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Key points

� Combining nitric oxide (NO)-mediated increased blood flow with angiopoietin-1–Tie2
receptor signalling induces arteriolargenesis – the formation of arterioles from capillaries
– in a model of physiological angiogenesis.

� This NO–Tie-mediated arteriolargenesis requires endogenous vascular endothelial growth
factor (VEGF) signalling.

� Inhibition of VEGF signalling increases pericyte coverage in microvessels.
� Together these findings indicate that generation of functional neovasculature requires close

titration of NO–Tie2 signalling and localized VEGF induction, suggesting that the use of
exogenous VEGF expression as a therapeutic for neovascularization may not be successful.

Abstract Signalling through vascular endothelial growth factor (VEGF) receptors and the
tyrosine kinase with IgG and EGF domains-2 (Tie2) receptor by angiopoietins is required in
combination with blood flow for the formation of a functional vascular network. We tested the
hypothesis that VEGF and angiopoietin-1 (Ang1) contribute differentially to neovascularization
induced by nitric oxide (NO)-mediated vasodilatation, by comparing the phenotype of new
microvessels in the mesentery during induction of vascular remodelling by over-expression of
endothelial nitric oxide synthase in the fat pad of the adult rat mesentery during inhibition
of angiopoietin signalling with soluble Tie2 (sTie2) and VEGF signalling with soluble Fms-like
tyrosine kinase receptor-1 (sFlt1). We found that NO-mediated angiogenesis was blocked by
inhibition of VEGF with sFlt1 (from 881 ± 98% increase in functional vessel area to 279 ± 72%)
and by inhibition of angiopoietin with sTie2 (to 337 ± 67%). Exogenous angiopoietin-1
was required to induce arteriolargenesis (8.6 ± 1.3% of vessels with recruitment of vascular
smooth muscle cells; VSMCs) in the presence of enhanced flow. sTie2 and sFlt1 both inhibited
VSMC recruitment (both 0%), and VEGF inhibition increased pericyte recruitment to newly
formed vessels (from 27 ± 2 to 54 ± 3% pericyte ensheathment). We demonstrate that a
fine balance of VEGF and angiopoietin signalling is required for the formation of a functional
vascular network. Endogenous VEGF signalling prevents excess neovessel pericyte coverage, and
is required for VSMC recruitment during increased nitric oxide-mediated vasodilatation and
angiopoietin signalling (NO–Tie-mediated arteriogenesis). Therapeutic vascular remodelling
paradigms may therefore require treatments that modulate blood flow to utilize endogenous
VEGF, in combination with exogenous Ang1, for effective neovascularization.
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Introduction

Chronic occlusive vascular disorders represent a
significant hurdle in global healthcare. Although advances
in the field of interventional medicine have significantly
improved clinical outcome, a considerable proportion of
patients cannot be managed adequately by ‘traditional’
therapies. For these patients, therapeutic induction of
blood vessel growth remains an attractive treatment
option (Gupta et al. 2009). However, translation from
pre-clinical studies to clinical practice has been limited
(Laitinen et al. 2000; Comerota et al. 2002; Grines et al.
2002), possibly reflecting the inability of any single factor
to induce the growth of a complete, functional vascular
network. Regulated perfusion requires the formation
of capillary, arterial and venous networks. Accurately
defining the molecular and physical signals that regulate
neovascularization from endothelial sprouting through to
arteriogenesis could facilitate the future development of
therapeutics.

The vascular endothelial growth factor (VEGF)–VEGF
receptor (VEGFR) and angiopoietin (Ang)–tyrosine
kinase with IgG and EGF domains-2 (Tie2) signalling
axes differentially regulate neovascularization and vessel
maturation. VEGF-A orchestrates the initial formation
of blood vessels and is a potent endothelial cell mitogen
(Carmeliet et al. 1996; Ferrara et al. 1996), while
angiopoietin signalling appears to regulate endothelial cell
quiescence and mural cell recruitment (Maisonpierre et al.
1997; Thurston et al. 1999). The detailed contribution of
VEGF-A signalling to neovessel maturation is ambiguous.
Excessive VEGF-A expression is a hallmark of many solid
tumours and stimulates the formation of tortuous, leaky
microvessels, which lack mural cell investment (Willett
et al. 2004; Winkler et al. 2004). For instance, in mouse
models of glioblastoma, inhibition of VEGFR2 signalling
can stimulate Ang1-dependent pericyte recruitment and
enhance perfusion (Winkler et al. 2004). In contrast,
intravitreal injection of VEGF-A165 in a murine neonatal
model was shown to completely prevent vessel regression
by stimulating pericyte recruitment (Benjamin et al.
1998). When given alone, VEGF-A165 overexpression
has been shown to enhance arterial remodelling, or

arteriogenesis, in rabbit models of hindlimb ischaemia
(Rissanen et al. 2005), and endogenous VEGF-A
is required for collateral artery development during
ischaemia (Clayton et al. 2008) indicating that VEGF is
required, but its role, source and/or localization may all
be critical. We previously found that, in the presence
of increased blood flow, a combination of exogenous
vascular growth factors (VEGF-A165 and Ang1) could
induce arterial remodelling in a model – the rat mesenteric
angiogenesis assay – that can delineate the molecular
and physical control of both angiogenesis and capillary
arterialization (or arteriolargenesis) in adult animals
(Benest et al. 2006, 2008). In this model, adenoviral over-
expression of a gene of interest induces localized blood
vessel growth into mesenteric connective tissue panels,
which, under normal conditions, are sparsely vascularized
and lack vascular smooth muscle cells (VSMCs; αSMA+
cells). The advantages of using the mesenteric assays
are that it is an easily visualized, two-dimensional
network, which allows the intravital recording of blood
flowing through arteriolar, true and venular capillaries,
molecular analysis of vessel architecture and networks,
and visualization of the same tissue on two different days
in an adult, essentially quiescent, vasculature (Benest &
Bates, 2016). It also allows the modification of both the
physiology and the growth and maturation of vessels by
using the addition of secreted growth factors or systemic
agents. Using this assay we demonstrated that increased
blood flow following enhanced nitric oxide production
by overexpression of endothelial nitric oxide synthase
with adenoviruses (Ad.eNOS) or by administration of
a vasodilator (prazosin) stimulates angiogenesis and
upregulated endogenous VEGF-A and Ang1 (Benest
et al. 2008). Ad.eNOS induced the same changes in the
mesenteric microcirculation (vasodilatation and smooth
muscle cell recruitment in the presence of VEGF and Ang1)
as continuous systemic administration of prazosin, but
with an effect that acts only locally to the mesenteric panel,
not systemically altering haemodynamics. Following
treatment with Ad.eNOS, and adenoviruses expressing
VEGF-A165 (Ad.VEGF) and angiopoietin-1 (Ad.Ang1)
we observed recruitment of VSMCs and the formation
of arterioles (Benest et al. 2008), demonstrating that
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exogenous growth factor expression in combination with
enhanced blood flow can stimulate arteriolargenesis in a
non-ischaemic setting. However, the relative contributions
of exogenous and endogenous VEGF-A165 and Ang1 were
unclear.

We therefore tested the hypothesis that endogenous
VEGFs and Ang signalling contribute differentially to
the process of vascular maturation induced by increased
blood flow, using Ad.eNOS-induced neovascularization
as a model of blood flow-induced neovascularization.
Using an inhibitor of VEGF (Ad.sFlt1) and Ang (Ad.sTie2)
we were able to demonstrate contrasting roles in vessel
growth and maturation for these two signalling pathways.
Whilst Ad.sTie2 is specific for Ang1 signalling, Ad.sFlt1
is predicted to block VEGF-A165 signalling, as well as
all of the other VEGF-A isoforms, along with placental
growth factor (PlGF) and VEGF-B. Thus, we further
report that the ambiguous nature of VEGF–VEGFR
signalling in the control of neovessel maturation can
be partly explained by the contribution of endogenous
VEGFs.

Methods

Ethical approval

Animal experiments were carried out under UK Home
Office licence under the Animal (Scientific procedures)
Act, after review by the local ethical review board
and experiments were carried out according to the
guidelines laid down by the institution’s animal welfare
committee, and conform to the principles and regulations,
as described in the Editorial by (Grundy, 2015).

Adenoviruses

Ad.VEGF was previously described and shown to give
rise to the over-expression of the human VEGF-A165 iso-
form in the mesentery (Wang et al. 2004). Ad.Ang1 and
Ad.eGFP (enhanced green fluorescent protein) were a gift
from Regeneron Inc., Tarrytown, NY, USA (Benest et al.
2006) and Ad.eNOS (endothelial nitric oxide synthase)
from Prof. Keith Channon, University of Oxford (Benest
et al. 2008); Ad.sFlt1 (soluble Fms-like tyrosine kinase
receptor-1/soluble VEGFR1) was generated by Dr Ewa
Paleolog, Imperial College London (Afuwape et al. 2003)
and Ad.sTie2 (soluble Tie2) (Lin et al. 1998) by Prof.
Charles Lin, Vanderbilt University, Nashville, TN, USA.
Plaque purification was used to ensure biological activity.
To validate Ad.sFlt1 and Ad.sTie2 in the mesenteric assay,
these adenoviruses and Ad.eGFP control were injected in
perfused mesenteric panels of rats (see protocol for assay
below). The tissue was excised 24, 48 or 72 h later, and
snap-frozen in liquid nitrogen. Tissue was crushed under
liquid nitrogen into a fine powder, and the liquid nitrogen

allowed to evaporate; 500μl of RIPA buffer (supplemented
with 1 mM phenylmethanesulphonylfluoride, 1 mM

sodium orthovanadate, 20 μg ml–1 aprotinin, 10 μg ml–1

leupeptin, 10 μg ml–1 pepstatin) was then added and the
lysate incubated on ice for 20–25 min with occasional
agitation. Lysates were centrifuged for 10 min at 4°C
and 13500 g; then the supernatant was removed and
stored at –20°C. Protein concentration was determined
by the Bradford assay. Standard SDS-PAGE and Western
blotting was used with 30 μg tissue loaded per well.
Western blots were probed with rabbit monoclonal
antibody to human sFlt1 (1:10,000; ab32152; Abcam,
Cambridge, UK) or a mouse monoclonal antibody to
human Tie2 (2 μg ml–1; 334201; Biolegend, London, UK).
Enzyme linked immunosorbent assay (ELISA) was used
for determination of VEGF-A and Ang1. Quantikine R©
ELISA kits were used for measurement of human Ang1
(DANG10; R&D systems, Abingdon, UK). VEGF-A was
measured using a DuoSet VEGF-A ELISA (DY293BE;
R&D Systems). The ELISA was carried out according
to the manufacturer’s instructions and optical density
of each well was determined with a microplate reader
(Dynex Technologies, Worthing, UK) set at 450 nm with
correction set at 570 nm.

Mesenteric angiogenesis assay

The rat mesenteric angiogenesis assay (Fig. 1) was
used to characterize the neovessel phenotype as pre-
viously described (Wang et al. 2004; Benest et al.
2008; Stone et al. 2009). Male Wistar rats (300–350 g:
typically 5–6 weeks old, Harlan, UK) were anaesthetized
with 3% isoflurane vaporized in 100% oxygen and a
laparotomy performed under sterile conditions, with
depth of anaesthesia monitored by breathing rate, eyelid
reflex and/or toe-pinch reflex. While externalized, the
mesentery and small intestine were constantly superfused
with mammalian Ringer solution, which allowed for the
mesenteric panels to be imaged intravitally using a ×4
objective on a Leica DMIL inverted microscope, and
blood flow recorded by video microscopy onto S-VHS
tape. Adenoviruses expressing eGFP, eNOS, VEGF-A165,
Ang1, sFlt1 or sTie2 were injected into the mesenteric
fat pad using a 30-gauge needle and Hamilton syringe,
which has been previously shown to result in infection
of adipocytes (Wang et al. 2004). Adjacent panels were
subsequently tattooed with Monastral Blue (0.6% w/v in
mammalian Ringer solution), enabling recognition of the
panel 6 days later. The animal was sutured and allowed
to recover with analgesia provided by intra-muscular
injection of 0.3 mg kg−1 buprenorphine. Six days later
the animals were anaesthetized using the same regimen as
described previously (3% isoflurane vaporized in 100%
oxygen) and the same mesenteric panel was located
and imaged intravitally as before using a ×4 objective
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Figure 1. Expression of soluble receptors for VEGF and Tie2 inhibits VEGF- and Ang1-mediated
angiogenesis, respectively
A, diagram of the mesenteric angiogenesis assay. The ileum was teased out of the abdominal cavity and vessels
were imaged in the mesenteric connective tissue panel and then adenovirus injected into the fat pad. The site
was marked with a small injection of Monastral Blue, and replaced in the animal. After 24, 48 or 72 h, the panel
was found again and the tissue frozen for protein extraction; alternatively, 6 days later the panel was re-imaged,
fixed and stained for vascular markers. B, Western blots of sFlt1 and sTie2 expression after injection with the
adenoviruses. C, images of mesenteries on day 0 and day 6. Scale bar: 1 mm. Higher power images of the GFP
and Ang1 infected mesenteries from the boxes in the low power images are shown below. a, arteriole; c, capillary
with numbers indicating how many were visible with flowing blood; nv, newly patent vessels; v, venule; v2, venule
that was patent on day 6 but not on day 0. D, quantification of perfused vessel area. Changes in functional vessel
area from day 0 to day 6 are expressed as the angiogenesis index (AI; %).
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on a Leica DMIL, and blood flow through the micro-
circulation recorded by videomicroscopy. Animals were
killed by cervical dislocation after the tissue was fixed
in situ with 4% paraformaldehyde in PBS. The mesentery
was then post-fixed in 4% paraformaldehyde and
immunofluorescence staining performed in the whole
panel. The mesenteric fat pad was excised separately
and protein extracted for Western blotting as previously
described (Benest et al. 2008). The area of the mesenteric
panel covered by vessels in which blood flow was occurring
was determined from the intravital videomicroscopy by
highlighting vessels in which blood flow was visible using
Openlab software wand function (Improvision, Coventry
UK). The fractional vessel area (area of flowing vessels
as a proportion of the mesenteric connective tissue being
imaged) was determined for days 6 and 0 and the ratio of
the difference between these and day 0 was expressed as
the angiogenesis index (%) (Wang et al. 2004).

Immunofluorescence and image analysis

Mesenteric panels were washed in 0.5% phosphate
buffered saline with 0.5% Triton X-100 (PBX) (pH 6.8)
and incubated with biotinylated isolectin-B4 (10 μg ml–1;
Griffonia simplicifolia; I-21414; Invitrogen, Carlsbad,
CA, USA) at 4°C overnight. The following day, tissue
was washed and incubated with AF555-streptavidin
(2 μg ml–1; S-21381; Invitrogen) for 2 h at room
temperature, to stain for blood vessels. All other stains
were achieved in parallel after blocking for 1 h in 1%
BSA–0.5% PBX (pH 7.4) at room temperature. Tissue was
incubated overnight at 4°C in block solution containing
mouse monoclonal antibodies to either neuro/glial anti-
gen 2 (NG2; 1:200; MAB5384; Millipore, Billerica, MA,
USA) or Ki67 (1:200; NCL-L-Ki67-MM1; Leica, Milton
Keynes, UK), or rabbit polyclonal antibodies to α-smooth
muscle actin (1:125; ab5694; AbCam, UK) or NG2 (1:200;
AB5320; Millipore, USA). The following day, panels were
washed for 6 × 10 min in 0.5% PBX (pH 7.4) and
secondary antibodies (goat anti-mouse AF488: A11039,
or goat anti-rabbit AF350: A11046, used at 5 μg ml–1;
Molecular Probes, UK) incubated in block solution for
2 h at room temperature. After secondary antibody
incubation, panels were washed and incubated with
Hoechst 33324 (1 μM; Molecular Probes, UK) for 10 min
to stain mesenteric nuclei. Panels were mounted whole
using Vectashield (Vector Laboratories, Peterborough,
UK). Blood vessels were imaged by confocal microscopy
and blinded analysis was carried out using Openlab.
Counts of five random ×40 microscopic fields per
mesenteric panel were averaged per animal (5–6 animals
per group were used). Individual vessels were numbered,
and measurements obtained for vessel diameter and
length. The number of sprout points, branch points,
and, in Ki67-stained images, proliferating endothelial cell

(EC) number, were counted and expressed as density per
area of image. Vessels < 16 μm diameter were termed
exchange vessels, while 16–35 μm diameter vessels were
termed conduit vessels, as previous work has shown that
vessels with diameters greater than 16 μm make very
little contribution to solute exchange (Benest & Bates,
2009). Relative pericyte area was calculated as the mean
percentage NG2 coverage of each individual vessel, while
relative VSMC coverage was calculated as the percentage
α-smooth muscle actin (αSMA) coverage of all vessels
measured.

Statistical analysis

Results are expressed as means ± SEM. Comparisons
between means of data were performed using one-way
ANOVA. P < 0.05 was considered statistically significant
and the Holm–Sidak post hoc test was used to compare
individual groups.

Results

Soluble receptor overexpression blocks Ad.VEGF- and
Ad.Ang1-induced neovascularization

To confirm the in vivo activity of the inhibitors of VEGF
signalling (soluble Flt1, Ad.sFlt1) and angiopoietin 1
signalling (soluble Tie2, Ad.sTie2), Ad.VEGF/Ad.sFlt1 and
Ad.Ang1/Ad.sTie2 were administered in the mesenteric
assay (Fig. 1A). This infection dose of Ad.VEGF
and Ad.Ang1 results in 200–260 pg mg−1 VEGF and
13–18 pg mg−1 Ang1 in the mesenteric fat pad, as pre-
viously described (Benest et al. 2008). Both growth factors
also independently induce vessel growth (Fig. 1C and D).
Ad.sFlt1 and Ad.sTie2, both of which were expressed in
adipocytes within 24 h after infection (Fig. 1B), blocked
the increase in blood vessels that could be visualized by
intravital microscopy 6 days after infection (Fig. 1C). This
was determined by decreased functional vessel area (FVA)
with respect to their controls (Fig. 1D).

Staining of vessels for endothelial cells, proliferating
endothelial cells and pericytes (Fig. 2A) demonstrated
that sFlt1 and sTie2 inhibited, respectively, the VEGF- and
Ang1-mediated increase in both vessel density (Fig. 2B)
and proliferating endothelial cell density (Fig. 2C).
sFlt1 inhibited VEGF-induced sprouting (Fig. 2D) and
branching (Fig. 2E), and sFlt1 and sTie2 reversed the
effect of VEGF (a reduction relative to control) and Ang1
(an increase relative to control), respectively, on both
vessel length (Fig. 2F) and diameter (Fig. 2G). sTie2
also reduced the increased pericyte coverage induced by
Ang1 (Fig. 2H). These results indicate that adenovirus
over-expression of sFlt1 and sTie2 was able to completely
abrogate the responses of the mesentery induced by
adenovirus-mediated over-expression of VEGF and Ang1,

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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Figure 2. Soluble receptors for VEGF and Tie2 inhibit VEGF- and Ang1-mediated markers of
angiogenesis, respectively
A, representative images of mesenteric panels stained for endothelial cells (IB4) and proliferating cells (Ki67). B–H,
quantification of vessel density (B), proliferating endothelial cells (C), sprouts (D), branches (E), vessel length (F),
vessel diameter (G) and pericyte coverage (H). ∗P < 0.05, ∗∗P < 0.01, ∗∗∗P < 0.001: significantly different from
GFP; #P < 0.05, ##P < 0.01, ###P < 0.001: significantly different from agonist (VEGF or Ang1). Scale bar: 40 μm.
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respectively. These results confirm that the soluble
receptors are able to inhibit the effect of each of their
cognate growth factors on neovascularization.

Nitric oxide-induced neovascularization requires
VEGF–VEGFR and Ang–Tie signalling

To determine the relative contribution of VEGF and
Ang1 signalling in NO-mediated angiogenesis, we first
assessed vessel perfusion by measuring patent vessel area
in individual mesenteric panels (Fig. 3A). Exogenous
addition of Ad.sFlt1 or Ad.sTie2 to Ad.eNOS in the
mesenteric fat pad inhibited angiogenesis, as measured
by the angiogenesis index (AI; Fig. 3B). Interestingly,
minor micro-haemorrhages were observed following
Ad.eNOS/Ad.sTie2 treatment (Fig. 3A), indicating that
Ang–Tie signalling is required for maintenance of vessel
integrity during NO-induced remodelling.

The architecture of NO-induced neovascular networks
depends upon VEGF–VEGFR and Ang–Tie signalling

We next evaluated the effect of blockade of VEGF–VEGFR
and Ang–Tie signalling on vessel architecture. Vessel
phenotype was analysed using confocal microscopy
of mesenteric panels stained using isolectin B4 and
counterstained with Hoechst 33324 (Fig. 3C). Ad.sFlt1
or Ad.sTie2 inhibited NO-mediated increases in vessel
density (Fig. 3D), of both exchange vessels (Fig. 3E) and
conduit vessels (Fig. 3F), although sFlt1 was less effective
at reducing the increase in larger vessels, although not
significantly different from sTie2. Ad.sFlt1 or Ad.sTie2
also inhibited increases in branching (Fig. 3G). However,
sprouting was only inhibited by Ad.sFlt1 and not by
Ad.sTie2 (Fig. 3G). This suggests that VEGF–VEGFR and
Ang–Tie signalling have different effects in NO-mediated
vessel patterning.

Both Ad.sFlt1 and Ad.sTie2 inhibited proliferation of
endothelial cells at the same level (Fig. 4A and B). The
relative coverage of vessels by pericytes (Fig. 5A) was not
affected by NO-mediated angiogenesis as the increase in
vessel growth was matched by the increase in pericyte
growth. No vascular smooth muscle cells were seen in
the presence of eNOS and either sFlt1 or sTie2. However,
treatment of mesenteric tissue with Ad.sFlt1 significantly
increased the pericyte coverage, indicating that end-
ogenous VEGF inhibited pericyte growth (Fig. 5B).

Angiopoietin does not further enhance NO-mediated
angiogenesis

As angiopoietin was clearly contributing to the
NO-mediated angiogenesis, we set out to determine
whether increasing Ang1 expression could further enhance
angiogenesis. Addition of Ang1 to eNOS did not further

increase FVA (Fig. 6A) or the angiogenesis index (Fig. 6B)
when compared to Ad.eNOS alone. It also produced no
change in proliferating endothelial cell density (Fig. 6C–F),
or overall vessel density (Fig. 6D) and branch point density
(Fig. 6E). Interestingly, there was also no change in the
frequency of either exchange vessels (Fig. 6G) or conduit
vessels (Fig. 6H), which we usually observe upon Ang1
stimulation (Fig. 2G and Benest et al. 2006). There was,
however, a significant decrease in sprouting induced by
Ang1 co-over-expression with eNOS, which indicated an
alteration in the phenotype of the vascular plexus in
response to a synergy between NO and Tie signalling.

Concomitant NO–Tie signalling stimulates
arteriolargenesis

To further evaluate the alteration in phenotype observed
upon NO–Tie stimulation, we stained vessels with IB4,
NG2 and α-smooth muscle actin, so that we could
determine whether the relative proportions of peri-
cytes and vascular smooth muscle cells (VSMCs) had
been altered (Fig. 7A). There was a significant increase
in relative pericyte coverage in the Ad.eNOS/Ad.Ang1
co-transfected mesenteries relative to NO-mediated
angiogenesis alone (Fig. 7B). Smooth muscle actin positive
cells with morphology consistent with VSMCs are rarely
found in the mesentery of these rats, and none were
found in vessels within mesenteries transfected with
eGFP or eNOS adenoviruses by themselves, or with
Ad.VEGF, Ad.Ang1, Ad.sFlt1 or Ad.sTie2 (not shown).
Surprisingly, there was a reproducible and consistent set
of vessels staining positive for α-smooth muscle actin
in animals treated with eNOS and Ang1 (Fig. 7A–C).
This phenotype was qualitatively consistent with the
previously reported arteriolargenic effect achieved upon
Ad.eNOS/Ad.Ang1/Ad.VEGF stimulation in this model
(around 50% VSMC coverage per vessel area; Benest et al.
2008), although the relative VSMC coverage was decreased
in this case (around 10%, Fig. 7C).

Endogenous VEGF signalling is essential for NO–Tie
arteriolargenesis

To determine whether the combined effect of NO
stimulation and Tie signalling (Ad.eNOS/Ad.Ang1) was
dependent upon VEGF, we analysed the vascular networks
formed upon addition of Ad.sFlt1. Addition of both
Ad.sFlt1 and Ad.sTie2 completely blocked NO-mediated
angiogenesis (eNOS+sFlt1+sTie2 compared with eNOS
alone, Fig. 8A and B), whereas Ad.sFlt1 reduced by
approximately 50% the NO–Tie (eNOS+Ang1)-mediated
angiogenesis (Fig. 8B, compared with Fig. 6B). Staining for
Ki67 and isolectin B4 (Fig. 8C) confirmed that the vascular
density (Fig. 8D), branching (Fig. 8E) and sprouting
(Fig. 8F) induced by NO-mediated angiogenesis were

C© 2016 The Authors. The Journal of Physiology published by John Wiley & Sons Ltd on behalf of The Physiological Society
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completely blocked by combined inhibition of both Ang1
and VEGF. However, while both density and sprouting
induced by NO–Tie-mediated angiogenesis were blocked
(Fig. 8D and E), sprouting was not affected (Fig. 8F).
Staining for α-smooth muscle actin showed that inhibition
of either VEGF (eNOS+sFlt1) or Ang1 (eNOS+sTie2) did
not induce arteriolargenesis by NO. More importantly, the
NO–Tie-mediated arteriolargenesis (Fig. 7) was not seen
when VEGF was inhibited (eNOS+Ang1+sFlt1: Fig. 8G).

Discussion

The generation of new functional vasculature is a
requirement for effective vascular remodelling (Silvestre
et al. 2013). Previous studies have shown that addition of
VEGF can result in more blood vessels whereas addition
of Ang1 can result in blood vessels with a more mature
structure; neither growth factor alone results in a greater
vascular supply with good functionality. The logical option
was to combine the delivery of these two growth factors
(or a combination of VEGF with another stabilizing
agent such as platelet-derived growth factor B), which
resulted in improved cardiac perfusion in a porcine myo-
cardial infarction model (Tao et al. 2011) and enhanced
perfusion and collateralization (or arteriogenesis) in a
rabbit hindlimb ischaemia model (Kupatt et al. 2010).
However, none of these models had before focused on
inducing vasodilatation as a remodelling strategy. We pre-
viously showed that inducing vasodilatation can increase

the number of vessels, but not the functionality of
these vessels. We did find that arteriolargenesis could
be generated by combining vasodilatation (either NO
or prazosin mediated) with VEGF and Ang1, but not
by Ang1 and VEGF alone. Here, we show that arterio-
largenesis can be generated by increasing NO production
(and hence flow) and administering exogenous Ang1,
in the presence of endogenous VEGF signalling. VEGFs
generated endogenously during vascular remodelling are
necessary for an effective neovasculature. Inhibition of
endogenous VEGFs under these circumstances results
in a dramatic increase in pericyte recruitment (Fig. 5B)
without any increase in vessel diameter or smooth muscle
cell recruitment. These results suggest that the method
of combining factors that remodels vessels: a) to provide
the greatest increase in both exchange and conduit vessels;
b) with a proportional increase in vasomotor vessels that
can control flow on demand; is to 1) begin by stimulating
blood flow, 2) increase Ang1 and 3) allow the vascular
system to provide its own VEGFs (which may be optimal
at a different kinetics from the other growth factors).

eNOS-induced neovascularization is mediated by the
VEGF–VEGFR and Ang–Tie axes

A number of studies have highlighted the NO
dependency of VEGF- (Papapetropoulos et al. 1997)
and Ang1-mediated angiogenesis (Babaei et al. 2003;
Chen et al. 2004), and NO has been demonstrated to
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increase VEGF-A expression to induce neovascularization.
In this model, eNOS over-expression has been shown
to increase levels of endogenous VEGFs by 5-fold,
similar to that induced by Ad-VEGF (Benest et al.
2008). Here, the contribution of endogenous VEGFs and
angiopoietin signalling to eNOS-induced angiogenesis
was investigated and we confirmed that eNOS-induced
neovascularization is, at least in part, mediated by
VEGF–VEGFR. These data are consistent with previous
reports demonstrating the VEGF-A-dependent action of
eNOS in ischaemic tissue (Namba et al. 2003; Zhang
et al. 2003) and upregulation of VEGF-A in response to
Ad.eNOS treatment (Benest et al. 2008). The difference
in sprouting (Fig. 3H) seen between endogenous
VEGF expression (the difference between Ad.eNOS and
Ad.eNOS/Ad.sFlt1) and exogenous VEGF-A165 expression
(Ad.eNOS vs. Ad.eNOS/Ad.VEGF-A165) may therefore be
a result of inhibition of the other isoforms, particularly
VEGF121 and VEGF189, which have been shown to
regulate sprouting/branching (Ruhrberg et al. 2002).
Perhaps more interestingly, Ang1 inhibition also inhibited
eNOS-induced neovascularization (AI (Fig. 3B), vessel
density (Fig. 3D) and proliferating endothelial cell
density (Fig. 4B)). Ad.eNOS/Ad.sTie2-treated mesenteries
demonstrated substantial haemorrhaging of the newly
formed vessels (Fig. 3A), suggesting that inhibition of

Ang–Tie signalling appears to disrupt endothelial homeo-
stasis and increase microvessel permeability, potentially
leading to a loss of vessel integrity and haemorrhaging.
Ang–Tie signalling is known to play an important role in
endothelial cell homeostasis (Schubert et al. 2011), end-
othelial cell–cell communication (Fukuhara et al. 2008;
Saharinen et al. 2008) and regulation of microvessel
permeability (Thurston et al. 2000; Salmon et al. 2009).
Furthermore, recent work has demonstrated the ability of
Ang1 to increase the depth of the endothelial glycocalyx
layer in both continuous and fenestrated capillaries,
leading to a reduction in water permeability (Salmon et al.
2009).

Blockade of endogenous VEGF–VEGFR or Ang–Tie
signalling leads to a phenotypically different
angiogenic response

Following treatment with Ad.eNOS/Ad.sFlt1, EC
proliferation was reduced to the level of control (Fig. 4B),
subsequently leading to a reduction in exchange vessel
density (Fig. 3E), consistent with a role for VEGF-A
in the induction of capillary hyperplasia (Benest et al.
2006). Although a reduction in conduit vessel density
was induced by Ad.sFlt1, this remained 65% higher
than control (Fig. 3F), indicating that other factors are
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involved in the formation of arterioles and higher order
vessels. These may include basic fibroblast growth factor
(Schierling et al. 2009), ephrin-B2 (Korff et al. 2008),
delta-like ligands (Limbourg et al. 2007) and Notch 1
(Takeshita et al. 2007). Unlike VEGF–VEGFR signalling,
blockade of Ang–Tie signalling led to a complete
inhibition of proliferation in conduit vessel density and
diameter (Fig. 3F), while a minor increase in proliferation
was observed in exchange vessels compared with GFP
(Fig. 3E). While administration of exogenous Ang1 has
been reported to induce luminal expansion (Thurston

et al. 1999), the neovascular phenotype following
inhibition of the Ang–Tie axis has not previously
been extensively studied under post-natal physiological
conditions. Inhibition of Ang–Tie signalling using a
soluble Tie2 fusion protein has previously been shown to
inhibit tumour angiogenesis (Lin et al. 1997; Lin et al.
1998) and ischaemia-induced retinal neovascularization
(Takagi et al. 2003). Although generally considered an
antagonist of Ang1–Tie signalling (Scharpfenecker et al.
2005), the role of Ang2 in angiogenesis is complex and
appears to be context dependent (Brindle et al. 2006).
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However, if we assume that under conditions of
non-pathological blood vessel growth, Ang2 acts as an
antagonist of Tie2, then we may consider the phenotype
of Ad.eNOS/Ad.sTie2-induced vessels to be representative
of Ang1 inhibition. These results therefore suggest that
endogenous angiopoietin signalling is key to vessel calibre
regulation in non-pathological adult neovascularization.

Ad.eNOS-induced neovascularization is entirely
blocked by combined inhibition of VEGF–VEGFR and
Ang–Tie signalling

Although inhibition of either VEGF–VEGFR or Ang–Tie
signalling alone was unable to reduce vessel growth to
the level of control treated animals (Fig. 3B), blockade of
both pathways decreased functional vessel area to control
values (Fig. 8B). This is consistent with studies in murine
models of retinal ischaemia, where combined intravitreal
injection of soluble Flt-1 and soluble Tie2 fusion proteins
led to a significantly greater inhibition of angiogenesis than
either treatment alone (Takagi et al. 2003). Furthermore,
combined blockade of VEGFR2 and Tie2 led to a greater

inhibition of tumour angiogenesis than either factor alone
(Jendreyko et al. 2005). These results therefore support the
recent findings that double blockade of Ang and VEGF
signalling may be more effective than either alone (Koh
et al. 2010).

VEGF-A inhibits pericyte recruitment but is required
for αSMA+ cell recruitment

Simultaneous eNOS, VEGF-A165 and Ang1 treatment
stimulated an increase in the number of αSMA+,
VSMC-type cells in the mesenteric angiogenesis assay
(Benest et al. 2008). While the role of VEGF-A
in angiogenesis is well defined (Ferrara, 2009), the
contribution of VEGF-A to arteriogenesis and vessel
maturation is less clear. Angiogenesis occurs in response to
tissue hypoxia, resulting in endothelial cell sprouting and
capillary network expansion. However, under conditions
of excessive VEGF-A expression, for example in tumour
angiogenesis, a number of studies have demonstrated the
induction of tortuous and leaky vessels, with poor mural
cell coverage (Thurston et al. 1999; Winkler et al. 2004;
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Jain, 2005). In contrast, following induction of ischaemia,
inhibition of endogenous VEGF-A blocks the formation
of functional collateral vessels (Jacobi et al. 2004).

To clarify the roles of exogenous VEGF and Ang1 in
the process of arteriolargenesis we assessed mural cell
recruitment. eNOS and Ang1 were capable of increasing
both pericytes and VSMCs indicating that exogenous
Ang1 but not VEGF-A is required for arteriolargenesis
in non-ischaemic tissue. Interestingly, inhibition of end-
ogenous VEGFs resulted in a significant increase in
relative pericyte coverage following both flow-mediated
and flow–Tie-mediated angiogenesis (Fig. 5B). This could
have been the case if VEGF were to induce vessels that
did not have pericyte coverage, but this did not appear
to be the case, as the overall pericyte coverage with
VEGF alone was not different from control mesenteries
(Fig. 2H). These data indicate that both exogenous
overexpression of VEGF-A and induction of expression
of endogenous VEGFs inhibit pericyte recruitment,
further supporting our findings using Ad.eNOS/Ad.VEGF
and Ad.eNOS/Ad.sFlt1. Although we demonstrated that
exogenous VEGF-A expression negatively regulates peri-
cyte number, the increase of αSMA+ cells was comparable
following Ang1–eNOS to that with Ang1–eNOS–VEGF
administration (Benest et al. 2008). The source of the
pericytes and smooth muscle cells is not yet known,
but it is either through recruitment or differentiation
of existing cells (or recruitment of pericytes, followed
by differentiation of pericytes into smooth muscle
cells). These results indicate that, in contrast to peri-
cytes, αSMA+ cell recruitment or differentiation is
not inhibited by overexpression of VEGF-A in the rat
mesentery assay. Surprisingly, following VEGF inhibition
with Ad.sFlt1, Ang1/eNOS did not increase αSMA+ cell
numbers (Fig. 8G). This may be due to the fact that
different VEGF receptors are necessary for sprouting
and for αSMA+ cell recruitment or differentiation.
It is possible that the required interaction between
VEGFR1 and neuropilin 1 that activates phosphoinositide
3-kinase, thus inducing aortic SMC migration in vitro
(Banerjee et al. 2008), was not promoted. It should
also be noted that it is possible that the increase in
αSMA+ cells could be due to a change in pericyte
expression so that pericytes express SMA. However,
morphologically the αSMA+ cells do not look like peri-
cytes, but like smooth muscle cells, though whether this is
recruitment, or differentiation, these experiments cannot
determine.

Limitations

sFlt1 and sTie2 inhibit multiple members of the VEGF
and angiopoietin family respectively. sFlt1 inhibits PlGF,
VEGF-B and VEGF-A and sTie2 will block both Ang1
and Ang2. However, it is likely that VEGF-A and Ang1

are the predominant growth factors as expression of the
other family members has not been described in the
mesentery under physiological conditions (Li et al. 2001;
Cao et al. 1997). We also make the assumption that eNOS
induces increased blood flow in these animals. We have
previously shown this to be the case, and the responses
seen with eNOS are mimicked by giving vasodilators such
as prazosin, but the caveat should be noted. Finally we
are investigating vessel growth in the connective tissue
of the mesentery, a relatively sparsely vascularized tissue
with low metabolic demand. It is likely that this will
not be exactly mimicked in all tissues, but it will be of
interest to determine whether similar mechanisms occur
in skeletal muscle, brain and other tissues. Finally, we
have not distinguished arteriolar capillaries from venular
capillaries (both termed 16–35 μm exchange vessels) in
the analysis.

Conclusion

Here we have shown that VEGF inhibition can increase
pericyte coverage during angiogenesis, and signalling
by endogenously produced VEGFs is required for
flow–Tie-increased vascular smooth muscle cells, with
concomitant induction of angiogenesis and arterio-
largenesis. Due to mechanistic differences between
angiogenesis and arteriogenesis, efficient stimulation of
both processes may be problematic as treatments that
induce angiogenesis may not induce arteriogenesis and
vice versa. It seems likely, given the mechanistic similarities
between arteriolargenesis and arteriogenesis that arterio-
largenic treatments may induce collateral artery growth,
indicating that use of agents such as eNOS, which
upregulate endogenous VEGFs, in combination with a
vascular maturation factor such as Ang1, may provide a
useful treatment strategy for the treatment of ischaemic
disease.
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