition (Redd et al., 2006). Nocodazole perturbs migration and 

polarity in T cells, which can again be restored by ROCK inhibition (Takesono et al., 

2010), or GEF-H1 depletion (Chang et al., 2008). The activity of GEF-H1 towards 
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RhoA is suppressed when it binds to microtubules and microtubule catastrophe leads 

to its local release (Krendel et al., 2002). 

4. 4. 4. Microtubules and focal adhesions 

The effects of microtubules on Rac1 and RhoA may be a mechanism by which 

microtubules influence lamellipodia and filopodia organisation, cell migration and cell 

contractility: microtubule polymerisation at the leading edge promotes Rac-dependent 

lamellipodia protrusion, whereas microtubule depolymerisation promotes RhoA-

dependent actomyosin contraction at the cell rear. Indeed, microtubule 

polymerisation favours dissolution of focal adhesions, whereas disruption of 

microtubules leads to a general increase in cell contractility and to the formation of 

stress fibres and focal adhesions (Bershadsky et al., 1996). Direct targeting of 

microtubules to focal contacts followed by the downregulation of the same focal 

contacts has been demonstrated in fibroblasts and it was hypothesised that 

microtubules deliver a relaxing impulse to cell-substrate contacts, facilitating their 

turnover (Kaverina et al., 1999). Microtubule-promoted turnover of adhesions has 

been suggested to be mediated by kinesin delivery of a signal (or signals), such as a 

myosin inhibitor (Kaverina et al., 1999; Kaverina et al., 1998; Krylyshkina et al., 

2002). Controlling the number of targeting events would have varying relaxation 

effects on different adhesion sites, thus affecting polarity and migration. If 

microtubules can exert such relaxing effects in an asymmetric manner in a cell they 

could, by this route, influence the polarity of the actin cytoskeleton. Indeed, targeting 

of focal adhesions by microtubules occurs more often at the retracting edge than at 

the leading edge (Kaverina et al., 1999). Fibroblasts that are rendered apolar and 

immotile by microtubule depolymerisation can be induced to polarise and move by 

the asymmetric application of actomyosin inhibitors (Kaverina et al., 2000). 

Interestingly, kinesin preferentially binds to acetylated microtubules, (Reed et al., 
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2006), suggesting that controlling the post-translational acetylation of microtubules 

could mediate processes such as contractility by affecting the delivery of kinesin-

bound cargo. 

Focal adhesion-microtubule interactions may help to explain the varying influence of 

microtubules on different cell types. The migration of fish keratocytes, which exhibit 

focal complexes that do not mature into focal adhesions (Anderson and Cross, 2000), 

is unaffected by microtubule disassembly (Euteneuer and Schliwa, 1984). 

Microtubules might be required for adhesion release only when stress at the adhesion 

sites exceeds a certain threshold, and perhaps this threshold is not reached in 

keratocytes (Small et al., 2002). Microtubules do in fact enter lateral adhesions in 

keratocytes and also lamellipodia regions when stress is increased by mechanical 

manipulation (Kaverina et al., 2002), suggesting that microtubule responses to tension 

could assist in establishing cell polarity. Fibroblasts depend on microtubule dynamics 

for polarisation and migration and are strongly adherent (Bershadsky et al., 1996; 

Liao et al., 1995). Melanoma cells can extend protrusions and migrate without 

microtubules but tail retraction is incomplete, which fits with observations that few 

microtubules grow to the front of the cell but many invade the rear (Ballestrem et al., 

2000). Leukocytes are less adherent and can move even faster after losing 

microtubules, polarising spontaneously (Keller et al., 1984). The increase in 

chemokinesis and polarisation is apparently due to increased RhoA activation, as it 

can be suppressed by ROCK inhibition (Niggli, 2003). That a requirement for 

microtubules is related to adhesive properties is illustrated by strongly and weakly 

adherent sublines of Walker carcinosarcoma cells, which respond to microtubule 

disruption in a way that is similar to fibroblasts and leukocytes, respectively (Sroka et 

al., 2002).  
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Nonetheless, this explanation does not hold true for changes in cell substrate. 

Fibroblasts cultured on a cover slip do not require microtubules for lamellipodial 

extension but cannot polarise without them, whereas on a 3D matrix fibroblasts lack 

stress fibres and focal adhesions but without microtubules are unable to form any 

protrusion (Rhee et al., 2007). Thus, in the absence of stress fibres or focal adhesions, 

fibroblasts require microtubules to form dendritic protrusions, but when there is high 

tension between cell-matrix adhesions, fibroblasts can spread using focal adhesions 

and stress fibres and microtubules are required for polarisation (Rhee et al., 2007). 

However, this is not the case for all cells migrating in 3D environments. Treatment of 

D. rerio embryos with nocodazole interferes with the directional migration of 

macrophages and thus their recruitment to wounds (Redd et al., 2006). ROCK 

inhibitor Y-27632 is capable of suppressing the effects of nocodazole on macrophage 

recruitment to wounds in vivo (Redd et al., 2006), again highlighting that 

microtubule depolymerisation can activate RhoA. 

On the other hand, focal adhesions can also influence microtubules. Following 

microtubule targeting to focal adhesions, the microtubules undergo rapid catastrophe 

and rescue (Efimov et al., 2008; Kaverina et al., 1998). Catastrophe appears to be 

dependent on paxillin (Efimov et al., 2008), and allows them to target the focal 

adhesions a number of times in short succession (Kaverina et al., 1998). However, 

microtubule binding to focal adhesions can also transiently stabilise the microtubule 

to nocodazole (Kaverina et al., 1998), suggesting that a brief stabilisation phase 

occurs before paxillin-dependent catastrophe. This illustrates the complexity of the 

system: cell-cell contacts can affect the stability of cell-substrate adhesions by affecting 

microtubule stability, and yet microtubules are important in cell-cell adhesion 

maintenance and cell-substrate adhesions can affect microtubule dynamics. 
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The role of microtubules in transport delivery makes the polarised transport of cargo 

an obvious method through which microtubules could influence cell polarity. An 

intact microtubule network is also required for proper cell repair, as it mediates 

localised transport of vesicles to the wound site (Abreu-Blanco et al., 2011). In the D. 

melanogaster embryo, a subset of mRNA particles is transported by the dynein-

dynactin complex to the apical cytoplasm and modulating the number of motor 

proteins changes the frequency of dynein-mediated localisation (Wilkie and Davis, 

2001). Bias has also been described for oskar mRNA in D. melanogaster oocytes 

through a kinesin motor (Zimyanin et al., 2008), allowing spatial and temporal 

regulation of gene expression. 

4. 4. 5. Microtubules in neuronal development 

The initiation and maintenance of neuronal polarity has been intensely studied and 

thus provides a convenient example of how various aspects of the microtubule 

cytoskeleton interconnect to influence cell polarity. The microtubule array is 

particularly important in initiating neuronal polarity. Local microtubule assembly and 

stabilisation in one neurite is at least one way of specifying neuronal polarisation; 

indeed, changing microtubule dynamics is sufficient to alter axon and dendrite 

specification (Witte et al., 2008).  In cultured hippocampal pyramidal neurons, APC 

localises to the tips of all neurites but then becomes enriched only in the future axon 

(Votin et al., 2005). This occurs before morphological polarity is established and is 

required for the targeting of Par3 to the axonal growth cone, where Par3-aPKC-Par6 

is essential for neuronal polarisation (Shi et al., 2004b). It seems that an APC-EB1 

interaction leads to microtubule capture at the cortex and that Par3 is carried to the 

growth cone via kinesin transport. Inhibition of the Rho-ROCK pathway is also 

required for Par3 accumulation at the growth cone, because otherwise ROCK 

phosphorylates Par3; this prevents Par3 interaction with Tiam1 and Tiam2, which is 
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important for axon formation (Kunda et al., 2001; Nakayama et al., 2008; Nishimura 

et al., 2005; Takefuji et al., 2007). Thus, a feedback loop involving the reciprocal 

inhibition of RhoA and Rac1 and the regulation of microtubule dynamics is crucial 

during axon specification and so neuronal polarisation. However, it should be noted 

that APC is not be required for polarisation in all neurons: complete knockdown of 

APC in D. melanogaster neurons does not affect axon outgrowth or targeting (Rusan 

et al., 2008).  

The kinesin1 motor domain also accumulates in the future axon before morphological 

polarisation (Jacobson et al., 2006). A complex of kinesin and CRMP2 transports 

tubulin heterodimers and oligomers to the tip of growing axons (Kimura et al., 2005), 

where CRMP2 then promotes microtubule assembly (Fukata et al., 2002). The 

kinesin KIF13 transports PI3K, whose signalling plays a role in neuronal polarisation 

(Shi et al., 2003), to accumulate at the tip of the future axon (Horiguchi et al., 2006). 

As some kinesin family members preferentially bind acetylated microtubules (Reed et 

al., 2006), it may be that stable microtubules provide a landmark that maintains 

axonal identity (Gomis-Ruth et al., 2008). Interestingly, the transport of 

neurofilaments into and along axons requires not only an intact microtubule array 

but also both kinesin and dynein motor proteins (Lee et al., 2011).  

Microtubules are severed from the centrosome and transported to axons and neurites: 

in axons they are oriented with their plus end towards the growth cone and in 

dendrites they have a mixed orientation (Baas et al., 1988). Microtubules are bundled 

in the axon and then splay upon entering the growth cone, where individual dynamic 

microtubules display splaying, looping, bending and bundling. Within an axon, the 

proximal end of an individual microtubule tends to be detyrosinated and acetylated 

while close to the growth cone it is high in tyrosinated tubulin and is thus much more 

dynamic (Baas et al., 1993; Brown et al., 1992). Dynamic microtubules are captured 
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at stable actin filaments within filopodia, and, as a consequence, are protected against 

catastrophe. Remodelling and organisation of individual dynamic axonal 

microtubules in the growth cone is required for persistent growth cone advance, 

axonal elongation and recognition of guidance cues (Tanaka and Kirschner, 1995; 

Tanaka and Kirschner, 1991). Low doses of vinblastin that decrease microtubule 

dynamics rather than affecting integrity of the axonal microtubule array abolish 

axonal elongation (Tanaka and Kirschner, 1995). In X. laevis spinal cord neurones in 

culture, a growth cone turning at borders between permissive and nonpermissive 

molecules will reorient its microtubules in the direction of the turn. Inhibiting 

microtubule dynamics blocks growth cone turning at substrate borders (Challacombe 

et al., 1997), and also block turning in response to focally applied guidance cues 

(Buck and Zheng, 2002). In addition, stabilising microtubules on one side of the 

growth cone by locally uncaging caged taxol within the growth cone or by 

asymmetric delivering of taxol or a chemotactic cue, turns the growth cone toward 

that side (Buck and Zheng, 2002; Zumbrunn et al., 2001). Conversely, if 

microtubules are locally depolymerised on one side of the growth cone, the growth 

cone steers away (Buck and Zheng, 2002).  

Once the polarity is established, microtubules in different neuronal sections differ in 

their complement of MAPs: for example, MAP2 is found mostly in dendrites and tau 

is found mainly in axons. The MAP Futsch, which organises synaptic microtubules 

and is itself dependent on homologues of Wnt and GSK3 (Packard et al., 2002), 

localises aPKC to synapses where it recruits Par3 and Par6 and is required for 

synaptic activity (Ruiz-Canada et al., 2004). Thus, polarisation of the microtubule 

array on a number of levels controls cellular polarity throughout neuronal 

development. 
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5.   Hypothesis 

The importance of cell-cell contacts between neural crest cells is evident from the 

importance of CIL in migration and cell polarisation. However, little is known about 

the composition or effect of cell-cell junctions in neural crest cells. Par3 is important 

in cell contact formation in epithelial cells; through these and other mechanisms it 

influences epithelial cell polarity. Par3 is also important in mesenchymal cell polarity 

and the directionality of cell migration. It achieves this through influencing the 

stability of the microtubule array. Neural crest cells are not epithelial, but neither do 

they migrate singly like the mesenchymal cells in which Par3 has been studied; indeed, 

contacts between neural crest cells affect their polarity and are crucial to collective 

migration. Thus, I propose the following hypothesis (Fig. 5.1): 

 

 That Par3 is localised to transient cell contacts formed during CIL, where it 

influences microtubule dynamics and so promotes cell polarity and directional 

migration. 

 

To test this hypothesis, I will address the following questions: 

 1. Is Par3 required for neural crest cell migration? 

 2. Is Par3 required for CIL? 

 3. Is Par3 localised to cell-cell contacts during CIL? 

 4. Are microtubule dynamics required for neural crest cell migration? 

 5. Are microtubule dynamics required for CIL? 
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 6. Does Par3 affect microtubule dynamics during CIL? 
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Figure 5.1. Hypothesis 

Par3 is localised with other adhesion proteins (for example, E-cadherin) to the 

adhesion complex in epithelial cells, where it is required for contact formation and 

influences cell polarity. The microtubule array is important for maintenance of 

epithelial cell polarity and is influenced by cell contacts. Neural crest cells are 

mesenchymal but migrate in a group. The hypothesis proposed in this thesis is that 

Par3 is also localised to contacts between neural crest cells and that Par3 controls 

contact inhibition of locomotion by influencing microtubule dynamics.  
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6.   Solutions 
6. 1.  Solutions for molecular biology and general use 
DEPC water 

0.1%   diethylpyrocarbonate (DEPC) 

  In water 

  Sterilise twice by autoclaving 

PBS and PBT 

137 mM  NaCl 

2.7 mM  KCl 

4.3 mM  Na2HPO4 

1.4 mM  H2PO4 

  Adjust pH to 7.3 

  Add 0.1% Tween-20 to make PBT 

mRNA NTP-mix (10 x) 

10 mM  GFP 

10 mM  ATP 

10 mM  UTP 

10 mM  CTP 

Labelled NTP-mix (10 x) 

10 mM  GTP 

10 mM  ATP 

10 mM  CTP 

6.5 mM  UTP 

3.5 mM  Dig-UTP 
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MEM salts (10 x) 

1 M   MOPS 

10 mM  MgSO4 

20 mM  EGTA 

  In DEPC water 

MEMFA 

1 vol   MEM salts 

1 vol   37% formaldehyde 

8 vol   DEPC water 

SSC (20 x) 

3 M   NaCl 

0.3 M  Tri-sodium citrate 

  Adjust pH to 7.0 

LB broth 

10 g   LB agar (Sigma) 

  In 500 ml water 

  Sterilise by autoclaving 

  Added 500 uL antibiotic 

 

6. 2.  Solutions for embryonic experiments 

Modified Ringer Solution (MMR; 10 x) 

1 M   NaCl 

20 mM  KCl 

10 mM  MgSO4 

20 mM  CaCl2 

50 mM  HEPES 
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1 mM  disodium-EDTA 

  Adjust pH to 7.8, lowers to 7.6 when diluted to 1 x 

Normal Amphibian Medium (NAM) A 

1.1 M  NaCa 

20 mM  KCl 

10 mM  Ca(NO3)2 

10 mM  MgSO4 

1 mM  EDTA 

  Sterilise by autoclaving 

NAM B 

20 mM  NaH2PO4 

  Adjust pH to 7.5 

  Sterilise by autoclaving 

NAM C 

100 mM  NaHCO3 

  Sterilise by millipore filtration 

Working concentrations for NAM 

   NAM A NAM B NAM C 

NAM1/10  10 mL 10 mL 1 mL 

NAM3/8  37 mL 37 mL 1 mL 

NAM3/4  75 mL 75 mL 1 mL 

  Add 1 mL streptomycin (50 mg/ml) and water up to 1 L 

Tricaine solution 

5 g   Ethyl 3-aminobenzoate methanesulfonate   

  Add water up to 1 L 
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Ficoll 

3%    Polysucrose    

  in NAM3/8 

Fish water 

60 mg   “Instant Ocean” 

  Add water up to 1 L 

Danilchick’s Solution (DFA) 

53 mM  NaCl 

5 mM  Na2CO3 

4.5 mM  K-Gluconate 

32 mM  Na-Gluconate 

1 mM  MgSO4 

1 mM  CaCl2 

0.1%   BSA 

  Adjust pH to 8.3 with 1 M Bicine 

  Add 50 ug/ml streptomycin before use 

 

6. 3.  Solutions for in situ hybridisation 

Bleaching solution 

20%   H2O2 

5%   Formamide 

2.5%   20 x SSC 

  In DEPC water 

Hybridisation buffer 

50%   Formamide 

5 x   SSC 
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1 x   Denhardt’s Solution 

1 mg/ml  Ribonucleic acid 

100 ug/ml  Heparin 

0.1%   CHAPS 

10 mM  EDTA 

0.1%   Tween-20 

  Adjust pH to 5.5 

Probe washing solutions 

Solution  Formamide  SSC 20 x 

1   50 mL  10 mL 

2   25 mL  10 mL 

3   12.5 mL  10 mL 

4   -   10 mL 

5   -   1 mL 

  Add 0.1 mL Tween-20 

  Add DEPC water up to 100 mL 

AP Buffer 

0.1 M  NaCl 

0.1 M  TrisHCl, pH 9.5 

50 μM  MgCl2 

1%   Tween 

  In water 

 

6. 4.  Solutions for Western blot and coimmunoprecipitation 

Homogenisation buffer 

2 mL   1 M Tris-HCl (pH 7.6) 
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10 mL  1 M NaCl 

1 mL   1% TritonX-100 

  Add distilled water up to 100 mL 

Protein buffer (10 x; 1 L) 

250 mM  Tris 

1921 mM  Glycine 

  Adjust pH to 8.3 

Running buffer 

10%   Protein buffer 

0.1%/v  SDS 

  In water 

Transfer buffer 

10%   Protein buffer (to 1 x) 

20%   Methanol 

0.03%/v  SDS 

  In water 

Tris-buffered saline (10 x) 

4 g   NaCl 

0.2 g   KCl 

12.5 ml  TrisHCl, pH7.5 

  Add distilled water up to 50 mL 

Peroxidase detection stock solutions 

Solution 1 

0.5 mL  Luminol 

0.22 mL  Coumeric acid 

5 mL   Tris-HCl 
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  Add distilled water up to 50 mL 

Solution 2 

32 μL  Hydrogen peroxide 

5 mL   Tris-HCl 

  Add distilled water up to 50 mL 

NOP buffer 

10 mM  HEPES (pH 7.4) 

150 mM  NaCl 

2 mM  EDTA 

1%   NP-40 
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7.   Experimental procedures 

7. 1.  Embryological procedures 

7. 1. 1.  X. laevis embryo collection 

Adult X. laevis were kept in standard conditions (Portsmouth Animal Facility, UK or 

Nasco, USA). Females were injected subcutaneously with 100 units of pregnant serum 

mare gonadotropin (PSMG; Intervert) 4 to 7 days before use and with 500 units of 

chorion gonadotropin (Intervert) approximately 16 hours before the planned 

fertilisation to induce ovulation. While laying, females were kept in MMR solution at 

approximately 17oC in order to maintain the possibility of the oocytes to be fertilised 

after laying. Males were killed in 0.5% Tricaine solution (Sigma, E10521). The testes 

were removed and stored in Leibovitz L-15 medium (Invitrogen, #11415) with added 

streptomycin (5 μg/mL, Sigma, #85886) at 4oC. For fertilisation, a section of testes 

was crushed in MMR and mixed with oocytes in a petri dish. The oocytes were 

activated 15-30 minutes after fertilisation by flooding with NAM1/10. At the 2-8 cell 

stage, embryos were left for 15 minutes in 2% L-cysteine (pH 8.2, Sigma) to remove 

the jelly. Embryos were raised in NAM1/10 and staged according to Nieuwkoop and 

Faber (1967).   

7. 1. 2.  D. rerio embryo collection 

D. rerio strains were maintained and bred according to standard procedures 

(Westerfield, 2000). Wildtype embryos were obtained following natural spawning of 

an AB wild-type colony. Transgenic sox10:egfp embryos (Carney et al., 2006) or 

sox10:mGFPnRFP (not published) were obtained from crosses between heterozygous 

sox10:egfp or sox10:mGFPnRFP carriers respectively . Embryos were raised in fish 

water at 28.5oC and staged according to Kimmel et al (1995). 
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7. 1. 3.  X. laevis embryo injection 

X. laevis embryos were injected using a Narishige IM300 microinjector under a Leica 

MZ6 or Nikon SMZ645 dissecting microscope. Needles were made from borosilicate 

glass capillaries (Intracel, #01-001-06) with an internal diameter of 0.5 mm, using a 

Narishige PC-10 needle puller. The puller was set to the two-step mode with both 

steps adjusted to 69.5% capacity. Each needle was filled with mRNA, DNA or 

morpholino (or combination thereof) and calibrated using an eyepiece graticule to 

inject 5 nl or 10 nl per injection.  Fluorescein-dextran (FDX; Invitrogen, D1821, 3 μg) 

or rhodamine-dextran (RDX; Invitrogen, D1824, 5 μg) were used as tracers. Embryos 

were injected in a dish of Ficoll at the 2- to 16-cell stage; to target the neural crest 

specifically, embryos were injected into the animal ventral blastomeres at the 8- or 16-

cell stage on one side. They were cultured in Ficoll for approximately 16 hours at 

14.5oC and were then transferred to NAM1/10 before the onset of gastrulation. 

However, the temperature was sometimes altered to change the speed of development. 

7. 1. 4.  D. rerio embryo injection 

D. rerio embryos were injected into the yolk with 4 nl per injection. Embryos were 

injected dry at the 1-cell stage. Embryos were then developed in fish water at 28.5oC, 

although the temperature was occasionally altered to change the speed of 

development. 

7. 1. 5.  Neural crest transplant 

Neural crest transplants performed as described by (De Calisto et al., 2005). Briefly, 

the procedure was carried out in NAM3/4 when the embryos were at stages 18-20.  

The neural crest was dissected from embryos that had previously been injected, and 

thus labelled, with FDX. Neural crest was removed from uninjected host embryos and 
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the fluorescent neural crest from injected embryos transferred into their place. 

Embryos were cultured in NAM3/8 to heal and develop. 

7. 1. 6.  Neural crest dissection and in vitro culture 

Fibronectin-coated plastic or glass dishes were prepared by incubating the dish for 

one hour at 37oC with 10 μg/mL or 50 μg/mL fibronectin (Sigma, F1141) in PBS 

respectively. The dish was washed three times in PBS and then blocked with 0.1% 

bovine serum albumin (BSA)/PBS for 30 minutes at 37oC, washed again with PBS and 

filled with DFA. Neural crest dissection was carried out in NAM3/8. This was 

performed at stage 17-20 using a standard technique, described by Alfandari et al 

(2003). Once removed from the embryo, explants were transferred to the pre-

prepared fibronectin-coated dish. They were left still for 30 minutes to allow for 

neural crest attachment to the fibronectin. If required, paclitaxel (taxol; Sigma, 

T7402; final concentration 0.2 μM), nocodazole (Sigma, M1404; final concentration 

13-65 nM), sodium orthovanadate (Sigma, S6508; final concentration 1-100 μM), 

NSC23766 (Tocris, #2161; final concentration 20 μM), cytochalasin D (Sigma, 

C8273; final concentration 0.2 μM) or dimethyl sulfoxide (DMSO; vehicle) were 

added to the DFA. 

7. 1. 7. Cell reaggregation assay 

Embryos were injected with a tracer (FDX or RDX) and a morpholino (ControlMO, 

Par3MO or N-CadherinMO). Neural crest cells were dissected as described above 

from two groups of embryos, one marked with FDX and one marked with RDX. The 

explants were put in Ca2+- and Mg2+-free DFA and agitated with an eyebrow knife in 

order to dissociate the cells. The cells were then put into a eppendorf tube in standard 

DFA overnight at 4oC to allow reaggregation. 

 



 
 

 120 

7. 2.  Molecular biology 

7. 2. 1.  Obtaining DNA clones 

DNA clones were obtained either suspended in water or spotted onto filter paper. See 

Table 7.1 for a list of clones used for this thesis. If obtained on paper, the spotted 

region was cut out of the paper and soaked in water to resuspend the plasmid. 

Competent DH5-α bacteria were thawed on ice for 5 minutes and 1-5 µl plasmid was 

added. Bacteria were kept on ice for 20 minutes, heat-shocked at 42oC for 45 seconds 

and put back on ice. After a further 2 minutes, 600 µl of nuclease-free water was 

added and then 100 µl of bacteria mixture plated on LB-ampicillin or LB-kanamycin 

plates as appropriate. Plates were incubated at 37oC for 16 hours, by which time 

colonies were present, then left at 4oC. A sterile micro-pipette tip was used to pick one 

colony from the plate and grown in 100 ml of LB-ampicillin or LB-kanamycin 

medium at 37oC with agitation for 16 hours.  The bacteria were pelleted by 

centrifugation (15 minutes, 5000 rmp) at 4oC and the supernatant discarded. The 

amplified DNA was then extracted from the bacteria using the Plasmid midiprep kit 

(Qiagen, #12143). DNA concentration was measured using a Nanodrop 

spectrophotometer (ND-1000). 

7. 2. 2.  Synthesis of mRNA for injection 

Restriction digest 

Plasmid DNA was linearised by cutting at a 3’ restriction site with an appropriate 

restriction endonuclease. Enzymes, buffers and BSA were obtained from Promega. A 

100 μL reaction of 10 ug plasmid DNA, 10 μL of appropriate 10x buffer, 1 μL of 

BSA and 1 μL of enzyme in water was incubated at 37oC for two hours.  
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Digested DNA was purified using chloroform extraction and precipitated with 

ethanol. To do this, 100 μL of DEPC-water and 200 μL of 

Phenol:Chloroform:Isoamyl (25:24:1) added. This was vortexed to mix and 

centrifuged at 4oC for 10 minutes at 13,000 rpm. The top layer was carefully removed 

and placed in a new 1.5 mL eppendorf tube. Once this volume was measured, twice 

the amount of 100% ethanol and 1/10 the volume of 3 M NaAc were added, and the 

mixture incubated at −20oC overnight. The samples were centrifuged at 4oC for 30 

minutes at 13,000 rpm. The supernatant was removed, the samples washed with 350 

μL of 70% ethanol and centrifuged again at 4oC for 15 minutes at 13,000 rpm. 

Again, the supernatant was removed and the samples were air dried and resuspended 

in 20 μL of TrisEDTA.  

Transcription 

Two μL of 3’ linearised and purified plasmid DNA were mixed in with 10 μL NTP 

cap, 2 μL of 10x buffer, 2 μL of enzyme mix, 1 μL of GTP and 3 μL of water and 

incubated for two hours at 37oC. Synthetic capped mRNA was thus transcribed using 

the SP6 or T7 Ambion mMessage mMachine kit (Invitrogen, AM1340 and AM 1344, 

respectively). One μL of the reaction mixture was replaced with 1 μL of DNAase and 

the mixture incubated for a further hour at 37oC in order to remove the DNA. The 

mRNA was precipitated by adding 100 μL of TrisEDTA, 10 μL of 4 M LiCl, 300 μL 

of 100% ethanol  and leaving on ice for 30 minutes. Samples were centrifuged for 10 

minutes at 4oC at 13,000 rpm, the supernatant removed and 300 μL of 70% ethanol 

added, then the centrifugation step repeated. The supernatant was again removed and 

the pellet resuspended in 100 μL nuclease-free water.  The concentration was 

measured using a Nanodrop spectrophotometer (ND-1000). 
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7. 2. 3.  Synthesis of antisense RNA probes for in situ hybridisation 

Plasmids were synthesised, purified and linearised as described above. In vitro 

transcription of antisense RNA was carried out by mixing together 2 μL of linearised 

DNA, 4 μL of 5 x buffer, 2 μL of 10 x DTT, 2 μL of NTP-Dig, 0.5 μL of RNAse 

inhibitor and 1 μL of RNA polymerase and making the solution up to 20 μL with 

water. The NTP mix contains digoxigenin-labelled UTP, so the resulting RNA was 

labelled with digoxigenin. This mixture was incubated at 37oC for two hours. From 

this, 1 μL was replaced with 1 μL of DNAase and the mixture incubated at 37oC for 

an hour to degrade the DNA template. The mRNA was precipitated by adding 100 

μL of TrisEDTA, 10 μL of 4 M LiCl, 300 μL of 100% ethanol and leaving on ice for 

30 minutes. Samples were centrifuged for 10 minutes at 4oC at 13,000 rpm, the 

supernatant removed and 300 μL of 70% ethanol added, then the centrifugation step 

repeated. The supernatant was again removed and the pellet resuspended in 100 μL 

nuclease-free water. The concentration was measured using a Nanodrop 

spectrophotometer (ND-1000). 

7. 2. 4.  Oligomorpholinos 

Oligomorpholinos were designed as recommended by GeneTools or using previously 

reported morpholinos. Three morpholinos were used for this thesis: X. laevis Par3 (8 

ng, 3’ - TACTTCCACTGCCACTCGAAACCCT - 5’), D. rerio Par3 (1.4 ng, Wei et 

al., 2004b) and X. laevis Trio (8 ng, Kashef et al., 2009), 3’ - 

TGCGCATAGCTACAGCTGAAAAAAA - 5'). Equimolar concentrations of standard 

control morpholinos (ControlMO; 3’ - ATATTTAACATTGACTCCATTCTCC - 5’) 

were used in both species. 
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7. 2. 5.  In situ hybridisation 

Embryos were fixed in MEMFA for one hour at room temperature, washed in 100% 

methanol and kept in 100% methanol for storage at −20oC. Embryos were rehydrated 

with successive washes of 75% methanol/PBT, 50% methanol/PBT, 25% 

methanol/PBT and PBT. X. laevis embryos but not D. rerio embryos were bleached 

for 20 to 30 minutes and washed in PBT. All embryos were then fixed for 30 minutes 

in 3.7% formaldehyde/PBS, washed again in PBT and transferred to hybridisation 

buffer, in which they were incubated at room temperature for at least one hour then 

stored at -20oC. They were then left overnight in hybridisation buffer containing 

digoxigenin-labelled probe at 62oC. The probes used in this thesis were against Snail2 

(Mayor et al., 1995) and Twist (Hopwood et al., 1989) in X. laevis and FoxD3 

(Odenthal and Nüsslein-Volhard, 1998) in D. rerio. The post-hybridisation washes 

using Washing Solutions 1-4 were performed at 62oC for ten minutes each. A 30-

minute post-hybridisation wash of Washing Solution 5 was carried out at 62oC. All 

solutions used up to this point were made with DEPC-treated water to prevent 

RNAase contamination, which could otherwise degrade the RNA probe. Embryos 

were rinsed with TBS, blocked in TBS/2% serum for 2 hours at room temperature 

and incubated in TBS/2% serum containing an antibody against digoxygenin labelled 

with AP (Roche, #11093274910) overnight at 4oC. They were then washed for 30 

minutes in TBS/2% serum five times at room temperature, washed for 15 minutes in 

AP buffer three times at room temperature and developed using 4-nitro blue-

tetrazolium-chloride (NBT; Roche, #11383213001) and 5-bromo-4-chloro-3-indoyl-

phosphate (BCIP; Roche, #11585002001) diluted in AP buffer (1:4000) at room 

temperature. The reaction was stopped by washing in PBT and background staining 

was removed by a 20 minute wash in 100% methanol. Embryos were then fixed in 

3.7% formaldehyde and kept at 4oC. 
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7. 2. 6.  Cryosection of X. laevis embryos 

Embryos were fixed in MEMFA at room temperature for one hour. They were 

washed in PBS and incubated in 15% sucrose (Sigma, S0389)/PBS overnight at 4oC. 

The following day they were incubated in 7% porcine gelatin (Sigma, G2500)/15% 

sucrose/PBS at 42oC for at least two hours then mounted in the same. Each embryo 

was cut out of the gelatin in a block, which was frozen in isopentane at -80oC and 

then kept at -80oC. Cryosections of 10 nm were collected on Superfrost glass slides 

and allowed to dry at 4oC. Gelatin was removed by incubating the slides in PBS at 

37oC for 30 minutes and sections were processed for immunostaining. 

7. 2. 7.  Immunostaining 

Immuostaining was performed on neural crest explants or cryosections. For most 

epitopes, neural crest explants were fixed in 3.7% formaldehyde/PBS for 30 minutes 

at room temperature. Cells were washed in PBS 3 times for 10 minutes per wash and 

permeabilised by incubation in ice-cold 0.2% Triton-X 100 in PBS twice for 5 

minutes each time. Samples were again washed in PBS 3 times for 10 minutes each 

time and then blocked with 1% BSA/PBS for 30 minutes at room temperature. The 

primary antibody was diluted in 1% BSA/PBS and applied for 2 hours at room 

temperature or overnight at 4oC. Samples were washed 3 times in PBS, for 10 minutes 

each wash. The secondary antibody was diluted in 1% BSA/PBS and applied for one 

hour at room temperature. Samples were washed thoroughly in PBS and mounted in 

Mowiol. See Tables 7.2 and 7.3 for details of all antibodies. 

For immunostaining against α-tubulin and acetylated tubulin, explants were fixed in 

4% paraformaldehyde/0.2% gluteraldehyde/PBS for 15 minutes at room temperature 

then washed in ice cold 100% methanol for 10 seconds. They were then washed in 
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PBS 3 times for 10 minutes each time and processed for immunostaining from the 

blocking step as above. 

7. 2. 8.  Coimmunoprecipitation 

Cos7 cells were transfected with Par3GFP or TrioHA using TransPass (New England 

Biolabs), harvested after 48 hours and lysed with NOP buffer supplemented with 

Complete Protease Inhibitor (Roche). Trio was pulled down with an antibody against 

HA for 1 hour at 4oC, followed by a 1 hour incubation with protein A sepharose 

beads at 4oC. Immunoprecipitations were washed three times with NOP buffer, once 

with 0.5 M LiCl and three times with NOP buffer, then resolved by SDS-

polyacrylamide gel electrophoresis. Western blotting was performed using NBT/BCIP 

to develop. See Tables 2.2 and 2.3 for details of all antibodies. 

7. 2. 9.  Western blots 

Whole embryos were added to 100 μL of homogenisation buffer with 1 μL 

phosphatase inhibitor, homogenised with the tip of a micropipette and spun several 

times replacing the tube in each cycle. Then the samples were centrifuged for 10 

minutes at 13,000 rpm at 4oC. The supernatants were recovered and placed in new 

tubes and stored at −80oC if required. Protein concentration was measured and made 

uniform among different samples. The gel was made by filling a mould with running 

gel solution and adding water to the top in order to keep the top level of the gel flat. 

Once the gel had solidified, the water was removed, the stacking gel solution used to 

fill up the rest of the mould and a comb inserted. To run the gel, the sample was 

diluted to the desired concentration, mixed with NuPAGE LDS sample buffer 

(Invitrogen, NP0007) and boiled at 95oC for three minutes. The electrophoretic 

chamber was filled with running buffer, the comb removed from the gel and the 

samples loaded. To estimate the weight of the bands obtained, a standard protein 
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ladder (Biorad, #161-0377) was run through the gel at the same time. Electrophoresis 

was performed at 200 V for 40 minutes. The protein was transferred to a PDVF 

membrane (Amersham Hybond, RPNFL/02/10) using a semi-dry blotter at 15 V for 

45 minutes. The membrane was blocked overnight in 5% Marvel/TBST at 4oC and 

then cut in order to perform separate experiments on the sections of the gel where 

Par3 or MAPK was expected to be found. Membrane sections were incubated for 3 

hours at room temperature in the appropriate primary antibody diluted in 5% 

Marvel/TBST. The membrane was washed well in TBST and incubated for 2 hours at 

room temperature in the secondary antibody tagged with horseradish peroxidase and 

diluted in 5% Marvel/TBST. After washes, equal volumes of two peroxidase solutions 

were mixed and applied to the membrane for five minutes in the dark. The excess 

peroxidase solutions mixture was removed from the membrane. The membrane 

wrapped in cling film to avoid the membrane drying and placed in a signal 

amplification cassette. In the dark, an X-ray film (Super RX, Fuji) was introduced 

into the cassette and developed in a X-OGraph machine. Band intensity was measured 

using ImageJ. See Tables 2.2 and 2.3 for details of all antibodies. 

 

7. 3.  Imaging 

X. laevis or D. rerio embryos were immobilised in a dish coated with 1% agarose 

(Sigma, A9414) to be photographed. Time-lapse imaging of X. laevis neural crest was 

carried out at low magnification to look at whole neural crest cell explants or at high 

magnification to look at individual or small groups of cells. Neural crest explants 

were observed at low magnification using 10 x or 20 x dry objectives on a Leica 

DM5500 compound microscope. When imaging one experimental condition, 

fibronectin-coated petri dishes containing cultured neural crest cells were filled with 
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DFA and closed so that no air bubbles were present. When more than one 

experimental condition was required, neural crest cells were cultured in up to four 

wells of a four-well dish. These were filled with DFA and sealed with 22 mm x 22 

mm cover slips smeared with high-vacuum grease (Dow Corning), over which the dish 

lid was fixed. These were inverted and the cells imaged through the plastic. Images 

were collected every 5 minutes for a period of 8 hours. For high magnification, neural 

crest cells cultured in a fibronectin-coated glass dish filled with DFA were imaged 

using a 60 x or 100 x oil objective in an inverted spinning disk microscope. Images 

were collected every 2 seconds for a period of 15 to 30 minutes using Volocity 

software and edited using the same software. Fixed cells or sections were imaged 

using a Leica SPE confocal microscope and 40 x or 63 x objectives. Cell reaggregation 

experiments were also imaged on a Leica SPE confocal microscope, but in this case a 

20 x objective was used. Sox10:mGFP/nRFP transgenic D. rerio embryos were used 

to observe neural crest migration in vivo. Embryos were dechorionated and mounted 

in low melting point agarose in a glass dish, and covered with fish water to prevent 

dehydration. They were imaged on a spinning disk microscope, with frames taken 

every 5 minutes. Colocalisation was analysed using the ImageJ Colocalisation Finder 

plugin. Pixel intensity was measured using ImageJ. 

 

7. 4.  Methods of analysis 

7. 4. 1.  Analysis of cell migration 

Analysis of neural crest migration in vivo was performed by measuring distance from 

the top of the head to the most ventral neural crest cells and expressing this as a 

proportion of the distance between the top and bottom of the head. This was repeated 

at three locations for each embryo and the average proportion calculated. 
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From low-magnification time-lapse movies, individual cells were tracked using the 

ImageJ Manual Tracking plug-in. This method requires manual identification of each 

cell at each time point. The ImageJ Chemotaxis plug-in was then used to analyse 

speed and persistence of cell migration. Persistence is calculated as the distance 

between the start and end of migration divided by the actual distance migrated. 

Tracking of single cells began at least 30 minutes after previous cell-cell contact (if 

applicable), in order to limit any potential effect that cell-cell contact might have on 

single cell migration, and lasted for two hours. Any cells that contacted another cell 

during this time were not included in the analysis.  

Separately, cells were tracked during the dispersion of explants; that is, tracking 

commenced when the cells were still in the explant and followed them as they moved 

out of the explant and interacted with other cells. In this case, 10 cells were tracked 

per explant and ten explants were analysed per condition. Tracking lasted for 8 hours 

unless the cell died or left the field of reference during this time, in which case 

tracking was stopped. The mean speed and persistence was calculated per cell, from 

which the mean speed and persistence of the population was calculated. 

The dispersion of neural crest cell explants was analysed using the ImageJ Delaunay 

Triangulation plugin. For each explant at each time-point, Delaunay triangulation 

connects each cell with its closest neighbours in such a way that a network of 

triangles covers the entire explant and the area of the triangles are measured and 

averaged. 

7. 4. 2.  Analysis of single cell collisions 

The x,y co-ordinates of the cell were manually identified using the ImageJ Manual 

Tracking plug-in at three points: before, during and after collision. From the 

measurements, the velocity and acceleration vectors were calculated and statistically 
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analysed using Matlab script as described previously (Carmona-Fontaine et al., 2008). 

To illustrate these results, the vectors were aligned by using the initial movement 

(between the points "before migration" and "during migration") as the x-axis. 

7. 4. 3.  Analysis of explant confrontation assay 

Two neural crest explants, each labelled with a different coloured tracer, were 

cultured close to each other on fibronectin-coated dish and time-lapse imaging 

performed at low magnification. The resulting movies were observed and the frame at 

which the explants overlapped the most was determined. The image of this frame was 

set to threshold for each fluorescent channel and the result compared to the 

corresponding bright field image to ensure that the thresholded image was 

representative. The thresholded images of the two fluorescent channels were then 

merged and the total explant area and the overlap area measured. The overlap area 

was expressed as a percentage of total explant area.  

7. 4. 4.  Analysis of EB3GFP movies 

Movies of EB3GFP-labelled cells were cropped to include only the cell of interest. If 

necessary, other cells were blocked out with the background colour. The images were 

processed using the translation transformation of the ImageJ StackReg plugin. They 

were then analysed manually and automatically. The ImageJ Manual Tracking plugin 

was used to track microtubule growth phases manually. To analyse microtubule 

catastrophe, a 5μm x 5μm square was selected at the front and back of a cell. The 

total number of EB3GFP points that entered the square was counted, apart from 

those that were still in the square when analysis concluded, and compared to the total 

number of EB3GFP points that disappeared within the square within a 2.5 minute 

period. 
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Automatic analysis was performed using plusTipTracker. The general tracking 

algorithm used in the software package has been validated (Jaqaman et al., 2008). 

Subsequently, a sub-track linking concept was then applied by Matov et al. (2010), in 

order to infer microtubule pause and shrinkage events based on +TIP growth tracks. 

This method was then updated to plusTipTracker, which employs a more robust 

method that is self-adaptive and free of control parameters (Applegate et al., 2011). 

To analyse microtubule dynamics automatically using plusTipTracker, optimal 

tracking parameters were determined using plusTipSweepGUI. This allows a range of 

values to be tested for each parameter, keeping all others constant. From this, the 

following parameters were determined to be the most accurate and were used for all 

analyses: maximum gap length 30 frames, minimum track length 3 frames, search 

radius range 2-25 pixels; maximum forward angle 35o; maximum backward angle 

10o; maximum shrinkage factor 1.5; fluctuation radius 2 pixels.  

7. 4. 5.  Analysis of centrosome position 

Analysis of centrosome position was carried out using ImageJ. The position of the cell 

centroid was determined and the distance between the centrosome and the centroid 

was measured. The centroid position was designated 0,0 and the image rotated so 

that the protrusion extended along the y-axis. From this, the angle between the 

direction of protrusion and the position of the centrosome could be measured. 

7. 4. 6.  Statistical analysis 

Comparison of percentages was performed using contingency tables as described in 

(Taillard et al., 2008). Two data sets were considered significantly different if 

T>3.841 (α=0.05, *), T>6.635 (α=0.01, **) or T>10.83 (α=0.001, ***). Normality of 

data sets was tested using Kolmogorov-Smirnov’s test, d’Agostino and Pearson’s test 

and Shapiro-Wilk’s test using Prism4 (GraphPad). A data set was considered normal 
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if found normal by all three tests. Datasets following normal distribution were 

compared with Student T-test (two tailed, unequal variances) or a one-way ANOVA 

with a Dunnett’s multiple comparisons post-test using Excel or Prism4 (GraphPad). 

Datasets that did not follow a normal distribution were compared using Mann 

Whitney’s test or a non-parametric ANOVA (Kruskal-Wallis with Dunn’s multiple 

comparisons post-test) using Excel or Prism4 (GraphPad). Cross-comparisons were 

performed only if the overall P value of the ANOVA was <0.05. 
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8.   Par3 is required for neural crest migration 

8. 1.  Par3 is required for neural crest cell dispersion 

Par3 is required for the migration of a number of cell types, including wound healing 

of MDCK cells and fibroblasts and migration of single keratinocytes (Du et al., 2010; 

Pegtel et al., 2007; Schmoranzer et al., 2009). To investigate the role of Par3 in neural 

crest migration, I performed a loss-of-function experiment using an anti-sense 

morpholino against Par3, which efficiently decreases the level of Par3 protein in X. 

laevis embryos (Par3MO; Fig. 8.1A). Each embryo was injected in two dorsal 

blastomeres late in the 8-cell stage, in order to target the neural crest but minimise 

disturbance of other tissues. Injection of Par3MO did not affect neural crest 

induction, as analysed by in situ hybridisation against Slug, FoxD3, Sox9 or Sox10 all 

of which are known markers for pre-migratory neural crest (Fig. 8.1B,C; Mayor et al., 

1995). However, Par3MO injection had a dramatic effect on neural crest migration, 

as analysed by in situ hybridisation against Twist, which marks migrating neural crest 

(Fig. 8.2A,B,D; Hopwood et al., 1989). Importantly, this effect could be rescued by 

coinjection of D. rerio Par3 mRNA, which does not contain the sequence targeted by 

the morpholino against X. laevis Par3 (Fig. 8.2C,D), showing specificity for the 

Par3MO.  

Injection of Par3MO into two dorsal blastomeres of an 8-cell embryo targets the 

neural crest, but could also indirectly affect neural crest migration by affecting the 

tissue through which the neural crest migrates. To test whether the effect of Par3MO 

was cell-autonomous, a grafting experiment was performed.  Neural crest cells were 

taken from embryos injected with a control morpholino (ControlMO) or Par3MO, 

and grafted into wildtype embryos. Neural crest injected with ControlMO showed no 

effect on neural crest migration (Fig. 8.2E), whereas neural crest injected with 
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Figure 8.1. Par3 is not required for neural crest induction in X. laevis 

(A) Western analysis of Par3 on protein extracts from X. laevis embryos injected with 

ControlMO or Par3MO. MAPK: loading control. Arrows: individual bands. Band 

intensity of both isoforms is shown relative to total Par3 protein level in ControlMO-

injected embryos and normalised to loading control. (B) Dorsal view of Stage 16 X. 

laevis embryos injected unilaterally with Par3MO and processed for in situ 

hybridisation against Slug, FoxD3, Sox9 or Sox10. Asterisk: injected side. (C) 

Par3MO does not affect neural crest induction (Par3MO: Sox9 n=18; Sox10 n=21; 

FoxD3 n=22; Slug n=21; ControlMO (not shown): Sox9 n=9; Sox10 n=7; FoxD3 

n=6; Slug n=6; p>0.05 for all genes).  
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Figure 8.2. Par3 is required for neural crest migration in X. laevis 

(A-D) Par3MO inhibits neural crest migration (B) but can be rescued by coinjection 

with mRNA for D. rerio Par3GFP (C). (A-C) Lateral view of ControlMO- (A), 

Par3MO- (B) or Par3MO+ParGFP-injected embryos (C) processed for in situ 

hybridisation against Twist. Asterisk: eye. (D) Percentage of embryos with normal 

neural crest migration is reduced in Par3MO-injected embryos (n=45) compared to 

ControlMO-injected embryos (n=24; p<0.001). This can be rescued by coinjection 

with Par3GFP (n=34; p<0.001). (E-H) Par3MO inhibition of neural crest migration is 

cell autonomous. (E-F) Lateral view of embryos following transplant of ControlMO 

NC (E) or Par3MO NC (F). Green (Fluorescein-Dextran): NC transplant. Asterisk: 

eye. (G) Percentage of embryos with normal neural crest migration following neural 

crest transplant is reduced in Par3MO-injected neural crest (n=18) compared to 

ControlMO-injected neural crest (n=19; p<0.05). (H) Compared to ControlMO-

injected neural crest (n=19), distance migrated by Par3MO-injected neural crest as a 

proportion of head size is reduced (n=18; p=0.0035, error bars show mean and s.d).  
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Par3MO showed a strong impairment in neural crest migration (Fig. 8.2F-H). These 

results show that Par3 is required for neural crest migration in a cell-autonomous 

manner. 

Par3 can act in concert with a number of other proteins such as aPKC, with which it 

forms a Par complex (reviewed in Goldstein and Macara, 2007). A loss-of-function 

experiment was performed by injecting X. laevis embryos with mRNA for a 

dominant-negative form of aPKC (aPKCdn; Fig. 8.3). In situ hybridisation against 

Twist showed that neural crest migration in aPKCdn-injected embryos was not 

significantly different to neural crest migration of control embryos (Fig. 8.3B,D). 

Despite this, it was interesting to note a mild phenotype consisting of minor 

disturbance of neural crest streams in a small number of aPKCdn-injected embryos. 

This disturbance involved the merging of neural crest streams and curvature of the 

streams (Fig. 8.3C). Nonetheless, even in these embryos that exhibited a minor 

disturbance of neural crest streams, neural crest migration was still apparent and, as 

such, this phenotype was very different to the phenotype observed following 

Par3MO-injection (refer to Fig. 8.2B). These results suggest that Par3 is not acting 

with aPKC in its role in neural crest migration and aPKC was not investigated further.  

To further assess the requirement for Par3 in neural crest migration, explants were 

cultured on fibronectin and imaged using time-lapse cinematography. ControlMO-

injected explants tended to disperse after few hours of cell culture (Fig. 8.4A) but 

explants injected with Par3MO failed to disperse (Fig. 8.4B; Supplementary Movie 

01). Cell dispersion was quantified by measuring the area of triangles formed between 

the nuclei of closest neighbours, using Delaunay triangulation, as described previously 

(Carmona-Fontaine et al., 2011). A dramatic increase in cell dispersion starts at 

around 6 hours in the ControlMO-injected explants, but this is very much reduced in 
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Figure 8.3. aPKC does not act with Par3 in controlling neural crest 

migration 

(A-C) Lateral view of control embryo (A), aPKCdn-injected embryo with no 

phenotype (B) and aPKCdn-injected embryo with mild phenotype (C) processed for in 

situ hybridisation against Twist. The mild phenotype illustrated in (C) includes 

merged neural crest streams and curvature of the streams. Arrow: merged neural crest 

streams. Arrowhead: curved neural crest stream. Asterisk: eye. (D) Compared to 

control embryos (n=16), aPKCdn-injection does not affect neural crest migration 

(n=35; p>0.05). 
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Figure 8.4. Par3 is required for neural crest dispersion in vitro 

(A,B) Single frames from time-lapse movies showing control (A) and Par3MO-

injected (B) neural crest explants and Delaunay triangulation at 0 hours and 8 hours. 

Scale bar: 100 μm. (C) Dispersion between cells increases over time in control 

explants (n=8 explants; compared to 0 hours: p<0.05 at 7 hours, p<0.01 at 7.5 hours, 

p<0.001 at 8 hours). However, dispersion is reduced in Par3MO explants over time 

compared to controls (n=8 explants; p<0.05 for all time points). There is less 

dispersion between Par3MO cells than control cells at 6.5 hours (p<0.05), 7-7.5 hours 

(p<0.01) and 8 hours (p<0.001). (D) Speed of single cells is not affected by Par3MO 

(n=20; p=0.2146). (E) Persistence of single cells if not affected by Par3MO (n=20; 

p=0.4021).  
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Par3MO-injected explants (Fig. 8.4C). This could simply be due to an inability of 

Par3MO-injected cells to migrate. However, ControlMO- and Par3MO-injected 

single cells exhibited similar speed during migration (Fig. 8.4D). The persistence of 

migration was measured as the distance between the start and end coordinates of 

migration divided by the actual distance migrated. ControlMO- and Par3MO-injected 

cells also exhibited similar persistence during migration of single cells (Fig. 8.4E). 

These results demonstrate that Par3 is not required for cell motility, but is required 

for neural crest dispersion. 

These results show an effect of Par3MO on X. laevis neural crest migration in vivo 

and in vitro. As live in vivo imaging is difficult to perform in X. laevis embryos, D. 

rerio embryos were used to perform live imaging of neural crest migration. First, I 

confirmed that a similar neural crest phenotype was achieved by using a previously 

characterised D. rerio Par3MO (Wei et al., 2004b). Indeed, injection of Par3MO does 

not affect neural crest induction in D. rerio (Fig. 8.5A), but leads to a clear inhibition 

of migration in trunk neural crest, as analysed by in situ hybridisation against FoxD3 

(Fig. 8.5B-D). Par3MO-injection also inhibits cephalic neural crest migration in D. 

rerio embryos (Fig. 8.5B,E,F).  

To analyse cell behaviour in vivo, a transgenic cell line that expresses membrane-GFP 

and nuclear-RFP under the specific neural crest promoter of Sox10 was used. In 

accordance with in vitro observations using X. laevis neural crest, Par3MO-injection 

reduced neural crest dispersion in vivo (Fig. 8.6A,B; Supplementary Movie 02). 

Neural crest cell dispersion starts at around 4 hours in ControlMO-injected embryos, 

but this is very much reduced in Par3MO-injected embryos. Consequently, cell 

density is increased in Par3MO-injected embryos (Fig. 8.6C), as cell dispersion is 



142 

 

 

 

Figure 8.5. Par3 is required for neural crest migration in D. rerio 

(A) Dorsal view of D. rerio embryos injected with ControlMO or Par3MO and 

processed for in situ hybridisation against FoxD3. (B) Schematic representation 

showing the location of trunk (C-D) and cranial (E-F) neural crest imaging of fixed D. 

rerio embryos and the location of live time-lapse imaging of D. rerio cranial neural 

crest (Fig. 8.6A,B). OV: otic vesicle. (C,D) Lateral view showing the trunk of 

ControlMO- (C) or Par3MO-injected (D) embryos processed for in situ hybridisation 

against FoxD3 at the 20-somite stage. Arrows: distinct trunk neural crest streams. 

(E,F) Lateral views showing the cranial region of 24-hour Sox10:egfp embryos 

injected with ControlMO (E) or Par3MO (F). OV: otic vesicle. Arrows: distinct 

cranial neural crest streams. Lines: no distinct streams observed. 
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Figure 8.6. Par3 is required for neural crest dispersion in vivo 

(A-B) Single frames from time-lapse movies showing one cranial neural crest stream 

and corresponding Delaunay triangulation at 0 hours (15-somites) and 6 hours from 

ControlMO-injected (A) and Par3MO-injected (B) embryos. Scale bars: 40 μm. (C) 

Cranial neural crest cell density at 6 hours is increased in Par3MO-injected embryos 

compared to ControlMO-injected embryos (n=15; p<0.01). (D) Distance between 

cranial neural crest cells increases over time in ControlMO embryos (n=15), but not 

Par3MO embryos (n=15). There is less distance between cranial neural crest cells in 

Par3MO embryos than in ControlMO embryos at 5.10 hours (p<0.01), 5.20 hours 

(p<0.001), 5.30 hours (p<0.01) and 5.40-6 hours (p<0.001). 
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impaired (Fig. 8.6D). Along with results from X. laevis, this confirms that Par3 is 

required to promote neural crest dispersion. 

 

8. 2.  Par3 is not required for cell-cell adhesion 

One way in which Par3 could affect dispersion is through controlling cell-cell 

adhesion, as has been shown in other cell types (Chen and Macara, 2005; Mertens et 

al., 2005; Mishima et al., 2002). Neural crest adhesion molecules include β-catenin 

and p120-catenin, which are localised to the cell-cell contact and required for junction 

formation and maintenance. The effect of Par3MO on the levels and localisations of 

different cell adhesion proteins was measured. No effect was found on the localisation 

of β-catenin at the cell-cell junction in Par3MO-injected cells compared to control X. 

laevis neural crest cells (Fig. 8.7A-C). There was also no effect observed on the 

localisation of p120-catenin in Par3MO-injected cells compared to control cells (Fig. 

8.7D-F).  

Furthermore, I performed a cell-sorting assay to evaluate whether Par3MO affected 

cell adhesion. When two cell populations have the same adhesion properties, 

dissociation and reaggregation leads to a randomly mixed group of cells. However, if 

the two cell populations exhibit different cell adhesion the cells sort out, organising 

into two distinct groups (Fig. 8.7G; Friedlander et al., 1989). Dissociating 

ControlMO- and Par3MO-injected cells, mixing them together and allowing them to 

reaggregate resulted in a mixed cell population with no difference between 

ControlMO and Par3MO-injected cells (Fig. 8.7H,I). This is in stark contrast to a 

positive control experiment: mixing ControlMO neural crest cells with neural crest 

cells injected with a morpholino that downregulates N-cadherin (N-cadherinMO) 



 145 

 

Figure 8.7. Par3 inhibition does not affect cell-cell adhesion properties 

(A-C) β-catenin localisation is not affected by Par3MO. Scale bar: 10 μm. (A) 

Immunostaining against β-catenin in control neural crest cells. (B) Immunostaining 

against β-catenin in neural crest cells from Par3MO-injected embryos. (C) Pixel 

intensity of β-catenin immunostaining was measured across the contact and 

normalised to the average value at −5 μm for each image. There is no difference in 

pixel intensity of β-catenin immunostaining between neural crest cells from control 

(n=84 contacts) and Par3MO-injected embryos (n=44 contacts; p>0.05 at all distances 

from contact). (D-F) p120-catenin localisation is not affected by Par3MO. Scale bar: 

10 μm. (D) Control neural crest cells expressing p120-cateninGFP. (E) Neural crest 

cells from Par3MO-injected embryos expressing p120-cateninGFP. (F) Pixel intensity 

of p120-cateninGFP was measured across the contact and normalised to the average 

value at −5 μm for each image. There is no difference in pixel intensity of p120-

catenin immunostaining between neural crest cells from control (n=24 contacts) and 

Par3MO-injected embryos (n=41 contacts; p>0.05 at all distances from contact). (G-J) 

Cell adhesion is not affected by Par3MO. (G) Schematic representation of cell 

reaggregation assay. (H) Reaggregation of two neural crest cell populations from 

ControlMO-injected embryos leads to random mixing. (I) Reaggregation of neural 

crest cells from ControlMO- and Par3MO-injected embryos leads to random mixing, 

indicating no difference in cell adhesion between the two populations. (J) 

Reaggregation of ControlMO neural crest cells and N-cadherinMO neural crest cells 

leads to segregation of the two neural crest populations. 
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lead to their self-organisation into two distinct groups (Fig. 8.7J). Together, these 

results did not support a role for Par3 in regulating cell adhesion between neural crest 

cells and an alternative mechanism for the effect of Par3 inhibition on neural crest 

migration and dispersion needed to be explored. 

 

8. 3.  Par3 is required for contact inhibition of locomotion 

An alternative way in which Par3 could affect neural crest dispersion is through 

controlling CIL (Mayor and Carmona-Fontaine, 2010). CIL promotes dispersion by 

encouraging the migration of cells away from each other, so a loss of CIL results in 

the maintenance of cells as a cluster. Further, Par3 can affect cell polarity and 

directional migration, which are aspects of CIL in neural crest cells, in other migrating 

cells (Du et al., 2010; Pegtel et al., 2007; Schmoranzer et al., 2009). 

Three different assays were used to analyse CIL, all of which have been used 

previously (Abercrombie and Heaysman, 1953; Carmona-Fontaine et al., 2008; 

Theveneau et al., 2010). First, two neural crest explants confronted with each other 

do not overlap if they exhibit CIL (Fig. 8.8A). The overlapping area can be analysed 

by using explants labelled with FDX or RDX and comparing the yellow area of 

overlap with the total fluorescent area. Par3MO-injected explants widely overlapped, 

as did pairs of one control and one Par3MO-injected explant, indicating a failure in 

CIL (Fig. 8.8B-D). Second, CIL dictates that two adjacent cells do not make 

protrusions on top of one another (Fig. 8.8E; Abercrombie and Heaysman, 1953); 

however, Par3MO-injected neural crest cells extended protrusions on top of their 

neighbours (Fig. 8.8F,G; Supplementary Movie 03). Third, the hallmark of CIL is that 

collision between two single cells will cause them to change velocity if CIL occurs 

(Fig. 8.8H; Abercrombie and Heaysman, 1953). However, colliding Par3MO- 
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Figure 8.8.  Par3 is required for contact inhibition of locomotion in 

vitro 

(A-D) Explant confrontation assay. (A-C) Single frames from time-lapse movies 

showing maximum overlap between two control explants (A), two Par3MO-injected 

explants (B) or one control and one Par3MO-injected explant (C). Scale bar: 100 μm. 

(D) Overlap area as a percentage of total explant area is greater between 

Par3MO/Par3MO (n=16; p=0.0026) or control/Par3MO explants (n=9; p=0.0252) 

than between control/control explants (n=27). (E-G) Protrusion overlap analysis. 

Scale bar: 10 μm. (E-F) Control (E) or Par3MO-injected (F) cells expressing mbGFP. 

White line: outline of individual cells. Purple overlay and arrows: protrusion overlap. 

(G) Protrusion overlap area as a percentage of cell area is greater in Par3MO-injected 

cells (n=40) than control cells (n=50; p=0.0002). (H-L) Cell collision assay. (H) 

Schematic representation of cell collision. (I-L) Cell position was analysed at 15-

minute intervals to measure velocity (I,J) and acceleration (K,L) following collision 

between control or Par3MO-injected cells. Velocity change was clustered in control 

cells (n=17; p<0.001) but was not observed in Par3MO-injected cells (n=37; 

p<0.001). Red arrows: initial velocity vector. 
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injected cells showed a significant reduction in the change in velocity upon collision 

compared to control cells (Fig. 8.8I-L; Supplementary Movie 04). Together these 

results indicate that Par3 is required for CIL between neural crest cells in X. laevis 

embryos.  

Next, the Sox10:mGFPnRFP D. rerio line was used to analyse CIL in vivo. Collisions 

between neural crest cells were analysed after time-lapse imaging of migrating neural 

crest cells. Neural crest cells in ControlMO-injected embryos exhibited CIL by 

increasing velocity following cell-cell collision, accompanied by a typical neural crest 

response to collision in the form of a change in the direction of migration (Fig. 8.9A, 

B, E; Supplementary Movie 05). In contrast, neural crest cell collisions in Par3MO-

injected embryos lead to neither an increase in velocity nor a change in the direction 

of migration (Fig. 8.9C, D, F; Supplementary Movie 06). These experiments confirm 

that Par3 is required for CIL between neural crest cells both in vitro and in vivo. 

 

8. 4.  Par3 is localised to the cell-cell contact 

In the cranial neural crest, CIL causes protrusion retraction upon cell-cell contact 

(Carmona-Fontaine et al., 2008). It is also considered to lead to the subsequent 

repolarisation and extension of a new protrusion (Carmona-Fontaine et al., 2008). 

Considering these distinct steps in neural crest response to cell-cell collision, it was 

important to assess Par3 localisation in order to determine its precise role during CIL. 

For example, Par3 could be required at cell-cell contact, or could be localised to a 

new protrusion to control repolarisation. To analyse the dynamics of Par3 

localisation, X. laevis embryos were injected with Par3GFP mRNA and time-lapse 

imaging was performed on cultured neural crest explants and single cells. Par3GFP  
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Figure 8.9. Par3 is required for contact inhibition of locomotion in vivo 

(A,B) Single frames from time-lapse movies illustrating a collision between two 

cranial neural crest cells in a D. rerio embryo injected with ControlMO. Images are 

overlapped with tracks of migratory paths (A) or the difference in protrusion between 

current and previous frames (B). Red area: new protrusions. (C,D) Single frames from 

time-lapse movies illustrating a collision between two cranial neural crest cells in a D. 

rerio embryo injected with Par3MO. Images are overlapped with tracks of migratory 

paths (C) or the difference in protrusion between current and previous frames (D). 

Red area: new protrusions. (E) Velocity vectors of colliding cranial neural crest cells 

in ControlMO-injected embryos. Cell position was recorded at 5-minute intervals. 

Velocity change was clustered in cells in ControlMO-injected embryos (n=10; 

p<0.05). Red arrow: initial velocity vector. (F) Velocity vectors of colliding cranial 

neural crest cells in Par3MO-injected embryos. Cell position was recorded at 5-

minute intervals. No change in velocity was observed in collisions in Par3MO-injected 

embryos (n=9; p>0.1). Red arrow: initial velocity vector. 
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was localised to cell junctions both in clusters of neural crest cells that were already in 

contact (Fig. 8.10A), and during collisions of individual colliding cells (Fig. 8.10B; 

Supplementary Movie 07). To confirm that endogenous Par3 was expressed in X. 

laevis neural crest and localised to cell-cell contacts, membraneRFP (mbRFP)-labelled 

neural crest cells were transplanted into wildtype host embryos to identify the 

migrating neural crest cells, and immunostaining against Par3 was performed on 

cryosections. These results showed that endogenous Par3 was present in the neural 

crest and colocalised with mbRFP at cell-cell contacts (Fig. 8.10C-F). 
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Figure 8.10. Par3 is localised to the cell-cell contact 

(A,B) Par3GFP localises to contacts between X. laevis neural crest cells in clusters (A) 

and between colliding single cells (B). Scale bar: 10 μm. (C-F) Z-projection of 

confocal images showing immunostaining against endogenous Par3 in cryosections of 

X. laevis embryos. Scale bar: 20 μm. (C) Par3 is located to contacts between neural 

crest cells. (D) mbRFP identifies neural crest cells and cell contacts. (E) Merge of 

(C,D). (F) Colocalisation mask of (C,D) shows localisation of Par3 to the membrane 

at contacts between neural crest cells. 
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9.   Par3 promotes contact inhibition of 

locomotion by controlling microtubule dynamics 

How does Par3 regulate CIL in neural crest cells? Par3 has been shown to control 

microtubule array polarisation in other cell types by affecting microtubule dynamics 

or centrosome positioning (Pegtel et al., 2007; Schmoranzer et al., 2009). Further, 

microtubules are influenced by cell-cell contacts and are involved in CIL (Kadir et al., 

2011; Stramer et al., 2010). Thus, I next investigated a possible interaction between 

Par3 and microtubules, in order to determine whether Par3 could regulate CIL in this 

way.  

 

9. 1.  Par3 does not affect the microtubule array at a cellular level 

The microtubule array has not yet been investigated in X. laevis neural crest cells. To 

characterise it, I first analysed the entire microtubule array using immunostaining 

against α-tubulin. In control neural crest cells cultured on fibronectin, microtubules 

were densely packed in the centre of the cell, close to the nucleus, and were sparser 

towards the edge of the cell (Fig. 9.1A). In cells with a protrusion, microtubules 

extended well into the lamellipodia (Fig. 9.1A). Par3MO-injected cells appeared to 

have a similar microtubule array to control cells (Fig. 9.1C). This was the case both 

for cells within the neural crest explant and those at the edge of the explant (Fig. 

9.1C). These results suggested that Par3 inhibition had no effect on the entire 

microtubule array. Immunostaining was also performed against acetylated tubulin, 

which is incorporated into stable microtubules (Hammond et al., 2008). In control 

cells, the acetylated microtubule subpopulation was sparse and present close to the  
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Figure 9.1. Par3 does not affect the overall microtubule array 

(A,C) Immunostaining against α-tubulin (green) shows the microtubule array in 

ControlMO- (A) and Par3MO-injected (C) cells. Nuclei are stained with DAPI. 

Microtubules extend into the lamellipodia. Scale bar: 10 μm. Arrows: lamellopodia. 

(B,D) Immunostaining against acetylated tubulin (green) stains a stable subpopulation 

of microtubules in ControlMO- (B) and Par3MO-injected (D) cells. Nuclei are stained 

with DAPI. Scale bar: 10 μm. 
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nucleus (Fig. 9.1B). This was also the case in Par3MO-injected cells (Fig. 9.1D), 

indicating that Par3 inhibition had no effect on acetylated microtubules.  

As Par3 has been shown to control centrosome orientation in other cell types 

(Schmoranzer et al., 2009), I next investigated a potential role for Par3 in controlling 

centrosome position. The centrosome was observed by labelling neural crest cells with 

EB3GFP. These cells exhibited green fluorescent “comets” corresponding to the tips 

of growing microtubules, as well as one considerably larger, motile, bright green 

fluorescent spot that corresponded to the centrosome (Alieva et al., 2010). To assess 

the polarity of the centrosome position, the position of the centrosome was analysed 

with respect to the centroid of EB3GFP-labelled cells in two separate ways.  

For control neural crest cells, the centrosome was further from the cell centroid in 

cells at the edge of an explant compared to single cells (Fig. 9.2A,B,E). Edge cells 

tended to be more elongated than single cells due to the extension of a large 

protrusion away from the contact. However, edge cells also had a significantly greater 

centroid-centrosome distance as a proportion of cell length when compared to single 

cells (not shown). Centrosome position was analysed further in relation to cell 

polarity. The centrosome was located behind the centroid with respect to the direction 

of migration in edge cells but this was not the case in single cells (Fig. 9.2A,B,F). 

These two results imply that cell-cell contacts polarise the microtubule array.  

In wound-edge fibroblasts, Par3 localises to cell-cell contacts and influences cell 

polarity by orienting the centrosome (Schmoranzer et al., 2009). It does this through 

an interaction with dynein leading to the tethering microtubule ends to the cell-cell 

contact (Schmoranzer et al., 2009). However, in cranial neural crest cells Par3 

inhibition did not affect centroid-centrosome distance or centrosome position in single 

or edge cells (Fig. 9.2C-F). These results were supported by experiments showing that 
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Figure 9.2. Par3 does not affect centrosome position 

(A-F) Centrosome position was analysed in EB3GFP-labelled single (A) and edge (B) 

control cells and single (C) and edge (D) Par3MO-injected cells. Scale bar: 10 μm. 

Arrow: direction of migration. White dot: cell centroid. Red dot: centrosome. White 

line: centroid-centrosome distance. (E) Centroid-centrosome distance is greater in 

control edge cells (n=15) than single cells (n=32; p=0.0001). There is also a difference 

in centroid-centrosome distance between Par3MO-injected single (n=21) and edge 

cells (n=12; p=0.0017). There was no difference between control and Par3MO-

injected single (p=0.7582) or edge cells (p=0.5086). (F) The angle between the 

direction of migration, the cell centroid and the centrosome is biased towards 180o 

(i.e.: towards the cell rear) in control edge cells (p<0.001) and this is significantly 

different to control single cells (p=0.0016), which have no bias in centrosome 

position. The angle between the direction of migration, centroid and centrosome is 

also biased towards 180o in Par3MO-injected edge cells (p<0.001) and this is also 

significantly different to Par3MO-injected single cells (p=0.0231), which have no bias 

in centrosome position. There is no difference between control and Par3MO-injected 

edge cells (p=0.2056) or single cells (p=0.7417).  Grey line: 90o. (G-I) Centrosome 

position was analysed in EB3GFP-labelled cells before and during collision. (G) 

Schematic representation of centrosome analysis before and during collision. (H) 

There was no difference in centroid-centrosome distance before contact and during 

contact in control (p=0.1058) or Par3MO-injected cells (p=0.5849). There was also 

no difference between control and Par3MO-injected cells before contact (p=0.1126). 

(I) The angle between the direction of migration, the centroid and the centrosome 

before contact was not different to the angle during contact in control (p=0.2324) or 

Par3MO-injected cells (p=0.6524). There was also no difference between control and 

Par3MO-injected cells before contact (p=0.4147). 
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culture of neural crest explants in sodium orthovanadate (1-100 μM), which inhibits 

dynein, has no effect on neural crest cell migration (not shown). In addition, 

centrosome position was not affected by the formation of a transient new cell contact 

during collisions of control or Par3MO-injected cells (Fig. 9.2G-I). Altogether, these 

results suggest that Par3 does not affect the microtubule array on a gross level or 

control centrosome positioning in clusters, single cells or colliding cells. 

 

9. 2.  Par3 promotes microtubule collapse at the cell-cell contact 

Finally, microtubule catastrophe was analysed. To do this, a 5 µm x 5 µm square was 

selected at the contact and at the free edge of a cell undergoing collision. All 

microtubules that entered the square were analysed and the percentage that collapsed 

within the confines of the square was recorded. In control cells, a greater percentage 

of microtubules experienced catastrophe at the contact compared to the free edge 

(Fig. 9.3A,C). However, inhibiting Par3 abolished the increase in microtubule 

catastrophe at the contact (Fig. 9.3B,C; Supplementary Movie 09). This suggests that 

Par3 is required at the cell-cell contact to promote microtubule catastrophe. 

An important control was performed by analysing the microtubule catastrophe at the 

back and front of single migrating cells. In these cells there was no difference in 

microtubule catastrophe between the front and back of the cell, and the rates of 

microtubule catastrophe were similar to that of the free edge of control cells during 

collision (Fig. 9.3D). There was also no significant difference between single migrating 

control and Par3MO-injected cells. As Par3 was localised to cell-cell contacts, this 

gives weight to the idea that Par3 promotes the microtubule collapse at the cell-cell 

contact. 
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Figure 9.3. Par3 promotes microtubule catastrophe at the cell-cell contact: 

manual analysis 

EB3GFP-labelled cells were used to analyse microtubule catastrophe. (A-B) Low 

magnification images of ControlMO- (A) and Par3MO-injected (B) cells during 

collision, along with high magnification consecutive frames of time-lapse movies 

highlighting one microtubule of interest (green). White box: area of high 

magnification. Arrowhead: highlighted microtubule. White line: cell outlines. Red 

line: cell-cell contact. Arrow: microtubule contacts the membrane. Circle: site and 

time point of microtubule collapse. (C) A greater percentage of microtubules collapse 

at the cell-cell contact than at the free edge in ControlMO-injected cells (n=15; 

p=0.0167). However, there is no difference between the percentage of collapsing 

microtubules at the free edge and at the cell-cell contact in Par3MO-injected cells 

(p=0.3). (D) In ControlMO-injected single cells, there is no difference in the 

percentage of microtubules that collapse at the front of the cell than at the back 

(n=25; p=0.8940). There is also difference between the percentage of collapsing 

microtubules at the front and back of the cell in single Par3MO-injected cells (n=18; 

p=0.9716). 
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A caveat of using EB3GFP-labelled cells is that collapsing and pausing microtubules 

are not easy to distinguish or quantify manually. Therefore, I used the automatic 

tracking software plusTipTracker (Applegate et al., 2011) to perform an exhaustive 

analysis of microtubule dynamics. Importantly, plusTipTracker calculates which 

tracks belong to the same microtubule that may be cycling between phases of growth, 

pause and catastrophe (Applegate et al., 2011). In this way, it provides much more 

information about microtubule dynamics than manual analysis of EB3GFP tracks 

alone. Movies of EB3GFP-labelled cells were analysed at cell-cell contacts using 

plusTipTracker during CIL of X. laevis neural crest cells. Microtubule tracks were 

classified as being slow or fast and short-lived or long-lived based on the mean 

growth speed (26 μm/minute) and mean lifetime (20 seconds) of the data set, 

respectively. Par3 inhibition reduced the proportion of slow, short-lived microtubules 

in favour of slow, long-lived microtubules (Fig. 9.4A-C). This implies that slow 

microtubules live longer in Par3MO-injected cells; slow microtubules must therefore 

be undergoing catastrophe less frequently. Statistical analysis showed no effect of 

Par3 inhibition on the majority of factors routinely used for measuring microtubule 

dynamics, including growth rate, depolymerisation rate, rescue rate or pause duration 

(Fig. 9.4E-H). However, Par3 inhibition decreased the rate of microtubule catastrophe 

(Fig. 9.4D). Overall, the microtubule tracking analysis indicates that Par3 promotes 

microtubule catastrophe at the cell contact during CIL. 

 
9. 3  Dynamic microtubules are required for neural crest 

migration 

Par3 promotion of microtubule catastrophe at the cell-cell contact could explain the 

requirement of Par3 for neural crest migration. If this were the case, one would expect  
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Figure 9.4. Par3 promotes microtubule catastrophe at the cell-cell contact: 

plusTipTracker analysis 

(A-C) Microtubule tracks at the cell-cell contact in control (A) and Par3MO-injected 

(B) cells were separated into four groups based on growth speed (slow < 26 

μm/minute < fast) and lifetime (short-lived < 20 seconds < long-lived). (C) Par3MO-

injected cells have a smaller percentage of slow, short-lived microtubules than control 

cells (n=10 cells; p=0.0276) and a greater percentage of slow, long-lived microtubules 

(p=0.0238). (D-H) Par3MO-injected cells exhibited a lower catastrophe rate 

compared to control cells (D; p=0.035). However, no difference was found between 

control and Par3MO-injected cells in terms of growth rate (E; p>0.05), 

depolymerisation rate (F; p>0.05), rescue rate (G; p>0.05), or pause duration (H; 

p>0.05). 
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microtubule dynamics to be important in neural crest migration as well. To 

investigate this, neural crest explants were cultured in the presence of taxol or 

nocodazole. Taxol inhibits depolymerisation to stabilise microtubules, whereas 

nocodazole promotes microtubule depolymerisation.  

9. 3. 1. Dynamic microtubules are required for neural crest dispersion 

Explants cultured in the presence of the vehicle DMSO dispersed over time as 

described previously (Fig. 9.5A; Alfandari et al., 2003), whereas cells cultured in the 

presence of taxol failed to disperse (Fig. 9.5B,F; Supplementary Movie 10). These 

results show that microtubule dynamics are required for cell dispersion. However, 

explants cultured in the presence of nocodazole were able to disperse (Fig. 9.5C,F). 

Speed and persistence of cell migration was also reduced in the presence of both taxol 

and nocodazole (Fig. 9.5D,E). Cells in explants tend to migrate with lower speed but 

higher persistence than single cells (Carmona-Fontaine et al., 2008). Thus, a reduction 

in speed in the presence of taxol may be partly due to a failure of the explant to 

disperse. However, as both speed and persistence are reduced in both conditions, 

microtubule dynamics appear to play a role in neural crest cell motility. 

9. 3. 2. The microtubule and actin cytoskeletons are required for 

centrosome positioning 

Although it had been determined that Par3 was not involved in centrosome 

positioning (see Fig. 9.2, page 159), it was of interest to assess the role of microtubule 

dynamics in centrosome position in neural crest cells. In some cells, centrosome 

position is determined by the microtubule array itself but in other cell types the 

actomyosin network is responsible (reviewed in Luxton and Gundersen, 2011). 

Centrosome position was analysed in EB3GFP-labelled edge cells cultured in taxol or 

nocodazole. Both taxol and nocodazole decreased the distance between the centroid 
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Figure 9.5. Dynamic microtubules are required for neural crest dispersion 

(A-C) Single frames from time-lapse movies showing explants cultured in DMSO (A), 

taxol (B; 0.2 μM) or nocodazole (C; 65 nM) and the corresponding Delaunay 

triangulation at 8 hours. Scale bar: 100 μm. (D) Compared to explants cultured in 

DMSO (n=110 cells), migration speed is reduced in the presence of taxol (n=100 cells; 

p=1.7043 10-10) and nocodazole (n=100 cells; p=3.1441 10-9). (E) Compared to 

explants cultured in DMSO (n=110 cells), persistence is reduced in the presence of 

taxol (n=100 cells; p=0.0152) and nocodazole (n=100 cells; p=0.0197). (F) Compared 

to explants cultured in DMSO (n=6 explants), explant dispersion after 8 hours is 

reduced in the presence of taxol (n=10 explants; p=0.0306). However, nocodazole 

does not significantly affect neural crest explant dispersion (n=11 explants; 

p=0.7222). 
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 and the centrosome (Fig. 9.6A-C,E) but did not affect the position of the centrosome 

with respect to cell polarity (Fig. 9.6F). In contrast, application of Cytochalasin D, 

which inhibits actin polymerisation, significantly reduced the distance between the 

centroid and centrosome (Fig. 9.6D,E) and also abolished the position of the 

centrosome with respect to the direction of migration (Fig. 9.6F). These results show 

that both the microtubule and actomyosin arrays are required for the localisation of 

the centrosome away from the cell centroid, but that dynamic microtubules are 

dispensable for the polarisation of centrosome position towards the cell-cell contact. 

The distance between the centroid and the centrosome was also calculated as a 

proportion of cell length for each condition and compared to control. This gave a 

similar result (not shown), indicating that this is not simply a consequence of changes 

in cell shape or elongation. 

9. 3. 3. Dynamic microtubules are required for contact inhibition of 

locomotion 

One way in which microtubules could affect neural crest dispersion is through 

controlling CIL, as this promotes dispersion (Mayor and Carmona-Fontaine, 2010). 

The effect of taxol and nocodazole on CIL was measured using two different assays 

(Carmona-Fontaine et al., 2008; Theveneau et al., 2010). First, two neural crest 

explants confronted with each other do not overlap if they exhibit CIL (Fig. 9.7A), 

but explants cultured in the presence of taxol or nocodazole widely overlapped, 

indicating a failure of CIL (Fig. 9.7B-D).  

Secondly, collisions between single neural crest cells were analysed. In contrast to 

neural crest cells cultured in DMSO, velocity vectors of single colliding neural crest 

cells cultured in taxol or nocodazole were not clustered (Fig. 9.7E-J; Supplementary 

Movie 11), indicating that CIL is impaired in the presence of these drugs. Together,  
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Figure 9.6. Microtubule and actin cytoskeletons are required for centrosome 

positioning 

(A-D) Centrosome position was analysed in EB3GFP-labelled cells at the edge of 

neural crest explants cultured in DMSO (A), taxol (B; 0.2 μM), nocodazole (C; 65 

nM) or cytochalasin D (D; 0.2 μM). Scale bar: 10 μm. Arrow: direction of migration. 

White dot: cell centroid. Red dot: centrosome. White line: centroid-centrosome 

distance. (E) Centroid-centrosome distance is greater in cells cultured in DMSO 

(n=27) than in cells cultured in taxol (n=17; p=0.0032), nocodazole (n=10; p=0.0403) 

or cytochalasin D (n=28; p=4.6734 10-6). (F) The angle between the direction of 

migration, the cell centroid and the centrosome is biased towards 180o (i.e.: towards 

the cell rear) in cells cultured in DMSO (n=27; p<0.001), taxol (n=17; p<0.001) and 

nocodazole (n=10; p<0.001) but not cells cultured in cytochalasin D (n=28, p>0.05). 

There is no significant difference in centrosome angle between cells cultured in DMSO 

and taxol (p=0.9932) or nocodazole (p=2388). However, there is a significant 

difference in the angle between the direction of migration, centroid and centrosome 

between cells cultured in DMSO and cytochalasin D (p=8.8806 10-6). 
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Figure 9.7. Microtubules and their dynamics are required for contact 

inhibition of locomotion 

(A-D) Explant confrontation assay. (A-C) Single frames from time-lapse movies 

showing maximum overlap between two explants cultured in DMSO (A), taxol (B; 

0.2 μM) or nocodazole (C; 65 nM). Scale bar: 100 μm. (D) Overlap area as a 

percentage of total explant area is greater in explants cultured in taxol (n=13; 

p=0.0197) or nocodazole (n=12; p=0.0443) than in explants cultured in DMSO 

(n=12). (E-J) Cell collision assay. Cell position was analysed at 15-minute intervals to 

measure velocity (E-G) and acceleration (H-J) following collision between cells 

cultured in DMSO (E,H), taxol (F, I; 0.2 μM) or nocodazole (G, J; 65 nM). Velocity 

change was clustered in cells cultured in DMSO (n=10; p<0.001) but was not 

observed in cells cultured in taxol (n=17; p<0.005) or nocodazole (n=16; p<0.05). 

Red arrows: initial velocity vector. 
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these results show that microtubules and, specifically, microtubule dynamics, are 

required for CIL. 

9. 3. 4. The effect of Par3MO on contact inhibition of locomotion can 

be rescued by nocodazole 

Par3 may control CIL by promoting microtubule catastrophe to initiate a change in 

cell polarity. Indeed, previous results show that microtubule dynamics are required 

for CIL. To test whether the effect of Par3 on CIL was dependent on microtubule 

catastrophe, I attempted to rescue the Par3MO phenotype using a low concentration 

of nocodazole that does not affect cell dispersion when applied to control cells (13 

nM; Fig. 9.8). As described above, Par3MO blocks neural crest dispersion (Fig. 

9.9A,B,F). Although a low concentration of nocodazole (13 nM) produced a 

reduction in the motility of Par3MO-injected cells (Fig. 9.9D,E), a significant rescue 

in cell dispersion was observed (Fig. 9.9F). The explant confrontation assay showed 

that the increased overlap area induced by Par3MO (Fig. 9.10A,B,D) is reduced by 

nocodazole treatment (Fig. 9.10C,D), indicating that CIL behaviour is restored. 

Further, analysis of CIL using single cell collisions showed that the loss of CIL in 

Par3MO-injected cells (Fig. 9.10E,F,H,I) was rescued by nocodazole treatment (Fig. 

9.10G,J; Supplementary Movie 13). This is particularly significant as previous 

experiments determined that nocodazole disrupts CIL in control cells (see Fig. 9.7, 

page 171). These results support the notion that Par3 controls CIL by promoting 

microtubule collapse at the cell-cell contact.   
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Figure 9.8. A low concentration of nocodazole does not affect explant 

dispersion 

(A, B) Single frames from time-lapse movies showing an explant cultured in DMSO 

(A) and an explant cultured in a low concentration of nocodazole (B; 13 nM), and 

corresponding Delaunay triangulation after 8 hours. Scale bar: 100 μm. (C) There is 

no difference in dispersion of explants after 8 hours of culture between explants 

cultured in DMSO (n=8 explants) and explants cultured in a low concentration of 

nocodazole (n=11; p=0.248). 
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Figure 9.9. Par3MO inhibition of explant dispersion can be rescued by 

culture in nocodazole 

(A-C) Single frames from time-lapse movies showing a control explant (A), Par3MO-

injected explant (B), Par3MO-injected explant cultured in nocodazole (C; 13 nM), 

and corresponding Delaunay triangulation 8 hours after culture. Scale bar: 100 μm. 

(D) Speed of cell migration is not affected in Par3MO-injected cells (n=70 for control 

cells; n=70 for Par3MO-injected cells; p=0.2138) but is reduced in Par3MO-injected 

cells in nocodazole (n=70; p=3.7508E-11). (F) Persistence is not affected in Par3MO-

injected cells (n=60 for control cells; n=70 for Par3MO-injected cells; p=0.3131) but 

is reduced in Par3MO-injected cells in nocodazole (n=70; p=0.0064). (G) Dispersion 

between cells increases over time in control explants (n=11 explants; compared to 0 

hours: p<0.01 at 6.5 hours, p<0.001 at 7-8hours). There is no change in dispersion of 

Par3MO-injected explants over time (n=6 explants; compared to 0 hours: p>0.05 at 

all time points). There is less dispersion between Par3MO-injected cells than control 

cells at 5-5.5 hours (p<0.05), 6 hours (p<0.01) and 6.5-8 hours (p<0.001). Dispersion 

between cells increases over time in Par3MO-injected explants in nocodazole (n=7 

explants; compared to 0 hours p<0.05 at 6.5-8 hours). There was no difference 

between control explants and Par3MO-injected explants in nocodazole (p>0.05 at all 

time points). 
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Figure 9.10. Par3MO inhibition of contact inhibition of locomotion can be 

rescued by culture in nocodazole 

(A-D) Explant confrontation assay. (A-C) Single frames from time-lapse movies 

showing maximum overlap between control explants (A), Par3MO-injected explants 

(B) and Par3MO-injected explants in nocodazole (C ; 13 nM). Scale bar: 100 μm. (D) 

Overlap area as a percentage of total explant area is greater between Par3MO 

explants (n=16) than between control explants (n=16; p<0.05). There is no difference 

between control explants and Par3MO explants cultured in nocodazole (n=8; 

p>0.05). (E-J) Cell collision assay. Cell positions were analysed at 15-minute intervals 

to measure velocity (E-G) and acceleration (H-J) following collision. Velocity change 

was clustered in control cells (E; n=22; p<0.001) but no velocity change was observed 

in Par3MO-injected cells (F; n=30; p<0.005). However, velocity vectors were 

clustered away from the cell contact in Par3MO-injected cells cultured in nocodazole 

(G; n=10; p<0.001). Red arrows: initial velocity vector. 
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10.  Par3 promotes contact inhibition of 

locomotion by controlling Trio 

10. 1.  Rac1 inhibition rescues Par3MO phenotype 

How can Par3 control microtubule dynamics? It is known that Rac1 can influence cell 

polarity through stabilising microtubules (Pegtel et al., 2007; Wittmann et al., 2003). 

Thus, inhibition of Rac1 activity is a potential mechanism through which Par3 could 

affect microtubules. Indeed, a low concentration of the Rac1 inhibitor NSC23766 

was able to rescue the inhibition of cell dispersion induced by Par3MO in neural crest 

explants (Fig. 10.1A-C,F; Supplementary Movie 12), without affecting speed or 

persistence of migration (Fig. 10.1D,E). This is despite the fact that culture of control 

cells in the Rac inhibitor led to a decrease in explant dispersion (Fig. 10.2). That these 

two treatments (Par3 inhibition and Rac inhibition) both reduce explant dispersion 

alone but lead to dispersion equivalent to control explants supports the idea that these 

two factors are a part of the same pathway. Importantly, NSC23766 was also able to 

rescue CIL between Par3MO-injected explants (Fig. 10.3A-D) and Par3MO-injected 

colliding cells (Fig. 10.3E-J; Supplementary Movie 13). 

 

10. 2.  Par3 inhibits Trio to promote contact inhibition of 

locomotion 

As Rac1 inhibition can rescue CIL in Par3MO-injected neural crest cells, Par3 may 

inhibit Rac1 during CIL. In other cell types, Par3 interacts with Rac-GEFs to 

influence Rac1 activity (Pegtel et al., 2007). It has been shown that the Rac-GEF Trio 

is an important regulator of neural crest migration (Kashef et al., 2009), and is 

therefore a possible candidate to be regulated by Par3. Indeed, Par3 and Trio 
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Figure 10.1. Par3MO inhibition of explant dispersion is rescued by culture 

in a Rac inhibitor 

(A-C) Single frames from time-lapse movies showing a control explant (A), Par3MO-

injected explant (B), Par3MO-injected explant cultured in Rac inhibitor (C ; 20 μM) 

and corresponding Delaunay triangulation 8 hours after culture. Scale bar: 100 μm. 

(D) Speed of cell migration is not affected in Par3MO-injected cells (n=40 for control 

cells; n=50 for Par3MO-injected cells; p=0.1527) or Par3MO-injected cells cultured in 

Rac inhibitor (n=50; p=0.0660). (E) Persistence is not affected in Par3MO-injected 

cells (n=40 for control cells; n=40 for Par3MO-injected cells; p=0.2578) or Par3MO-

injected cells cultured in Rac inhibitor (n=50; p=0.7696). (F) Dispersion between cells 

increases over time in control explants (n=11 explants; compared to 0 hours: p<0.01 

at 6.5 hours, p<0.001 at 7-8hours). There is no change in dispersion of Par3MO-

injected explants over time (n=6 explants; compared to 0 hours: p>0.05 at all time 

points). There is less dispersion between Par3MO-injected cells than control cells at 5-

5.5 hours (p<0.05), 6 hours (p<0.01) and 6.5-8 hours (p<0.001). Dispersion between 

cells increases over time in Par3MO-injected explants cultured in Rac inhibitor (n=5 

explants; compared to 0 hours: p<0.05 at 7.5 hours, p<0.01 at 8 hours). There was 

no difference between control and Par3MO-injected explants cultured in Rac 

inhibitor (p>0.05 at all time points). 

 



180 

 

 

 

 



181 

 

 

 

Figure 10.2. Rac inhibition reduces dispersion 

(A, B) Single frames from time-lapse movies showing a control explant (A) and an 

explant cultured in a Rac inhibitor (B; NSC23766; 20 μM), and corresponding 

Delaunay triangulation after 8 hours. Scale bar: 100 μm. (C) Compared to control 

explants (n=7 explants), explants cultured in a Rac inhibitor showed reduced 

dispersion after 8 hours (n=6; p=0.029). 
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Figure 10.3. Par3 inhibition of contact inhibition of locomotion can be 

rescued by culture in a Rac inhibitor 

(A-D) Explant confrontation assay. (A-C) Single frames from time-lapse movies 

showing maximum overlap between control explants (A), Par3MO-injected explants 

(B) and Par3MO-injected explants cultured in Rac inhibitor (C; 20 μM). Scale bar: 

100 μm. (D) Overlap area as a percentage of total explant area is greater between 

Par3MO explants than between control explants (n=23; p<0.05). There is no 

difference between control explants and Par3MO explants cultured in Rac inhibitor 

(n=8; p>0.05). (E-J) Cell collision assay. Cell positions were analysed at 15-minute 

intervals to measure velocity (E-G) and acceleration (H-J) following collision. Velocity 

change was clustered in control cells (E; n=22; p<0.001) but no velocity change was 

observed in Par3MO-injected cells (F; n=30; p<0.005). However, velocity vectors 

were clustered away from the cell contact in Par3MO-injected cells cultured in Rac 

inhibitor (G; n=22; p<0.001). Red arrows: initial velocity vector. 
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 immunoprecipitate together (Fig. 10.4A) and colocalise at neural crest cell contacts 

(Fig. 10.4B-E).  

I next investigated whether inhibiting Trio could rescue phenotypes induced by the 

Par3MO. An antisense morpholino against Trio was developed (TrioMO) that 

efficiently reduced GFP fluorescence when coinjected with Trio-GFP (Fig. 10.5). Also, 

the TrioMO phenotype on neural crest migration could be rescued by human Trio 

that does not hybridise with TrioMO (Fig. 10.6), showing specificity for the TrioMO. 

TrioMO was coinjected together with the Par3MO to perform a double loss-of-

function experiment. TrioMO alone does not affect explant dispersion (Fig. 10.7) but 

Trio inhibition rescued the Par3MO phenotype by promoting explant dispersion to 

ControlMO levels (Fig. 10.8A-C,F; Supplementary Movie 14), without affecting 

speed or persistence of migration (Fig. 10.8D,E). Coinjection of TrioMO also rescued 

Par3MO-induced CIL deficiency, as analysed by the change in velocity after single cell 

collisions (Fig. 10.9; Supplementary Movie 15).  

Finally, I analysed whether inhibition of neural crest migration by Par3MO in vivo 

could be rescued by inhibiting Trio. I found that coinjection of X. laevis embryos with 

TrioMO along with Par3MO efficiently restored neural crest migration in vivo (Fig. 

10.10). TrioMO rescue of the Par3MO phenotype demonstrates that Par3 inhibits 

Trio in neural crest cells. 

 

10. 3.  Par3 inhibits Trio to promote microtubule collapse 

As Rac1 has been shown to stabilise microtubules (Wittmann et al., 2003), Trio 

activation of Rac1 could promote microtubule stability. Thus, Par3 could promote 

microtubule catastrophe by inhibiting Trio. I analysed microtubule dynamics by  
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Figure 10.4. Par3 and Trio colocalise at cell-cell contacts 

(A) Coimmunoprecipitation of Trio and Par3 was performed using Cos7 cells 

transfected with TrioHA and Par3GFP. Following pull-down with HA tag, western 

blotting against HA showed a band at 320 kDa corresponding to TrioHA and against 

GFP showed a band at 250 kDa corresponding to Par3GFP. Controls using no input 

or no antibody showed no HA or GFP staining. Input lanes showed that TrioHA and 

Par3GFP were present and ran to 320 kDa and 250 kDa respectively. (B-E) Par3RFP 

(B) and TrioGFP (C) are both found at contacts. (D) Merge of Par3RFP (purple) and 

TrioGFP (blue), which colocalise (yellow) at cell-cell contacts. (E) Magnification and 

colocalisation mask of area indicated in (D). Scale bar: 20 μm. 
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Figure 10.5. TrioMO inhibits TrioGFP in X. laevis embryos 

Dorsal view of neurula X. laevis embryos that had been injected into two unilateral 

animal blastomeres at the 8-cell stage with TrioGFP and mbRFP alone (A, D, G), with 

TrioMO, TrioGFP and mbRFP (B, E, H) or with ControlMO, TrioGFP and mbRFP 

(C, F, I). While both TrioGFP (D) and mbRFP (G) are expressed in control embryos, 

TrioMO inhibits expression of TrioGFP (E) but not mbRFP (H). In contrast, 

ControlMO inhibits the expression of neither TrioGFP (F) nor mbRFP (I). Amounts 

injected per embryo were: TrioGFP 300 pg; mbRFP 300 pg; TrioMO 8 ng; 

ControlMO 8 ng. 
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Figure 10.6. TrioMO-induced migration defects can be rescued by 

coinjection with H. sapiens Trio DNA 

(A-D) Lateral view of the injected (A) and uninjected (B) sides of embryo injected with 

TrioMO and the injected (C) and uninjected (D) sides of an embryo injected with 

TrioMO and Trio DNA processed for in situ hybridisation. (E) Injection of X. laevis 

TrioMO leads to migration defects in the majority of embryos, but the percentage of 

embryos with migration defects is reduced when X. laevis TrioMO is coinjected with 

H. sapiens Trio DNA (p=0.007). 
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Figure 10.8. TrioMO does not affect explant dispersion 

(A, B) Single frames from time-lapse movies showing ControlMO- (A) and TrioMO-

injected explants (B), and corresponding Delaunay triangulation after 8 hours. Scale 

bar: 100 μm. (C) There was no difference in dispersion between ControlMO- (n=10 

explants) and TrioMO-injected explants (n=7; p=0.837) after 8 hours of culture. 



 190 

 

 

 

Figure 10.8. Inhibition of Trio rescues dispersion of Par3MO-injected 

explants 

(A-C) Single frames of time-lapse movies showing ControlMO-injected (A), Par3MO-

injected (B) and Par3MO+TrioMO-injected (C) explants and corresponding Delaunay 

triangulation at 8 hours. Scale bar: 100 μm. (D) Speed is not affected in Par3MO-

injected cells (n=70; p=0.4642) or Par3MO+TrioMO-injected cells (n=90; p=0.2713) 

compared to ControlMO-injected cells (n=70). (E) Persistence is also not affected in 

Par3MO-injected cells (n=70; p=0.4637) or Par3MO+TrioMO cells (n=90; p=0.1126) 

compared to ControlMO-injected cells (n=70). (F) There is less dispersion of 

Par3MO-injected explants (n=6 explants) than control explants (n=7 explants) at 5.5 

hours (p<0.05), 6-7 hours (p<0.01) and 7.5-8 hours (p<0.001). There was a difference 

between control and Par3MO+TrioMO explants only at 7.5 hours (n=12; p<0.05). 
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Figure 10.9. Inhibition of Trio rescues contact inhibition of locomotion in 

Par3MO-injected cells 

(A) Schematic representation of cell collision. (B-G). Cells positions were analysed at 

15-minute intervals to measure velocity (B-D) and acceleration (E-G) following 

collision. Velocity change was clustered in ControlMO-injected cells (B; n=12; 

p<0.001) but no velocity change was observed in Par3MO-injected cells (C; n=10; 

p<0.005). However, change of velocity was clustered away from the collision in 

Par3MO+TrioMO-injected cells (D; n=12; p<0.05). Red arrows: initial velocity 

vector.  
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Figure 10.10. Par3MO inhibition of neural crest migration in vivo can be 

rescued by TrioMO 

(A-C) Lateral view of ControlMO-injected (A), Par3MO-injected (B) and 

Par3MO+TrioMO-injected (C) embryos processed for in situ hybridisation against 

Twist. Asterisk: eye. (D) Percentage of embryos with normal neural crest migration is 

reduced from 89% in control embryos (n=9) to 18% in Par3MO-injected embryos 

(n=13; p<0.01) but this is rescued in Par3MO+TrioMO-injected embryos to 61% 

(n=18; p<0.05). (E) The distance migrated by neural crest cells relative to mean 

migration in ControlMO-injected embryos. Migration is reduced in Par3MO-injected 

embryos (p<0.001) but coinjection of TrioMO with Par3MO increases the distance of 

neural crest migration (p<0.001). 
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performing time-lapse imaging of EB3GFP-labelled neural crest cells. I found that 

Trio inhibition increased microtubule catastrophe in Par3MO-injected cells at the cell-

cell contact to a level comparable to control cells (Fig. 10.11A-D). These results were 

supported by plusTipTracker analysis, which showed that inhibition of both Trio and 

Par3 increased the microtubule catastrophe rate to control levels (Fig. 10.11E). This 

supports the notion that Par3 is required at contacts between neural crest cells to 

inhibit Trio-dependent activation of Rac1, thus inhibiting Rac1 promotion of 

microtubule stabilisation. 

Altogether, these results demonstrate that Par3 controls cell protrusion collapse and 

reversal of cell polarity during CIL by promoting microtubule catastrophe via an 

inhibition of Trio/Rac1 activity. 

 



 195 

 

 

 

Figure 10.11. TrioMO rescues Par3MO-induced decrease in microtubule 

catastrophe at cell-cell contacts 

 (A-D) EB3GFP-labelled cells were manually analysed for microtubule catastrophe. 

(A-C) Low magnification images of ControlMO-injected (A), Par3MO-injected (B) 

and Par3MO+TrioMO-injected (C) cells during collision, along with high 

magnification consecutive frames of time-lapse movies highlighting one microtubule 

of interest (green). White box: area of high magnification. Arrowhead: highlighted 

microtubule. White line: cell outlines. Red line: cell-cell contact. Arrow: microtubule 

contacts the membrane. Circle: site and time point of microtubule collapse. (D) A 

greater percentage of microtubules at the cell-cell contact collapse in ControlMO-

injected cells (n=5 cells) than in Par3MO-injected cells (n=5 cells; p=0.026). This can 

be rescued by coinjection of Par3MO with TrioMO (n=5; p=0.307). (E) Analysis of 

EB3GFP-labelled cells using plusTipTracker showed that Par3MO-injected cells 

exhibited a lower catastrophe rate compared to ControlMO-injected cells (p=0.020) 

but that Par3MO+TrioMO-injected cells had an equivalent catastrophe rate to 

ControlMO-injected cells (p=0.421). 
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IV Discussion and conclusions 
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11.  Discussion 

11. 1.  Model overview 

Effective neural crest migration is dependent on CIL. Here, I show that Par3 is 

required for neural crest migration because it controls CIL both in vivo and in vitro. I 

demonstrate that Par3 controls CIL by inhibiting the Rac-GEF Trio to prevent Trio-

mediated activation of Rac1 at cell-cell contacts. I propose the following model for 

neural crest cell migration (Fig. 11.1). In single migrating cells, microtubule stability 

in the lamellipodia is promoted by Rac1, which is activated by Trio (Fig. 11.1B). 

Upon collision with another neural crest cell, Par3 is recruited to the cell-cell contact, 

sequestering Trio and preventing it from activating Rac1. This local inhibition of 

Rac1 activity triggers microtubule catastrophe at the cell-cell contact, resulting in the 

reversal of cell polarity (Fig. 11.1C), formation of a new protrusion and a change in 

the direction of migration (Fig. 11.1D). 

 

11. 2.  Par3 at the cell-cell contact 

Although Par3 is consistently associated with cell polarity, its localisation varies 

depending on cell type and situation. As Par3 is routinely localised at cell-cell contacts 

in epithelial cells and some motile cells such as wound-edge fibroblasts (Izumi et al., 

1998; Kuchinke et al., 1998; Schmoranzer et al., 2009), but also found at the leading 

edge in both wounded epithelial layers and single migrating cells (Du et al., 2010; 

Pegtel et al., 2007), it was not obvious where Par3 would be found in a collectively 
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Figure 11.1. Par3 controls contact inhibition of locomotion by inhibiting 

Trio and thus promoting microtubule catastrophe at cell-cell contacts  

(A) CIL is required during neural crest development for directional and collective 

migration. (B) Trio activates Rac1 in the lamellipodia of migrating cells, promoting 

microtubule stability. (C) Upon cell-cell contact, Par3 and other proteins such as N-

cadherin are localised to the cell-cell contact. Par3 sequestration of Trio works with 

other pathways activated at the cell-cell contact to inhibit Rac1. This prevents Rac1 

stabilisation of microtubules and so promotes microtubule catastrophe. Rac1 

activation is biased towards another part of the cell, promoting microtubule stability 

and lamellipodia extension there. (D) The change in Rho-GTPase activity alters cell 

polarity. A new lamellipodium is developed and the cell changes its direction of 

migration to move away from the contact, completing the process of CIL.  
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migrating cell type such as the neural crest. Here, I show that Par3 also localises to 

cell-cell contacts between neural crest cells.  

11. 2. 1.  Par3 and adhesion proteins 

I did not directly investigate the colocalisation of Par3 with adhesion proteins such as 

cadherins or catenins at the cell-cell contact, but Par3 was consistently localised to the 

contact as is typical for adhesion proteins (for example, Theveneau et al., 2010). In 

contrast to epithelial cells and to the migrating cells in which Par3 has been found at 

the cell-cell contact (Izumi et al., 1998; Kuchinke et al., 1998; Schmoranzer et al., 

2009), analysis of cell adhesion molecules and cell sorting does not support the notion 

that Par3 regulates cell adhesion at neural crest cell contacts. 

It is true that no individual assay used here to analyse the role of Par3 in neural crest 

cell adhesion can definitively demonstrate this conclusion. For example, it was 

possible that Par3 is required to inhibit the localisation or promote the turnover of 

adhesion proteins at the cell-cell contact in neural crest cells, rather than to define 

their localisation as has been reported in the cell types discussed above. If this were 

the case, Par3MO-injection would lead to stronger or more stable cell-cell adhesions, 

which could explain the lack of dispersion observed in explants taken from Par3MO-

injected embryos. Differences in β-catenin or p120-catenin levels between 

ControlMO- and Par3MO-injected cells may not necessarily be detected by 

immunostaining, or Par3 may affect a different group of adhesion proteins. Stronger 

or more stable cell-cell adhesions could also explain the lack of neural crest migration 

in vivo as shown by in situ hybridisation. However, if this were the case, one would 

expect the cell reaggregation assay to show cell sorting between ControlMO- and 

Par3MO-injected neural crest populations as was observed in the positive control 

(ControlMO- and N-cadherinMO-injected neural crest populations), which was not 
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the case. This hypothesis is also not supported by the observed increased overlap of 

both explants and protrusions following Par3MO injection, which one would expect 

to be inhibited if cell-cell adhesion was promoted.  

As such, although I cannot rule out the possibility that Par3 modulates subtle cell 

adhesion changes that are undetected by the assays used in this thesis, the 

combination of results presented in this thesis provides no evidence that Par3 affects 

cell-cell adhesion in the neural crest. However, this could be investigated further using 

techniques such as FRAP of adhesion molecules.  

Instead, the hypothesis that Par3 is required for CIL fits with the results of each assay. 

A lack of CIL would not be expected to affect cell reaggregation, which is indeed not 

affected by Par3MO injection. However, disrupting CIL would be expected to disturb 

the dispersion of cultured explants and the repolarisation of individual cells following 

cell-cell collision, as well as to promote the overlap of explants and protrusions 

between cells, as observed. A lack of CIL can also explain the loss of neural crest 

migration in embryos following Par3MO injection. Thus, the combination of assays 

performed to investigate the role of Par3 at the cell-cell contact in neural crest cells 

clearly demonstrate a role for Par3 in CIL. 

It is probable that the requirement for Par3 changes during neural crest development 

as the neural crest changes from an epithelial to a mesenchymal cell population. 

Considering that Par3 inhibition had no effect on neural crest induction it seems 

unlikely that it has an important role in the pre-migratory neural crest; however, it is 

possible that no effect was observed due to a low level of residual Par3 protein 

following incomplete knockdown. It would also be interesting to look at the role of 

Par3 later in neural crest migration, perhaps when the population has dispersed 

somewhat. It is tempting to speculate that Par3 localisation may change from the cell-
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cell contact to the lamellipodia, as has been observed in singly migrating cells (Pegtel 

et al., 2007), as migration changes from a collective to a looser or more individual 

mode. 

11. 2. 2.  Control of Par3 localisation 

Even in cells in which it is found at the leading edge, Par3 localisation can be 

controlled by other adhesion complex molecules (Du et al., 2010). Although Par3 

appears not to influence other cell adhesion molecules in the migrating neural crest, 

my results suggest that cell adhesion molecules such as N-cadherin or cadherin-11 are 

likely regulators of Par3 localisation or activity at the cell-cell contact. These 

cadherins are both found at the contact and are required for neural crest migration 

(Borchers et al., 2001; Kashef et al., 2009; Theveneau et al., 2010). This hypothesis is 

further supported by the fact that N-cadherin-dependent contacts have been shown to 

affect microtubule organisation and cell polarity in other cell types including glial 

cells, endothelial cells and epithelial cells (Camand et al., 2012; Chausovsky et al., 

2000; Dupin et al., 2009).  

It would be interesting to investigate the effect of N-cadherin or cadherin-11 

knockdown on Par3 localisation and activity as well as on microtubule dynamics in 

neural crest cells.  

11. 2. 3.  Control of CIL at the cell-cell contact 

A number of molecules are required for neural crest migration and are localised to the 

cell-cell contact. Many have also been identified as being important in CIL. These 

include Dsh and other members of the Wnt PCP pathway, and N-cadherin and other 

typical adhesion proteins. These were discussed in detail in the Introduction to this 

thesis. We can now also add Par3 to this group. 
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An important question is whether these molecules act together and, if so, in what 

manner. One common factor in their control of CIL is the convergence on the control 

of RhoGTPases. Considering the important role of small GTPases in neural crest 

migration, it is not surprising to find many pathways controlling their activation.  

These pathways thus appear to have a similar “output”; that is, they seem to exercise 

their control on cell polarity and/or CIL in a similar way. Despite this they do not 

appear to be redundant, in that disturbance of any of one will perturb RhoA and/or 

Rac1 activity as well as CIL. However, further investigation of the effect of the 

knockdown of each protein on the others will need to take place before their 

relationship (or lack thereof) is definitively demonstrated. It would also be interesting 

to assess microtubule dynamics in this respect. As RhoGTPases can influence 

microtubule dynamics, it would be surprising if N-cadherin and the PCP pathway did 

not also affect microtubule dynamics in some way. 

There is currently no evidence of any link between N-cadherin and the PCP pathway, 

suggesting that they may be two parallel pathways. It is possible that N-cadherin 

plays a role in the localisation of Par3, as discussed above. However, it is important 

to note that there are differences in the knockdown of N-cadherin, Dsh and Par3, 

again suggesting that they all have at least some discrete roles. For example, 

knockdown of either N-cadherin or components of the PCP pathway leads to 

protrusions that overlap neighbouring cells in all directions, both in the middle and at 

the edge of the explant (Carmona-Fontaine et al., 2008; Theveneau et al., 2010). In 

contrast, Par3MO injection seems to lead to the overlap of protrusions over each 

other (see Fig. 8.8F, page 149), but fewer - or perhaps less obvious – protrusions 

between cells within an explant (not shown). Considering this difference, I would 

suggest that these molecules are not entirely dependent on each other. However, it is 
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certainly possible that, for example, N-cadherin recruits Par3 to the contact where it 

activates a pathway separate to others that N-cadherin more directly regulates. 

Throughout the literature – and, indeed, throughout this thesis - it is generally 

assumed that all contacts between neural crest cells are equivalent. That is, it is 

considered that the molecules and pathways set in motion when two individual cells 

collide is the same as those that are involved in contacts between cells in the middle of 

a group of cells. This may well be the case; however, whether or not this is true has 

not actually been determined. The differences in timing of these two examples of cell-

cell contact, albeit at two ends of the extreme, suggest that this is a question worth 

investigating. Considering the potential differences in the phenotype of overlapping 

cells following knockdown of Par3, Dsh and N-cadherin, Par3 could well differentiate 

between various “types” of cell-cell contact. 

 

11. 3.  Par3 interacts with the RacGEF Trio 

Here, I report a novel interaction between Par3 and the Rac-GEF Trio, which can be 

added to the previously characterised interaction between Par3 and the Rac GEFs 

Tiam1 and Tiam2 (Mertens et al., 2005; Nakayama et al., 2008). In neural crest cells, 

Trio interacts with cadherin-11 and β-catenin, which are localised to cell protrusions 

as well as to cell-cell contacts (Kashef et al., 2009). Trio can act as a GEF for both 

RhoA and Rac1 (Bellanger et al., 1998). Trio inhibition or Rac1 inhibition 

compensated for a lack of Par3, suggesting that Par3 inhibits Trio activity at cell-cell 

contacts during neural crest migration. Rac1 inhibition can also rescue phenotypes 

induced by Par3 inhibition, suggesting that Par3 reduces Rac1 activity during neural 

crest migration. This could be confirmed in the future by directly investigating 

differences in Rac1 activity using FRET. 
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Interestingly, Par3 is able to activate or inhibit other Rac-GEFs in a context-

dependent manner. For example, Par3 appears to sequester Tiam1 at cell-cell contacts 

in epithelial cells (Chen and Macara, 2005) but to activate Tiam1 at the tip of axons 

(Nishimura et al., 2005). As such, it will be interesting to investigate whether Par3 

activates rather than inhibits Trio in other situations. This could be another 

mechanism by which the role of Par3 could change during development, from the 

epithelial pre-migratory neural crest to the collectively migrating group and finally to 

the more loosely migrating and differentiating cells.  

11. 3. 1.  A potential interaction with RhoA/ROCK 

RhoA is active at cell-cell contacts between neural crest cells (Carmona-Fontaine et 

al., 2008; Matthews et al., 2008), and ROCK phosphorylation of Par3 has been 

shown to disrupt Par3-aPKC-Par6 complex formation (Nakayama et al., 2008). 

However, if ROCK disrupted Par3 activity in the neural crest, one would not expect 

Par3 to have an effect at the cell-cell contact as has been shown in this thesis. Results 

presented here also show that aPKC is not required for Par3 activity in neural crest 

migration, suggesting that Par3 does not act as a component of the Par3-aPKC-Par6 

complex and thus making it even more unlikely that ROCK is affecting Par3 by 

disrupting complex integrity in this context.  

Interestingly, ROCK phosphorylation of Par3 does not affect the actual interaction 

between Par3 and Tiam1/2; rather, it disrupts the ability of the Par3-aPKC-Par6 

complex from activating Rac1 through these GEFs (Nakayama et al., 2008). As such, 

ROCK phosphorylation of Par3 and so inhibition of Par complex formation may be a 

pathway through which RhoA inhibits Rac1 in situations where Par3 has been shown 

to activate Rac1 (Nakayama et al., 2008). ROCK can also phosphorylate Tiam2, but 

this does not affect the GEF activity of Tiam2 and also does not interfere with Par3-

Tiam2 interaction (Takefuji et al., 2007). This may have more relevance for the 
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neural crest: ROCK could theoretically disrupt Par3-aPKC-Par6 complex formation 

to simultaneously inhibit Rac1 activation and promote independence of Par3, thus 

allowing Par3 to sequester Trio and so further inhibit Rac1 at the cell-cell contact. 

 

11. 4.  Par3 and the microtubule array 

Par3 has been shown to influence cell polarity and migration by controlling 

centrosome position (Schmoranzer et al., 2009). In this situation, Par3 and dynein 

appear to tether microtubules to the cortex to pull the centrosome into place. In 

contrast, I find that Par3 is not required for appropriate positioning of the centrosome 

and that inhibiting dynein has no effect on neural crest migration. Instead, actin 

filaments are required to polarise the centrosome towards the cell-cell contact and 

both the microtubule and actin arrays are required to pull the centrosome away from 

the cell centroid. Along with a more precise description of the mechanism behind 

centrosome polarisation, the role of rearward centrosome positioning in migratory 

neural crest cells is a possible future avenue of research. Indeed, the function of 

rearward orientation of the centrosome has not been explored thoroughly, as many 

migrating cells orient their centrosome anteriorly (Luxton and Gundersen, 2011). 

Fibroblasts change centrosome orientation depending on the substrate (Schutze et al., 

1991), so it would be interesting to assess whether centrosome position is altered in 

neural crest cells in vivo compared to in vitro. Indeed, considering the varying roles of 

microtubules and actin filaments in migration on different substrates, it may also be 

that centrosome position is not even controlled by the cytoskeleton in the same way in 

vivo as in vitro. 

The requirement of a correctly polarised microtubule array for CIL has been 

demonstrated previously (Stramer et al., 2010), and microtubule stabilisation at the 
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cell-cell contact has been shown to inhibit CIL (Kadir et al., 2011). Par3 stabilises 

microtubules and promotes directional migration at the leading edge of single 

migrating cells through Rac1 activation (Pegtel et al., 2007). However, illustrating the 

context-dependent flexibility of Par3 interactions and roles, the model proposed in 

this thesis predicts that Par3 inhibits Rac1 activation at the cell-cell contact to 

promote microtubule catastrophe. Localised microtubule catastrophe leads to an 

asymmetry in stability across the microtubule array. Works by others show that this 

can result in a change in cellular polarity as well as migration of the cell away from 

the cell-cell contact as part of a CIL response both in vivo and in vitro (Kadir et al., 

2011; Stramer et al., 2005). My results suggest Par3 as a likely candidate to link the 

cell-cell contact signal to the microtubule catastrophe response in this process. 

11. 4. 1.  Control of the microtubule array over cell polarity 

It is important to note that, in this model, Par3 simply induces a change in direction 

rather than dictating the direction in which the new protrusion should be extended. 

As such, it is interesting to note that microtubule depolymerisation, Rac1 inhibition 

or Trio inhibition - all of which presumably affect the entire cell - are able to rescue 

the effect of Par3 inhibition. Work presented in this thesis also illustrates that 

microtubule dynamics are important for neural crest cell migration and essential for 

CIL. It may be that these results, showing a defect in CIL following neural crest 

culture in taxol and high concentrations of nocodazole, are partly due to the lack of 

asymmetry across the microtubule array. I suggest that microtubule depolymerisation, 

Rac1 inhibition or Trio inhibition were able to rescue Par3 deficiency because only 

low levels of inhibition were used, allowing the redefinition of some aspects of this 

asymmetry. It may be that residual Par3 expression or other, uninterrupted pathways 

were able to provide a basis for the reassertion of asymmetry. 
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If asymmetry were the key to regulating cell polarity as hypothesised, one would also 

expect the overexpression of Par3 to affect CIL. No phenotype was observed 

following exogenous expression of Par3GFP or Par3RFP in this thesis; however, this 

technique was used to assess protein localisation rather than to undertake a gain-of-

function experiment. Injection of higher concentrations of either of these constructs 

could be used to address this question.  

My results could also support a hypothesis put forward by Kadir and colleagues 

(2011) that increasing microtubule dynamics (including increasing microtubule 

catastrophe) at the cell-cell contact beyond a certain threshold is sufficient to induce 

CIL. In order to determine between these two possibilities (asymmetry of microtubule 

dynamics versus a threshold of microtubule dynamics), one would need to assess 

whether CIL occurs with a variety of combinations of microtubule dynamics at the 

front and back of the cell (or cell-cell contact and free edge). If crossing a threshold of 

microtubule dynamics at the cell-cell contact is sufficient to induce CIL, CIL should 

be possible irrelevant as to the microtubule dynamics in the other half of the cell. 

Conversely, CIL should not occur if this threshold is not reached. Alternatively, if 

asymmetry is required, a cell may be able to undergo CIL even if microtubule 

dynamics are very low in both halves of the cell, as long as it is higher at the site of 

cell-cell contact. This question is highly relevant for the topic of this thesis and for the 

investigation of cellular migration. The development of further tools to control 

microtubule dynamics will help to address this question. 

Interestingly, microtubule polymerisation has been proposed to promote Rac1 activity 

(Best et al., 1996; Waterman-Storer et al., 1999) and depolymerisation to activate 

RhoA (Bershadsky et al., 1996; Enomoto, 1996). This may help maintain 

directionality once polarity has been established and further underscores the 

importance of controlling microtubule dynamics in directional cell migration.
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12.  Conclusions 

Although cell-cell adhesion proteins are essential for epithelial cell polarity and thus 

tissue integrity, the role of polarity proteins such as Par3 in collectively migrating 

mesenchymal cells has not been closely investigated before now. In this thesis, I 

demonstrate that Par3 is located to the cell-cell contact during CIL of neural crest 

cells. I report a novel interaction between Par3 and the Rac-GEF Trio and show that 

Par3 sequesters Trio at the cell-cell contact, illustrating a new pathway for Rac1 

inhibition. This work also characterises the microtubule array and its dynamics in 

neural crest cells during CIL and demonstrates that Par3 inhibition of Trio at the cell-

cell contact promotes microtubule catastrophe. This is required for CIL between 

neural crest cells and as such is essential for collective and directional neural crest 

migration.  

Further work is required to tease out the relationships between the various molecular 

pathways involved in CIL between neural crest cells and their distinct roles, if any. 

Future studies should also provide further information regarding the intricacies of 

microtubule dynamics in cell polarity, particularly during a change of direction. As 

well as contributing to the answering of these questions, this work also leads to a 

deeper understanding of neural crest migration, of the potential mechanisms behind 

neurocristopathies and of the migration of other cellular collectives during 

development and disease. 
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