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Abstract

Variations of the examination timetabling problem have been investigated by
the research community for more than two decades. The common characteris-
tic between all problems is the fact that the definitions and data sets used all
originate from actual educational institutions, particularly universities, includ-
ing specific examination criteria and the students involved. Although much has
been achieved and published on the state-of-the-art problem modelling and op-
timisation, a lack of attention has been focussed on the students involved in the
process. This work presents and utilises the results of an extensive survey seek-
ing student preferences with regard to their individual examination timetables,
with the aim of producing solutions which satisfy these preferences while still
also satisfying all existing benchmark considerations. The study reveals one of
the main concerns relates to fairness within the students cohort; i.e. a student
considers fairness with respect to the examination timetables of their immedi-
ate peers, as highly important. Considerations such as providing an equitable
distribution of preparation time between all student cohort examinations, not
just a majority, are used to form a measure of fairness. In order to satisfy
this requirement, we propose an extension to the state-of-the-art examination
timetabling problem models widely used in the scientific literature. Fairness is
introduced as a new objective in addition to the standard objectives, creating
a multi-objective problem. Several real-world examination data models are ex-
tended and the benchmarks for each are used in experimentation to determine
the effectiveness of a multi-stage multi-objective approach based on weighted
Tchebyceff scalarisation in improving fairness along with the other objectives.
The results show that the proposed model and methods allow for the production
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of high quality timetable solutions while also providing a trade-off between the
standard soft constraints and a desired fairness for each student.

Keywords: Timetabling, Fairness, Multi-objective Optimisation,
Metaheuristic
2015 MSC: 00-01, 99-00

1. Introduction

Examination timetabling is a well-known and challenging optimisation prob-
lem. In addition to requiring feasibility, the quality of an examination timetable
is measured by the extent of the soft constraint violations. The formulations for
standard examination timetabling problems [1–4] have penalties representing
the violations of various soft constraints, including those which influence the
spread of examinations across the overall examination time period, providing
students with more time for preparation. Of particular interest here is the fact
that standard examination timetabling formulations concentrate on minimising
the average penalty per student. We believe that this model can lead to unfair-
ness, in that a small but still significant percentage of students may receive much
higher than average penalties with a reduced separation between examinations
than others. Since students believe that poor timetables could adversely affect
academic achievement (as we show later by our survey findings), we believe that
overall student satisfaction could be improved by encouraging fairer solutions.
In particular, by reducing the number of students that may feel they have been
adversely affected for no obvious good reason.

In our prior work [5, 6], we briefly introduced a preliminary extension of
the examination timetabling problem formulation in order to encourage fairness
among the entire student body (for a study of fairness in course timetabling
see [7]). However, the notion of “fairness” in this context is also likely to be
quite a complex concept, with no single generic measure appropriate. Hence,
to determine student preferences we conducted a survey. This paper reports
the main results of the survey and also suggests and analyses extensions to the
current models used for optimisation e.g. algorithms are presented along with
experimental results.

The contributions of this paper broadly include:

• Presentation of the results of a survey amongst undergraduate and taught-
postgraduate students concerning their own preferences for particular prop-
erties of examination timetables. These served to confirm our expectation
that fairness is indeed a concern for them. In particular, it was apparent
that students are mainly concerned with fairness within their immediate
cohort.

• An extension to the examination timetabling problem formulation includ-
ing objectives for fairness. The new problem formulation is inherently
multi objective, including both objectives for fairness between all students,
and also fairness within specified cohorts.
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• Initial work towards building a public repository that extends current
benchmark instances with the information needed to build cohorts, thus
allowing methods on our formulation to be studied by the community.

• A proposal of an algorithm that works to improve fairness, i.e. a multi-
stage approach with weighted Tchebycheff scalarisation technique.

• Initial results on the benchmarks. In particular, we observe that there is
the potential to control the trade-off between fairness and other objectives.

The rest of this paper is structured as follows. Section 2 presents the de-
scription of the examination timetabling problem and surveys the related works.
We then present the findings from the survey, investigating students preferences
especially regarding fairness over examination schedules within their immedi-
ate cohorts. Section 4 discusses our proposed extension on the examination
timetabling problem formulation. The proposed algorithms used within exper-
imentation are introduced in Section 5. Finally the experimental results are
discussed in section 6, before the concluding remarks in Section 7.

2. Examination Timetabling

2.1. Problem Formulation

The examination timetabling problem is a subclass of educational timetabling
problems. (For example, see the survey of Schaerf [8], where educational timetabling
problems are placed within three sub-categories: school timetabling problems,
course timetabling problems, and examination timetabling problems). Exami-
nation timetabling problems are a combinatorial optimisation problem, in which
a set of examinations E = {e1, ..., eN} are required to be scheduled within a cer-
tain number of timeslots or periods T = {t1, ..., tM} and rooms R = {r1, ..., rK}.
The assignments are subject to a variety of hard constraints that must be sat-
isfied and soft constraints that should be minimised [9]. The hard constraints
and soft constraints can vary between institutions: examples and detailed ex-
planations can be found in [9].

In order to provide a standard examination timetabling problem formula-
tion as well as the problem datasets from real-world problems in examination
timetabling research, some previous studies have shared public benchmark prob-
lem datasets. The two most intensively studied benchmark datasets in this re-
search area are the Carter (also known as Toronto) dataset [1] and International
Timetabling Competition 2007 (ITC 2007) dataset [10].

The Carter dataset consists of 13 real-world simplified examination timetabling
problem instances. The only hard constraint taken into consideration in the
Carter model is that whereby each examination has to be allocated a timeslot
and be ‘clash-free’, meaning no student is required to sit more than one exami-
nation in the same timeslot. The period (maximum) duration of each timeslot
and room capacity are ignored. In other words, it is assumed that each timeslot
has a long enough period duration for all examinations and there is always a
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room with sufficient capacity to fit all students sitting an examination during
each timeslot. A soft constraint violation penalty, called the ‘proximity cost’,
is also introduced. This cost should be minimised in order to give enough pe-
riod gaps between examinations so as to give students enough time for revision.
Formally, the penalty, P , is defined by:

P =

∑N−1
i=1

∑N
j=i+1 CijW|tj−ti|

Q
(1)

where

W|tj−ti| =

{
25−|tj−ti| iff1 ≤ |tj − ti| ≤ 5

0 otherwise
(2)

Solutions are subject to the hard constraint which stipulates that no student
has two or more exams at the same time:

∀i6=j . ti 6= tj when Cij > 0 (3)

In Equations 1 and 2, given N and Q as the total number of examinations
and students respectively, Cij is defined as the number of students taking both
examinations i and j, (i 6= j). Also ti and tj are the allocated timeslots for ex-
aminations i and j respectively, and the timeslots are defined as a time sequence
starting from 1 to M , the total number of timeslots.

Furthermore, W|tj−ti| is the weight of the penalty produced whenever both
examinations i and j are scheduled with | tj − ti | timeslots gap between them.
The formula is reasonable in that an increased gap reduces the penalty, but the
details are somewhat an ad hoc choice; for example, if the gap between two
examinations is greater than five timeslots, then there is no penalty cost.

In contrast with the problem formulation of the Carter dataset, the ITC
2007 dataset formulation allows for the representation of much more complex
real-world examination timetabling problems. In addition to the ‘clash-free’
constraint as required in the Carter dataset, a feasible timetable also requires
that each examination has to be allocated to a timeslot with a long enough
period duration and at least one room with enough capacity to accommodate
all students sitting the examination. One can also specify hard constraints
related to period (i.e. examination x has to be timetabled after/same time
as/different time to examination y) and hard constraints related to room (i.e.
if a room r in a timeslot t is already allocated to examination x, a member of
the the specified exclusive examinations, X, then no other examinations can be
allocated to room r and timeslot t).

Compared to the Carter dataset, the ITC 2007 examination timetabling
formulation has a much richer set of potential soft constraints. Formally, subject
to all hard constraints being satisfied, the objective function is to minimise the
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total penalty as the result of a weighted sum of soft constraint violations:

P =
∑
s∈S

(w2RC2R
s +w2DC2D

s +wPSCPSs )+wNMDCNMD+wFLCFL+CP +CR

(4)
Where, the first set is a sum over penalties directly associated to each student

s:

C2R
s (‘Two in Row’) is the penalty incurred whenever a student s has to sit two

distinct examinations scheduled in two consecutive timeslots within the
same day.

C2D
s (‘Two in Day’) is the penalty incurred whenever a student s has to sit two

distinct examinations scheduled in two non-consecutive timeslots within
the same day.

CPSs (‘Period Spread’) is the penalty incurred whenever a student s has to sit
more than one examination within a specified number of periods.

Other penalties not directly associated to each student are:

CNMD (‘Non-Mixed Duration’) is the penalty incurred whenever any room in
any timeslot is allocated to examinations of differing durations.

CFL (‘Front Load’) is the penalty incurred by scheduling what are considered
large examinations towards the end of the examination period.

CP is the penalty associated to a period/timeslot whenever it is used for ex-
aminations.

CR is the penalty associated to a given room whenever it is allocated to exam-
inations.

The weighting applied to each of the individual penalties listed, e.g. w2R, as
well as the other specifications, e.g. the penalty associated to each room/timeslot,
are defined in the ‘institutional model index’ file. Full details, including the
mathematical programming formulation of this problem are found in [10].

The other examination timetabling problem instances reported in the litera-
ture include benchmark datasets generated from University of Nottingham [11],
University of Melbourne [12], MARA University Malaysia [13], Universiti Ke-
bangsaan Malaysia (UKM) [14], University of Yeditepe [15], Universiti Malaysia
Pahang [16], and KAHO Sint-Lieven [17].

2.2. Related Work

Examination timetabling problems have attracted researchers over the last
number of decades, in particular those within the area of operation research and
artificial intelligence. The real-world problems can become even more challeng-
ing and complicated due to the increasing tendency of many universities to offer
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cross-disciplinary programs, although there have been many successfully imple-
mented approaches reported in the literature in solving these problems. These
approaches range from traditional graph colouring heuristics, to meta-heuristics
and hyper-heuristics.

Surveys on the state-of-the-art examination timetabling problem formula-
tions, techniques and algorithms have been reported in prior work such as [8, 18–
20]. In [20], which could be considered the most comprehensive survey, the exist-
ing approaches/techniques are classified into the following categories; clustering
methods, constraint-based methods, meta-heuristics, multi-criteria techniques
and hyper-heuristics.

A hyper-heuristic is a high level search method that selects or generates
problem specific low-level heuristics for solving computationally difficult combi-
natorial optimisation problems [21]. A key potential benefit of hyper-heuristics
is that they have reusable components and can handle a variety of problem
instances with different characteristics without requiring expert intervention.
See [21] for a recent survey on hyper-heuristics. Here, we provide an overview
of selection hyper-heuristics for solving examination timetabling problems.

Currently, selection hyper-heuristics generally use a single point-based search
framework. They process a single solution at a time, remembering the best found
solution so far. An initially generated solution is fed through an iterative cycle
until a termination criterion is satisfied, in an attempt to improve the solution
quality with respect to a given objective. There are two main methods employed
at each step, each playing a crucial role in the success of the overall performance
of a selection hyper-heuristic. Firstly, a heuristic selection method is employed
to choose a low level heuristic. After the application of the selected heuristic to
the current solution, a new solution is obtained. Secondly, the move acceptance
strategy decides whether to accept or reject that new solution. Of course, such
a structure is also present in many meta-heuristics. However, the point of a
hyper-heuristic is to provide a modular architecture and enable such structures
to be explicitly separated from the details of individual problem domains; hence,
aiming to make it easier to exploit advanced intelligent adaptive methods (e.g.
see [22, 23]).

Although the study and application of hyper-heuristics is a relatively new
research area, they have been successfully applied to solve many combinatorial
optimisation problems. One of the most successful implementations of hyper-
heuristics is in timetabling problems, in particular examination timetabling.
Most recently published studies on examination timetabling problems with hyper-
heuristics are discussed in [17, 20, 24–33].

Bilgin et al. in [24] carried out an empirical analysis of the performance of
hyper-heuristics with differing combinations of low-level heuristic selection and
move acceptance strategies over examination timetabling problem benchmark
instances. The heuristic selection strategies consist of seven methods; simple
random, random descent, random permutation, random permutation descent,
choice function, tabu search, and greedy search. The move acceptance strategies
comprise five methods; all moves accepted (AM), only improving moves accepted
(OI), improving and equal moves accepted (IE), great deluge and Monte Carlo
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strategy. This combination of low-level heuristics selection and move accep-
tance strategies result in 35 different possible hyper-heuristics. To evaluate the
performance of hyper-heuristics, the study was carried out over 14 well-known
benchmark functions as well as 21 examination timetabling problem instances
from the Carter benchmark dataset [1] and Yeditepe benchmark dataset [15].
The experimental results showed that the combination of choice function as a
low-level heuristic selection strategy and monte carlo [34] as move acceptance
strategy is superior to the other combinations.

Graph-based hyper-heuristics incorporating tabu search (TS) evaluated over
the Carter dataset reported good results in [25]. Further, in [35] the graph-
based hyper-heuristics incorporated with steepest descent method (SDM), it-
erated local search (ILS), and variable neighbourhood search (VNS) were also
implemented with the Carter dataset. The computational results showed that
iterative technique e.g. VNS and ILS were more effective than TS and SDM.

In addition, hyper-heuristics with late acceptance strategy were studied in
[26]. Within this strategy, in order to decide whether to accept a new candidate
solution, it is compared with solutions from earlier iterations rather than with
the current best solution. The proposed approach was tested over the Carter
dataset. The experimental study showed that the late acceptance strategy is
best suited with simple random low-level heuristic selections. This combination
outperforms the combination of late acceptance strategy with reinforcement
learning or statistical based heuristic selection.

An evolutionary algorithm based hyper-heuristic for examination timetabling
problem with the Carter dataset was studied in [27]. The study examined
three different proposed representations of low-level heuristics combinations;
fixed length heuristic combination (FHC), variable length heuristic combina-
tion (VHC), and N-times heuristic combination (NHC). The experimental re-
sults showed that NHC and VHC perform much better than FHC. The results
also showed that the combination of the three representations yields better per-
formance than FHC, VHC, and NHC alone.

Burke et al. [28] compared the performance of different Monte Carlo based
hyper-heuristics over the Carter dataset. Four low-level heuristic selection meth-
ods were evaluated; simple random, greedy, choice function and learning scheme,
and three Monte Carlo based move acceptance methods; standard simulated
annealing, simulated annealing with reheating, and exponential Monte Carlo.
The results indicated the success of a hyper-heuristic combining a reinforcement
learning based method, namely choice function and simulated annealing with
reheating.

Tournament-based hyper-heuristics for examination timetabling problems
were investigated in [17]. The study evaluated tournament based random se-
lection of low-level heuristics coupled with four move acceptance criteria; ‘im-
proving or equal’, simulated annealing, great deluge, and an adapted version of
the late acceptance strategy. The proposed hyper-heuristics were tested over
three benchmark datasets, namely Carter, ITC 2007, and KAHO datasets. The
KAHO dataset is a new examination timetabling problem benchmark, unique to
prior problem instances, in that there are two types of examinations, i.e. written
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and oral examinations. Tested over the Carter dataset, the experimental results
showed that the proposed approach could improve the best known solutions in
the literature, i.e. 7 out 13 problem instances. However, over the ITC dataset,
it failed to improve on the results of best known approaches in the literature,
but nonetheless could still produce competitive results.

In [30], in order to assign exams to time slots and rooms, bin packing heuris-
tics were hybridised under a random iterative hyper-heuristic. The experiments
over the ITC 2007 dataset showed that combining the heuristics, which perform
well when they are utilised individually, could produce the best solution. The
proposed approach was reported to produce solutions competitive with the best
known approaches reported in the literature.

Abdul-Rahman et al. in [31] introduced an adaptive decomposition and
heuristic ordering approach. In the process of assignment, the examinations are
divided into two subsets, namely difficult and easy examinations. Moreover, in
order to determine which examination should be assigned to a timeslot first,
the examinations are ordered based on differing strategies of graph colouring
heuristics. Initially, all examinations form the set of easy examinations. Then,
during the process of assignment, if an examination could not be assigned to
any feasible timeslot, it is moved to the subset of hard examinations. This
process is repeated until all examinations are assigned to feasible timeslots. The
experimental study on the Carter dataset showed that the proposed approach
is competitive with other approaches.

In [32] a constructive approach, termed linear combination of heuristics and
based on squeaky wheel optimisation [36] was proposed. During the assignment
process, each examination is associated with a difficulty score based on a graph
colouring heuristic and a heuristic modifier which changes dynamically in time.
The examinations are ordered by their associated difficulty score. The exami-
nation with the highest difficulty score will be assigned resources (i.e. timeslot
and room) before other lower scoring (less difficult) examinations. Initially, the
difficulty score of an examination is set to be equal to its order by the chosen
graph-colouring heuristic, then its difficulty score is increased using the heuris-
tics modifier function whenever a feasible resource assignment is not possible.
The cyclic process stops whenever a feasible solution is obtained. In order to
get a high quality feasible solution, a resource is allocated from those incurring
the least penalty. Testing over the Carter and ITC 2007 datasets showed that
in addition to its simplicity and practicality, the proposed approach delivers a
comparable performance to the previously reported approaches.

In [33], a hyper-heuristic with a heuristic selection mechanism using a dy-
namic multi-armed-bandit extreme value-based reward scheme was proposed.
The move acceptance criteria are generated automatically using the proposed
gene expression programming framework. The proposed approach was tested on
two different problem domains, namely the ITC 2007 examination timetabling
problem and dynamic vehicle routing. The experimental results showed that
the proposed approach outperforms the ITC 2007 winner as well as post-ITC
2007 methods on 4 out of 8 problem instances.
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2.3. Fairness in Timetabling

The concept of fairness (also ‘balance’ or ‘evenness’) has been extensively
investigated in the field of political science and political economics. Some com-
mon sense definitions of fairness in these fields are discussed in [37] and [38].
In [37], fairness is defined as an allocation where no person in the economy
prefers anyone else’s consumption bundle over his own, whilst [38] defines fair-
ness as a fair allocation that is free of envy. The fairness issues have been
well studied in the field of computer networks in areas such as fair resource
distribution among entities [39–43] and fair congestion control [44, 45]. In the
field of operation research, fairness issues have been investigated for particular
problems, for example, in flight landing scheduling (see [46] and [47]).

However, there is a limited number of prior studies explicitly dealing with
fairness issues in timetabling. Aiman et al. [48] discussed the results from a
survey conducted among nurses in Malaysian public hospitals, emphasizing the
importance of fairness in rosters to the nurses in terms of workload balance
and respecting their preferences. Smet et al. [49] proposed the use of a fairness
model within objective functions to produce fair nurse rosters and tested a
hyper-heuristic approach [50] for solving a nurse rostering problem for Belgian
hospitals. The results indicated that fairness can be achieved at the expense
of a slightly higher overall objective value measured with respect to the generic
objective function.

Martin et al. [51] tested a range of fairness models embedded into ob-
jective functions under a cooperative search framework combining different
(hyper/meta-)heuristics for fair nurse rostering using the Belgian hospital bench-
mark [50]. From the results, it was shown that each cooperating metaheuristic
using a different fairness model yields the fairest rosters under the proposed
distributed framework.

Castro and Manzano [52] proposed a formulation of the balanced academic
curriculum problem which requires assignment of courses (modules) to periods
for teaching while respecting the prerequisite structure among the courses and
balancing the student’s load - which can be considered as a fairness issue. This
formulation is later extended by Gaspero and Schaerf [53] and Chiarandini et
al. [54].

The most relevant work was presented on fairness in course timetabling
by [7, 55]. The authors proposed a simulated annealing algorithm variant using
single and bi-objective course timetabling formulations based on max-min fair-
ness [56] and Jain’s fairness index [57] respectively. The experimental results on
a set of curriculum-based course timetabling instances, including the ITC2007
benchmark [58], showed that fairer solutions can be produced in exchange for a
relatively small increase in the overall number of soft constraint violations.

To the best of our knowledge this study, combined with our earlier initial
studies and brief reports [5, 6], is the first extensive study of fairness in exami-
nation timetabling.
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3. Students Perspective on Fairness: A Survey

Some surveys focussing on preferences within examination timetabling have
previously been conducted, the first of particular interest involving University
registrars [9]. A later survey [59] was directed at students and invigilators; as
might be expected, it was found that “students felt that the most important
consideration while preparing the timetable is to have a uniform distribution of
exams over the examination period”. However, as indicated earlier, under the
current construction methods, a percentage of students will almost certainly
have poorer distributions than others. The previous surveys had not covered
all aspects of student preferences on how such potential unfairness should be
managed. Hence, we conducted a survey to give a deeper understanding of their
preferences on the fairness and nature of the distribution of exams.

In the survey reported on here, in addition to general questions regarding
students personal experience, the questionnaire consisted of two main parts.
The first part was concerned with students perspective on the fairness issue in
relation to the general examination process, while the second part was concerned
with students detailed personal preferences on their own exam timetable.

In the first part, students were surveyed on their opinion regarding fairness
in general as well as how they understood and defined fairness in relation to
their examination timetable. The survey included questions on whether fairness
should only be enforced among the entire student body within the university
or also among students within the same course. (In this paper, we use the
terminology that a ‘course’ is a set of different ‘modules’, spread over many
terms or semesters, and forming a degree - also called a ‘programme’).

In the second part of the survey, the students were asked about their detailed
preferences on how their examinations are timetabled. These included prefer-
ences regarding the time of the examinations and the gap between them. More-
over, the questionnaire also asked students to consider the “difficulty” (with
regard to amount of preparation/revision required) of their exams. To the best
of our knowledge, the difficulty of an exam was neglected in the state-of-the-art
examination timetabling formulations. In the prior problem formulations, all
exams were assumed to have the same level of difficulty. Also included was an
investigation into how students would penalise the gap between two of their
exams, in comparison with the equivalent Carter problem formulation. In this,
the gap between two exams are penalised 25−gap when the gap is 1-5 timeslots
(see Equation 1). Overall, the survey aimed at getting some insight into student
preferences in order to construct a more representative examination timetabling
problem model for real-world cases.

3.1. Survey Results

The feedback data had been collected from 50 undergraduate and taught
postgraduate students at The University of Nottingham in April 2014 regarding
their autumn term 2013/2014 examinations. From the questionnaire feedback,
the most significant findings are as follows.

10



From the general response, it was found that the average number of examina-
tions students had during the examination session was four examinations within
10 days. With respect to their examination timetables, it was found that only
40% of the students were happy or very happy and 14% of them were unhappy.
Even, 28% of respondents believed that their examination timetable negatively
affected their academic achievement. The common reasons that made them un-
happy were; examinations timings that are too close to each other (less than 24
hours gap between exams) especially if one or both of the exams are difficult;
locations that are different from the base campus; and having an exam in the
last day of the examination period.

In response to the fairness issue, our survey revealed that 10% of students
think that the examination timetable is unfair amongst students, 60% of stu-
dents think it is fair, with the rest neutral. However, as expected, almost all
students agreed that the examination timetable should in principle be fair. Re-
garding the scope of fairness, as summarised in Table 1, it is shown that 36%
of respondents strongly agreed and 46% agreed that examination timetables
should be fair amongst students taking the same exams. Furthermore, when
the respondents were asked to detail their perception with respect to the scope
of fairness, 42% strongly agreed and 42% agreed that examination timetables
should be fair amongst students enrolled on the same course. Interestingly, the
statistic changed with 24% strongly agreed and 42% agreed, if they were asked
whether the examination timetable should be fair amongst the entire student
body of the university (though enrolled on different courses). This finding in-
dicates that fairness within a course is more crucial than fairness amongst the
entire student body of the university. This is considered as a natural response
as students on the same course are colleagues but are also competing against
each other. Dissatisfaction may therefore arise when a student knows that a
fellow student has much more time for revision before an important or difficult
exam.

Table 1: Students response regarding fairness: whether fairness should be enforced in different
scenarios (% of students). Note: DS=Disagree Strongly, D=Disagree, N=Neutral, A=Agree,
AS=Agree Strongly.

Fairness among students:
Students Response (%)

Disagree Strongly DS D N A AS
Taking the same exam 2 2 14 46 36
Taking the same course 2 4 10 42 42
Overall, though different course 2 8 24 42 24

Note that the notion of ‘within a course’ may be extended to ‘within a
cohort’ with various different choices for cohorts. For example, a ‘cohort’ could
refer to ‘year of study’, and justified on the grounds that fairness between final
year students is more important than for first years (as the exams typically
contribute more to the final degree).

Further findings in our survey relate to what students think about the qual-
ity of timetables, in which students personal preference over their examination
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timetable are investigated. We found some factors that affected students pref-
erences. Overall, it is not surprising that almost 3 in 4 students (74%) preferred
to have exams that are spread out evenly throughout the examination period as
opposed to only 12% who preferred exams to be ‘bunched’ together within the
period. When students were asked to make a trade-off between the total exami-
nation period length and the gap between exams, in which a shorter total exam
period would mean a reduced gap between exams, 40% preferred a longer total
examination period while 12% preferred the opposite with the rest preferring
no change. Furthermore, 82% were not willing to accept more than one exam
in a day even if this was the same (fair) for all students. It confirms that it is
seen as critical for students to have sufficient gaps between their exams and as
more important than overall fairness.

In relation to exams and the allocation of timeslots, assuming that there are
three timeslots a day, the afternoon (middle) session was the most preferred,
while morning and evening session ranked second and third respectively. In
addition, some students (31%) preferred to have no exam on particular days of
the week. The least preferred days were Saturday or Sunday, Friday, Monday,
and any day after a student has attended an exam. More than half (54%)
preferred to have no exam on the weekend.

In the current state-of-the-art exam timetabling problem formulation, the
exams are assumed as having equal difficulty levels. In contrast, our findings
showed that 53% of the students strongly agreed and 37% of them agreed that
some examinations are more difficult than the others. Thus, these exams should
be scheduled with longer gaps for students to allow for preparation. Further-
more, 50% of students preferred difficult exams to be scheduled earlier while
only 20% preferred the opposite.

In order to determine what students consider the ideal length for gaps be-
tween exams, the students were asked to provide a penalty value (0-9) accord-
ing to a set of possible exam schedule options, as follows. Given two exams,
three days exam period with three timeslots per day (morning, afternoon, and
evening), if the first exam was scheduled in the first timeslot i.e. morning of the
first day, students were asked to indicate a penalty expressing their unwilling-
ness if the second exam was scheduled in the second timeslot of the first day,
the third timeslot of the first day, and so forth until the third timeslot of the
third day.

For each schedule option, the two exams are set up in three different scenar-
ios. In the first scenario both exams are assumed to have the same difficulty
level, while in the second scenario the first exam is assumed as an easy exam
and the second exam difficult. Contrasting with the second scenario, in the
third scenario the first exam is assumed as the difficult exam and the second
easy. The average penalty given by the respondents over these three scenarios
is summarised by Figure 1.

The x-axis in Figure 1 indicates each option for the scheduling of the second
exam, given that the first exam is scheduled in the first timeslot of the first day,
while the y-axis indicates the penalty. In x-axis, D1.T2 represents the first day,
second timeslot, D2.T1 represents the second day, first timeslot and so on. The
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Figure 1: Penalty Given By Students. Given two exams with different level of difficulty: easy
(E) and hard (H); and three scenarios

score 0 in y-axis means that students have no problem with the timetable while
9 means students really don’t expect that timetable.

From Figure 1 we know that no student expects to have two exams in the
same day. We also observe that between the easy and difficult exams, the
students expect more gaps than with the reverse. This is understandable given
that students need more time for preparation for a more difficult exam.

An additional challenge with accounting for this is the need to determine per-
ceptions of the difficulty of examinations. This measure may be determined by
obtaining the students opinion after taking the examinations, or asking samples
of students in advance to nominate which examinations needed more prepara-
tion time.

4. Towards an Extended Formulation of Examination Timetabling
with Fairness

A commonly used fairness measure is the ‘Jain’s Fairness Index’ (JFI) [57].
Suppose a set A of students, has associated penalties P (A) = {pi}, with mean
value, P̄ , and variance σ2

P . Then a reasonable measure of the width, and
so fairness, is the standard ‘Relative Standard Deviation’ (RSD) defined by
RSD2 = σ2

P /P̄
2. The JFI over all students in A, which throughout this paper

is referred to as JFI(A), is then a convenient non-linear function of the RSD:

JFI(A) =
(
1 +RSD2

)−1
=

(∑
i∈A pi

)2
|A|
∑
i∈A p

2
i

(5)
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and it is (arguably) ‘intuitive’ as it lies in the range (0, 1] assuming that there
is at least one non-zero pi and a totally fair solution (all penalties equal) has
JFI=1. A solution with no penalties is treated separately and assumed to have
JFI=1 as well.

Moreover, for a course/cohort, Ck, the ‘fairness within a course/cohort’,
which throughout this paper is referred JFI(Ck), can be defined by simply
limiting to the penalties for the students within Ck rather than all students
in the university. A candidate objective function to enhance fairness within
cohorts is then simply the sum or average of JFI values per cohort:

(maximise)
∑
k

JFI(Ck) (6)

As an illustration, consider the case of two cohorts with two (groups of)
students each, and with P1 and P2 as the set of penalties for cohorts 1 and 2
respectively. Suppose there are two candidate solutions S1 and S2 with values:

Soln P1 P2 avg(P) JFI(A) J1 J2 JFI(C)

S1 {4,4} {2,2} 3 0.9 1.0 1.0 1.0
S2 {4,2} {4,2} 3 0.9 0.9 0.9 0.9

where JFI(A) is the JFI over all the students, J1 and J2 are the JFI values
for cohort 1 and cohort 2 respectively, and JFI(C) is the average JFI within
a cohort. The two solutions have the same overall average penalty, avg(P ),
and overall fairness, JFI(A). However, we believe that students would prefer
solution S1 as it is fairer within each cohort, and this is captured by the higher
value of JFI(C). Of course, the situation will not always be so simple. Consider
a second example but with three students per cohort, and three solutions as
follows:

Soln P1 P2 avg(P) JFI(A) J1 J2 JFI(C)
S1 {8,8,9} {2,2,2} 5.2 0.725 0.997 1.0 0.998
S2 {8,8,2} {8,2,2} 5.0 0.735 0.818 0.667 0.742
S3 {7,7,9} {4,3,3} 5.5 0.852 0.985 0.980 0.983

S2 is the lowest overall penalty and would be the standard choice, but is not the
fairest both overall and within the cohorts. Potentially, S1 might be preferred
because it is the most fair within the cohorts, or alternatively S3 as it is most
fair between all the students. This suggests there should be a trade-off between
overall total penalty, overall fairness, and fairness within cohorts. Note that
alternatives to the objective function in (7) should also be considered; e.g. for
some suitable value of p, to simply minimise the sum of p’th powers of RSDs:

(minimise)
∑
k

RSDp(Ck) (7)

or maybe even use an extended version of the JFI with JFIp = (1 +RSDp)
−1

.
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Lastly, for the ‘hardness’, of exams, we propose to simply give a difficulty
index for each exam and use this in modified definitions of penalties, e.g. having
an exam scheduled the day before a difficult exam is penalised harder than if
it were scheduled before an easy exam. The difficulty index is formulated in
Equation 11, 12, and 13.

Adapted from [10], suppose E is a set of exams, S is a set of students and
P is total number of periods. We use three binary variables ypq, tis and XP

ip

defined by:

ypq =

{
1 iff periods p and q are on the same day

0 otherwise
(8)

tis =

{
1 iff student s is enrolled in exam i

0 otherwise
(9)

XP
ip =

{
1 iff exam i is scheduled in period p

0 otherwise
(10)

Given extra data in the from of difficulty indices di for each exam i with
values ranging between 1 and 3 expressing exam difficulty (e.g. 1 = easy, 2 =
medium, 3 = hard), the modified ‘two exams in a row’, ‘two exams in a day’,
and ‘period spread’ penalties are defined here.

Two Exams in a Row Penalty

Provided that student s enrolled in both exams i and j (two distinct exams),
and exam j is scheduled on the same day and immediately after exam i, two
exams in a row (CTRs ) penalty is defined as follows:

CTRs =
∑
i,j∈E
i6=j

∑
p,q∈P

q=p+1 & ypq=1

WTR(di, dj)tistjsX
P
ipX

P
jq (11)

where WTR(di, dj) is a matrix of penalty values. Note that it is not neces-
sarily symmetric, e.g. to allow different preferences for ‘easy then difficult’ and
‘difficult then easy’ in the exam sequence.

Two Exams in a Day Penalty

Similar conditions to that of two exams in a row (CTRs ) penalty apart from
the fact that exam j and i are not scheduled in two consecutive periods. CTDs
is defined as:

CTDs =
∑
i,j∈E
i 6=j

∑
p,q∈P

q>p+1 & ypq=1

WTD(di, dj)tistjsX
P
ipX

P
jq (12)
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Period Spread Penalty

Given that student s enrolled in both exams i and j (two distinct exams)
and g is the period gap between i and j, CPSs is defined as:

CPSs =
∑
i,j∈E
i 6=j

∑
p,q∈P

p<q≤p+g

WPS(di, dj)tistjsX
P
ipX

P
jq (13)

with associated matrices WTD(di, dj) and WPS(di, dj) of penalty parame-
ters.

Unfortunately, since we don’t have data on examination difficulty, we have
not directly studied this particular extension to the examination timetabling
formulation. However, we expect that it would be straightforward to extend
standard algorithms to cope with these ‘examination difficulty’ aspects. There-
fore we would encourage the collection of such data whenever possible, e.g. by
providing students a form with which to weight the difficulty of each exam.

5. A Multi-phase Approach for Fairer Examination Timetables

Our main intent in this paper is to study the potential for a trade-off between
the standard objectives and those dealing with fairness. Hence, we need to be
able to find good solutions, not giving up too much on the standard objectives,
but also incorporating fairness. Accordingly, the proposed approach used here
for solving the examination timetabling problems with fairness consists of three
consecutive phases. Phase 1 aims at producing an initial feasible solution, i.e
satisfying all hard constraints, while phase 2 aims at improving the quality of
the initial solution in terms of standard objective function. Finally, phase 3
attempts to make the solutions fairer, whilst staying in a ‘reasonable region’ of
the Pareto Front.

In phase 1, initial feasible solutions are constructed using an adaptive heuris-
tic ordering approach. We adapted squeaky wheel optimisation [36] involving
heuristic ordering as proposed in [32, 60]. In phase 2 and phase 3, a selection
hyper-heuristic is employed, embedding reinforcement learning and great deluge
algorithm as heuristic selection and move acceptance components respectively.
This method is adapted from [61] with some modifications. We employed 14
low-level heuristics commonly used in the literature for examination timetabling
problems as provided in Table 2. The low-level heuristics in Table 2 are quite
obvious except for the Kempe-chain move [62], which involves moves within two
full sets of exams and in a way that guarantees conflict freedom.
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5.1. Phase 2: Creating initial good solutions with standard penalty

Table 2: Perturbation Low-Level Heuristics (LLHs) for Exam Timetabling Problems

LLH Description

LLH1 Select one exam at random and move to a new random feasible
timeslot and a new random feasible room.

LLH2 Select two exams at random and move each exam to a new random
feasible timeslot.

LLH3 Select three exams at random and move each exam to a new random
feasible timeslot.

LLH4 Select four exams at random and move each exam to a new random
feasible timeslot.

LLH5 Select two exams at random and swap the timeslots between these
two exams while maintaining the feasibility of the two exams.

LLH6 Select one exam at random and select another timeslot then apply
the Kempe-chain move.

LLH7 Select one highest penalty exam selected from a random 10% se-
lection of the exams and select another timeslot then apply the
Kempe-chain move.

LLH8 Select one highest penalty exam selected from a random 20% se-
lection of the exams and select another timeslot then apply the
Kempe-chain move.

LLH9 Select two timeslots at random and swap the exams between them.
LLH10 Select one timeslot at random and move the exams assigned to that

timeslot to a new feasible time-slot.
LLH11 Shuffle all time-slots at random.
LLH12 Select one exam at random and move it to a randomly selected

feasible room.
LLH13 Select two exams at random and swap their rooms (if feasible).
LLH14 Select one large exam at random and move to a new random earlier

feasible timeslot.

The selection hyper-heuristic method and problem domain components, in-
cluding all low level heuristics are implemented as a part of a hyper-heuristic
framework referred to as HyFlex [63, 64] which is designed for rapid develop-
ment and evaluation of hyper-heuristics. The ITC 2007 problem specification
is used as a basis to implement the components of the examination timetabling
problem domain. For example, the objective function is the standard objec-
tive function (disregarding fairness) as specified in Equation 2 for the ITC 2007
dataset and Equation 4 for the Carter dataset.

The reinforcement learning heuristic selection simply gives each low level
heuristic a reward or punishment. Initially, each low-level heuristic receives the
same score (e.g. 10, in this case). After the application of a chosen low level
heuristic, if the objective function value remains the same or has improved, the
score of the relevant heuristic is increased by 1 until an upper bound is reached
(e.g. 20, in this case). Similarly, if the solution has become worse, the score of
the relevant heuristic is decreased by 1 until the lower bound score (e.g. 0, in this
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case) is reached. In each iteration, a low-level heuristic with the highest score
is chosen. If there is a tie between low-level heuristic scores, then one of them
is selected randomly. See [61] for a study on how different parameter settings
(e.g. reward and mechanism procedure, lower and upper bound) influence the
overall performance of an algorithm.

The great deluge method is a threshold move acceptance method. This
method accepts a new solution obtained after the application of a chosen low-
level heuristic, if it is no worse than the current solution or given threshold level.
Initially, the threshold level is set to the objective function value of the initial
solution. Then, at each iteration, the threshold level is decreased gradually by
the decay rate. In our experiment, the decay rate is initially set to 0.001; a value
experimentally known to be reasonable. Generally, the decay rate could be set
as the difference between threshold level and the desired objective function value
divided by the number of iterations, as in [65]

A feasible solution is constructed during phase 1 which is then fed into phase
2. Although phase 2 and 3 use the same selection hyper-heuristic method,
they are structured to improve the quality of a solution in terms of different
objectives. Phase 2 uses the standard penalty as the objective while phase 3
considers both the standard penalty and fairness. The simplest approach within
phase 3 is by treating fairness i.e. JFI(A) as an objective function and adding
‘not worsening the standard penalty’ as a hard constraint. However, as shown
by our prior work [5, 6], it might be impossible in practice to improve fairness
without worsening the standard penalty; we need to capture the best trade-off
between standard penalty and fairness.
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Algorithm 1 Pseudo-code for Improving Initial Feasible Solution

1: procedure improveSol(Initial solution I, Time limit T, Set of low-level heuristic (llh)
H)

2: Initialise Pareto Solution set P ← ∅
3: //set current solution
4: C ← I
5: //set best solution
6: Cb ← I
7: //set boundary level
8: B ← getFunctionValue(C)
9: //set decay rate

10: α← 0.001
11: //set score for each low-level heuristic (llh) equal to 10
12: Set an array of integer,G ← new int[H.size]
13: for j=0,j=H.size do
14: G[j]← 10
15: end for
16: while not exceed T do
17: //get the index of low-level heuristic with highest score
18: l ← getBestLLH(H)
19: //apply l over C to generate new solution C∗

20: C∗ ← applyHeur(l,C)
21: v ← getFunctionValue(C)
22: v∗ ← getFunctionValue(C∗)
23: if v∗ ≤ v OR v∗ ≤ B then
24: //accept the new solution
25: C ← C∗

26: if v∗ < getFunctionValue(Cb) then
27: Cb ← C∗

28: end if
29: if G[l] < 20 then
30: G[l] ← G[l]+1
31: end if
32: else
33: if G[l] > 0 then
34: G[l] ← G[l]-1
35: end if
36: end if
37: B ← B-α
38: end while
39: //return the best solution
40: return Cb

41: end procedure

19



5.2. Phase 3: Enforcing Fairness

In our prior work [5, 6], a modified objective function was proposed in order
to enforce fairness within the obtained solutions. Instead of ‘linear summa-
tion’ of soft constraint violations associated with each student, ‘summation of
power’ was introduced. Experimental results on the Carter dataset showed that
the approach can produce fairer solutions with a small increase in the average
penalty.

The limitations of ’summation of power’ approach is that in each single
run, it only produces a single solution. In addition, it also requires signifi-
cantly (approximately 28 times) higher computational times compared to the
original linear summation objective function. Therefore, to cope with these lim-
itations, in this paper we study a different approach, namely, a multi-criteria /
multi-objective optimisation approach on a large set of examination timetabling
problem instances with various characteristics from three well-known bench-
marks. Within the proposed approach, the standard penalty is minimised,
while JFI(A) is maximised. As discussed in the previous section, the stan-
dard penalty is defined in equation 2 for the Carter dataset and equation 4 for
the ITC 2007 and Yeditepe datasets, while JFI(A) is defined in equation 5. For
simplicity of illustration, the second objective is also turned into a minimising
function and reformulated in Equation 14 as an unfairness measure, AJFI.

AJFI(A) = 1− JFI(A) (14)

Since we consider the problem as a multi-objective instead of single-objective
problem, the output of the algorithm in this phase is a set of approximation
Pareto optimal solutions instead of a single solution. The algorithm used to
generate approximation Pareto optimal solutions in this study is presented in
Algorithm 2 below. Basically, the algorithm is a hybridisation of reinforcement
learning and the great deluge algorithm. To cope with the multi-objective na-
ture of the problem, a classical scalarisation method, namely weighted Tcheby-
cheff [66] is employed as a new objective function. This function requires an
initial set up weight and reference point, which dictates the ideal objective func-
tion value to be achieved, for each objective function.

Suppose f1 and f2 are the two objectives with their respective weights i.e.
w1 and w2 (w1 + w2 = 1) and respective reference points i.e. r1 and r2. The
weighted Tchebycheff function is given in Equation 15. This equation could be
generalised to any number of objective functions.

minimise[max(|f1(x)− r1(x)|w1, |f2(x)− r2(x)|w2)] (15)

As shown by Algorithm 2, the algorithm consists of outer iterations (line
3) and inner iterations (line 23). In each outer iteration, the weight vector is
generated randomly while the current solution (line 9) is set to a random solution
from aggregate Pareto set(Pa). We have conducted preliminary experiments
comparing the setting of the current solution to the initial solution, best solution
found so far (in term of weighted Tchebycheff value), and a random solution

20



from the aggregate Pareto set. The experimental results showed that setting
the current solution to a random solution from the aggregate Pareto set results
in the best approximation Pareto optimal solutions.

Furthermore, the reference points in this algorithm are set to 80% of the
objective function values of the initial solution (see line 14-15). This value is
chosen from our preliminary experiments with 80% results in the best approxi-
mation of Pareto optimal solutions compared to 60%, 70%, and 90%.

For each inner iteration within a single outer iteration, each move (applying a
low-level heuristic) results in a new solution. In this stage, we have two alterna-
tives, i.e. adding any new solutions to the Pareto set (Pi) or only adding accepted
solutions, which are improving the current solution or better than boundary
level, to the Pareto set. Our preliminary experiment showed that adding any
new solutions to the Pareto set results in a better approximation Pareto optimal
solution set. After the last inner iteration, the Pareto set is sorted using the
Kung Pareto sorting algorithm [67]1 to generate a sorted Pareto optimal solu-
tion set (see line 44 in Algorithm 2), which is the set of non-dominated solutions.
The sorted Pareto solutions from a single outer iteration (P∗i are then added to
the aggregate Pareto optimal solution (Pa). Finally, the sorted aggregate Pareto
solutions (P∗a) form the final approximation Pareto optimal solutions.

By employing multiple outer iterations, this can produce more Pareto solu-
tions by aggregating the Pareto solution set. It is useful to note that a single
outer iteration of the algorithm in itself could produce a set of Pareto solutions
as opposed to a single solution.

Since each objective function has different value ranges, the aspect of normal-
isation is worth noting. Our preliminary experiment showed that normalising
the objective function values to 0-1, with the initial current solution and refer-
ence point as lower bound respectively, could improve the quality of approximate
Pareto optimal solutions.

6. Experiments and Discussion

6.1. Experimental Data and Settings

The experiments were conducted over three different real-world examination
timetabling benchmark problem datasets, namely Carter [1], ITC 2007 [58] and
Yeditepe [2, 15]. The properties of these datasets are summarised in Table 3.

In our experiment, the original format of the Carter and Yeditepe datasets
were converted into ITC 2007 format, so that the same solver could be applied
to all problem instances. Moreover, the data format was extended to provide
more information to support handling fairness, e.g. information about students

1Note, although decades old, this algorithm is still considered an efficient and widely used
Pareto sorting algorithm, i.e. O(NlogN) for k = 2 and k = 3 and complexity O(Nlogk2XN)
for k > 3, in which k is the number of objectives. In any case, this Pareto Sorting is only a
small component of our proposed algorithm, and so improved methods would not impact on
the results as the size of Pareto set is not very large.
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Algorithm 2 Pseudo-code for Generating Pareto ‘Optimal’ Solutions

1: procedure generateParetoOptSol(Number of iterations N, Initial solution I, Time limit
per iteration T, Set of low-level heuristics (llh) H)

2: Initialise aggregate Pareto solution set, Pa ←I
3: for i← 1, N do
4: Initialise Pareto Solution set Pi ← I
5: //Generate weight with real random number [0-1]
6: w1 ← genRandNum(0,1)
7: w2 ← 1-w1
8: //set current solution
9: C ← I

10: //set the reference points for the first and second objective function
11: //f1 and f2 are the first and second objective function values
12: r1 ←0.8 f1(C)
13: r2 ←0.8 f2(C)
14: //set boundary level
15: B ← getTchebycheffSum(f1(C),f2(C),r1,r2,w1,w2)
16: //set decay rate
17: α← 0.001
18: //set score for each low-level heuristic (llh) equal to 10
19: Set an array of integer,G ← new int[H.size]
20: for j=0,j=H.size do
21: G[j]← 10
22: end for
23: while not exceed T do
24: //get the index of low-level heuristic (LLH) with highest score
25: l ← getBestLLH(H)
26: //apply LLH with index l over C to generate new solution C∗

27: C∗ ← applyHeur(l,C)
28: v ← getTchebycheffSum(f1(C),f2(C),r1,r2,w1,w2)
29: v∗ ← getTchebycheffSum(f1(C

∗),f2(C
∗),r1,r2,w1,w2)

30: if v∗ ≤ v OR v∗ ≤ B then
31: //accept the new solution
32: C ← C∗

33: if G[l] < 20 then
34: G[l] ← G[l]+1
35: end if
36: Pi ← Pi∪ C∗

37: else
38: if G[l] > 0 then
39: G[l] ← G[l]-1
40: end if
41: end if
42: B ← B-α
43: end while
44: P∗i ← paretoSort(Pi)
45: Pa ← Pa∪ P∗i
46: end for
47: P∗a ←paretoSort(Pa)
48: //return Pareto Solution
49: return P∗

a
50: end procedure
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Table 3: The characteristics of problem instances from Carter, ITC 2007 and Yeditepe bench-
mark datasets

No. of No. of No. of Conflict Tot. Room No. of
Instance Exams Students Enrolments Density Days Capacity Cohorts

C
ar

te
r

CAR91 682 16925 56877 0.13 35 682 3
CAR92 543 18419 55522 0.14 32 543 3
EAR83 190 1125 8109 0.27 24 190 3
HEC92 81 2823 10632 0.42 18 81 3
KFU93 461 5349 25113 0.06 20 461 3
LSE91 381 2726 10918 0.06 18 381 3
PUR93 2419 30029 120681 0.03 42 2419 3
RYE92 486 11483 45051 0.07 23 486 3
STA83 139 611 5751 0.14 13 139 3
TRE92 261 4360 14901 0.18 23 261 3
UTA92 622 21266 58979 0.13 35 622 3
UTE92 184 2749 11793 0.08 10 184 3
YOR83 181 941 6034 0.29 21 181 3

IT
C

20
07

EXAM1 607 7891 32380 0.05 54 802 3
EXAM2 870 12743 37379 0.01 40 4076 3
EXAM3 934 16439 61150 0.03 36 5212 3
EXAM4 273 5045 21740 0.15 21 1200 3
EXAM5 1018 9253 34196 0.01 42 2395 3
EXAM6 242 7909 18466 0.06 16 2050 3
EXAM7 1096 14676 45493 0.02 80 2530 3
EXAM8 598 7718 31374 0.05 80 922 3
EXAM9 169 655 2532 0.08 25 170 3
EXAM10 214 1577 7853 0.05 32 1914 3
EXAM11 934 16439 61150 0.03 26 4924 3
EXAM12 78 1653 3685 0.18 12 1525 3

Y
ed

it
ep

e

yue20011 126 559 3486 0.18 6 450 4
yue20012 141 591 3708 0.18 6 450 4
yue20013 26 234 447 0.25 2 150 4
yue20021 162 826 5755 0.18 7 550 5
yue20022 182 869 5687 0.17 7 550 6
yue20023 38 420 790 0.2 2 150 6
yue20031 174 1125 6714 0.15 6 550 6
yue20032 210 1185 6833 0.14 6 550 6

course and year. All problem instances used in this study can be downloaded
from [68].

Regarding the algorithm parameter setting, only the decay rate α is required
to be set up. The decay rate is set to 0.9999995 as suggested in [69]. The
proposed approach was implemented in Java operating under Windows 7. All
experiments were run on an Intel(R) Core(TM)i7-3820 computer with a 3.60
GHz CPU and 16.0 GB of RAM.
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6.2. Experimental Results - single standard objective

Overall, the aims of the experiments in this study are two-fold; to examine
the proposed approach (see Algorithm 1) over the standard benchmark single ob-
jective examination timetabling problem and evaluate the proposed approaches
in enforcing fairness to determine whether fairer viable solutions exist.

From the experiments over the standard benchmark examination timetabling
problems, very competitive results were obtained. The comparison between our
results and recently reported results from the scientific literature is given in
Table 4. As shown by Table 4 our proposed hyper-heuristic outperforms the
other approaches for 8 out of 13 problem instances of the Carter dataset, 3
out of 12 problem instances of the ITC 2007 dataset, and 7 out of 8 problem
instances of the Yeditepe dataset. The results also indicate that our proposed
hyper-heuristic is generic, since it performs generally well over three different
problem instances. In comparison, though Muller’s approach[70] performs well
in ITC 2007 problem instances, it underperforms when applied to the Yeditepe
dataset.
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Table 4: The experimental result of Algorithm 1 over three different standard benchmark
examination timetabling problem datasets with their original single objective function (21
timed runs of 360 seconds each) compared with the best result reported in prior recent studies
(NA: Not Applicable)

Instance
Our Result Prior Reported Results (Best)

MEDIAN BEST (Burke,2012) (Sabar,2012) (Rahman,2014) (Burke,2014)
[29] [71] [32] [72]

CAR91 5.41 5.30 5.03 5.14 5.12 5.19
CAR92 4.62 4.51 4.22 4.7 4.41 4.31
EAR83 38.23 36.73 36.06 37.86 36.91 35.79
HEC92 11.35 10.91 11.71 11.9 11.31 11.19
KFU93 15.12 14.36 16.02 15.3 14.75 14.51
LSE91 12.09 11.02 11.15 12.33 11.41 10.92
PUR93 5.22 5.03 NA 5.37 5.87 NA
RYE92 9.58 9.01 9.42 10.71 9.61 NA
STA83 157.32 157.12 158.86 160.12 157.52 157.18
TRE92 9.13 8.75 8.37 8.32 8.76 8.49
UTA92 3.72 3.60 3.37 3.88 3.54 3.44
UTE92 26.4 25.20 27.99 32.67 26.25 26.7
YOR83 39.56 38.03 39.53 40.53 39.67 39.47

(Muller,2007) (Sabar,2012) (Rahman,2014) (Burke,2014)
[70] [71] [32] [72]

EXAM1 7176 6856 4370 6234 5231 6235
EXAM2 724 632 400 395 433 2974
EXAM3 12429 11659 10049 13002 9265 15832
EXAM4 18991 16325 18141 17940 17,787 35106
EXAM5 4050 3837 2988 3900 3083 4873
EXAM6 28250 27370 26585 27000 26,060 31756
EXAM7 5848 5528 4213 6214 10,712 11562
EXAM8 10178 9798 7742 8552 12,713 20994
EXAM9 1320 1246 1030 NA 1111 NA
EXAM10 15239 14556 16682 NA 14,825 NA
EXAM11 40109 36810 34129 NA 28,891 NA
EXAM12 5581 5300 5535 NA 6181 NA

(Muller,2007) (Sabar,2012) (Rahman,2014) (Burke,2014)
[70] [71] [32] [72]

yue20011 68 56 62 NA NA NA
yue20012 161 122 125 NA NA NA
yue20013 29 29 29 NA NA NA
yue20021 111 76 70 NA NA NA
yue20022 212 162 170 NA NA NA
yue20023 61 56 70 NA NA NA
yue20031 206 143 223 NA NA NA
yue20032 479 434 440 NA NA NA
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6.3. Experimental Results - standard objective and fairness
With the aim of improving fairness, in addition to standard single objective

function, we tested two different methods. First, the single objective approach
(see Algorithm 1) as discussed in Section 5, in which we simply change the
objective function to maximise fairness, i.e. maximise JFI(A) (see Equation 5),
and so minimise unfairness AJFI(A), replacing the standard objective function.
We add ‘not worsening the standard objective function’ as a hard constraint.
The second method involves the scalarisation approach as shown in Algorithm 2.
In this experiment, instead of generating an initial solution from scratch, the
best solutions from Table 4) were used as initial solutions.

Our experimental results of the first approach showed that the fairness of
solutions had minimal improvement. Only 7 out of 33 instances became very
slightly (less than 0.5%)fairer without making the standard objective function
worse. This indicates that in the majority of instances, there is trade-off between
the standard penalty and the fairness objective function, in that improving one
objective can degrade the other.

For the second approach, we ran Algorithm 2 21 times, taking less than 1
minute per run (set N=21 and T2=60000). We tested over both the bi-objective
and the three-objective problems. The experimental results are presented in
Table 5.

The value range (represented as min-max values) of the two objectives of
the final Pareto set of solutions obtained during the experiments is provided
in Table 5. We observe that the solutions for all instances achieved increased
fairness while only slightly compromising the standard penalty.

To illustrate the trade-off between the two objectives, i.e. standard penalty
and unfairness as defined in Equation 14, one instance was chosen from each of
the benchmark datasets. These were HEC-92, STA83, EXAM4, and yue20011,
a sample of those for which our proposed algorithm achieved better results than
reported in the literature (see Table 4). As with previous experimentation, the
solver was run 21 times for each dataset, but allowed 360 seconds instead of the
previously allotted 60 seconds running-time. Figure 2 illustrates the solutions
in the Pareto set achieved by the proposed approach for the instances HEC92,
STA83, EXAM4, and yue20011.

As shown in Figure 2, in terms of the first objective function, i.e. the stan-
dard penalty, the values for the problem instances HEC92, STA83, EXAM4,
YUE20011 range between 10.91-16.84, 157.12-172.83, 16324-37761, and 54-1055,
respectively. Similarly, in terms of the second objective function, i.e. unfairness
that is measured by AJFI(A), the values range between 0.37-0.51, 0.05-0.10,
0.37-0.71, and 0.03-0.92.

At the extreme point of the Pareto set of solutions, for the STA83 problem
instance, we can improve the cohort fairness by about 5% (from 0.10 to 0.05)
with the effect of worsening the standard penalty by about 10% (from 157.12 to
172.83). On average, improving fairness by 1.35% resulted with a worsening of
1.93% of the standard penalty. The final policy decision on the trade-off between
the two objectives is up to the decision maker. For instance, the decision maker
may cap any degradation of the standard penalty to a maximum of 3%.
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Table 5: The objective function values range (i.e. the values range between min and max) of
the final Pareto set of solutions with two- and three-objective functions: standard objective
function, i.e. std.penalty, overall unfairness, i.e. AJFI(A), and unfairness within a cohort, i.e,
AJFI(C) using the proposed hyper-heuristic approach

Two Objectives Three Objectives
Std.P AJFI(A) Std.P AJFI(A) AJFI(C)

Instance min max min max min max min max min max
CAR91 5.30 6.56 0.63 0.68 5.30 8.45 0.61 0.68 0.61 0.68
CAR92 4.51 5.70 0.68 0.71 4.51 7.84 0.64 0.71 0.64 0.71
EAR83 36.73 50.33 0.14 0.17 36.71 50.29 0.14 0.17 0.13 0.17
HEC92 10.91 16.84 0.37 0.51 10.91 22.17 0.35 0.51 0.35 0.51
KFU93 14.36 22.31 0.28 0.45 14.36 22.33 0.28 0.45 0.27 0.45
LSE91 11.01 16.28 0.36 0.49 11.02 16.28 0.36 0.49 0.35 0.49
PUR93 5.03 6.00 0.64 0.67 5.03 7.44 0.62 0.67 0.62 0.67
RYE92 9.01 15.35 0.53 0.63 9.01 9.01 0.53 0.53 0.53 0.53
STA83 157.12 172.81 0.05 0.10 157.12 196.61 0.03 0.10 0.01 0.10
TRE92 8.74 10.27 0.53 0.56 8.75 14.38 0.49 0.56 0.49 0.56
UTA92 3.60 5.53 0.72 0.77 3.60 6.38 0.70 0.77 0.70 0.77
UTE92 25.20 43.27 0.17 0.21 25.20 43.26 0.17 0.21 0.16 0.21
YOR83 38.03 44.37 0.22 0.25 38.03 44.38 0.22 0.25 0.22 0.25
EXAM1 6855 8312 0.54 0.60 6855 20662 0.52 0.60 0.51 0.60
EXAM2 632 932 0.85 0.92 632 932 0.85 0.98 0.36 0.98
EXAM3 11653 34021 0.84 0.91 11653 59930 0.78 0.91 0.78 0.91
EXAM4 16325 37264 0.37 0.71 16325 59406 0.31 0.71 0.29 0.71
EXAM5 3837 5434 0.50 0.64 3837 37430 0.03 0.64 0.03 0.64
EXAM6 27370 38550 0.74 0.76 27370 63055 0.69 0.76 0.68 0.76
EXAM7 5528 9828 0.55 0.79 5528 12122 0.44 0.79 0.43 0.79
EXAM8 9787 10216 0.56 0.58 9794 13005 0.48 0.58 0.46 0.58
EXAM9 1225 1723 0.48 0.64 1245 1763 0.47 0.63 0.46 0.63
EXAM10 14556 15941 0.59 0.63 14556 72129 0.50 0.63 0.49 0.63
EXAM11 36809 55821 0.81 0.89 36810 167640 0.77 0.89 0.77 0.89
EXAM12 5286 12076 0.80 0.88 5288 12038 0.80 0.88 0.80 0.88
yue20011 54 1054 0.03 0.92 54 1054 0.03 0.92 0.03 0.92
yue20012 118 1118 0.07 0.86 119 85824 0.00 0.86 0.00 0.86
yue20013 29 95 0.65 0.88 29 104 0.56 0.88 0.56 0.88
yue20021 76 1076 0.05 0.92 76 87934 0.00 0.92 0.00 0.92
yue20022 160 1181 0.11 0.87 157 96071 0.00 0.87 0.00 0.87
yue20023 56 143 0.69 0.89 56 161 0.63 0.89 0.63 0.89
yue20031 142 1142 0.13 0.90 142 94160 0.00 0.90 0.00 0.90
yue20032 434 1517 0.22 0.77 434 1517 0.22 0.77 0.22 0.77
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Figure 2: The final Pareto set of solutions with two objectives: standard penalty and overall
unfairness, i.e. AJFI(A), for instances HEC92, STA83, EXAM4, and YUE20011. The red
point is the reference point and the green point is the initial solution.
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6.3.1. Experimental Result on Enforcing Fairness “Within a cohort”

In order to enforce fairness “within a cohort” (see Section 4 ), a new objective
function is introduced. Thus, there are three objective functions that have to
be optimised, i.e. minimising standard quality of the solution (see Equation 1
and 4), maximising overall fairness (i.e. Equation 5), and maximising fairness
within a cohort (i.e. Equation 6). As discussed in the previous section, the
maximisation problems are then changed to minimisation problems. Thus the
objective functions would be standard penalty, AJFI(A), and AJFI(C).

In addition, a new problem data set was created in order to allow prelimi-
nary experimentation with this alternative definition of fairness, as in “Fairness
within a cohort“. The existing problem instances of either Carter or ITC 2007
datasets do not specify the course for each student, while the Yeditepe dataset
instances contain information about each individual student’s course and year
of admission. Therefore, in our experiment the cohort for the Yeditepe dataset
was based on the course for each student, i.e students within the same course
are considered to be within the same cohort. For the other problem instances
from Carter and ITC Dataset we clustered students based on the exams enrolled
by the students using machine learning technique.

Given three objective functions, the experimentation was conducted in ex-
actly the same manner as when generating a Pareto set of solutions with two
objectives.

To illustrate the trade-off between standard penalty, overall fairness, and
average fairness within a cohort, Figure 3 visualises the final Pareto set of so-
lutions in “parallel coordinates”[73] generated by using the proposed approach.
To make the visualisation more readable, we filtered the Pareto set of solutions
with standard objective function values less than 158.

From the visualisation, we can observe that there is obvious inverse-correlation
between the standard penalty and overall unfairness, AJFI(A). In this sense, de-
creasing the standard penalty will increase unfairness. However, the correlation
between overall unfairness and unfairness within a cohort is not quite as obvi-
ous. The user or decision maker will most probably prefer a solution with a
standard penalty slightly worse than the best, has reasonable overall fairness,
but still has very good fairness within a cohort. An example of such a solution is
indicated with solution 74 in Figure 3 and Figure 4. The value of each objective
function is given in Table 7 while the changes of its objective function is given
in Table 8. Finally, how the solutions affect students is visualised by Figure 6.
The very existence of such solutions (fairer timetables) is an important contri-
bution of this work. We expect that improved future algorithms, better tailored
to fairness measures, should make it easier to find them.

Of course, if the decision maker is much more concerned about fairness
within a cohort as opposed to overall fairness, they can just focus on making
a trade-off between the standard penalty and fairness as shown by Figure 5.
The figure visualises the final Pareto set of solutions with two objectives, i.e.
standard penalty and unfairness within a cohort. Table 6 presents the objective
function values of the numbered solutions in Figure 5. The table also presents
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Figure 3: Final Pareto set of solutions for instance STA-83 generated with the proposed hyper-
heuristics approach represented in parallel coordinate: Trade-off between standard penalty,
overall unfairness i.e. AJFI(A), and average unfairness within a cohort i.e. AJFI(C)

the percentage of change in objective function values (i.e. delta) from solution
1 to the other selected solutions.

Table 6: Objective function values of the solutions visualised in Figure 5

O. Funct. Values Delta (%)
sol# s.Pen(A) AJFI(C) s.Pen(A) AJFI(C)
1 157.12 0.00635 - -
2 158.80 0.00560 1.07 -11.75
3 162.14 0.00521 3.19 -17.93
4 167.09 0.00467 6.34 -26.45
5 172.01 0.00409 9.47 -35.64

In Figure 5, the left two points (solution 1 and 2) show that the cohort
unfairness can be decreased significantly from 0.00635 to 0.00560, or about
11.75%, by just increasing the standard penalty from 157.12 to 158.80, about
1.07%.

The gain is much larger that can be obtained in the overall fairness, in Figure
2. This makes sense as seen in Figure 6(a), for a best-standard solution, the 3
cohorts has very different average penalties and so there is not much that can
be done to improve fairness. However, in cohort 3, there are two distinct groups
of students, with different penalties. Figure 6(b) shows a solution with a weight
applied in order to reduce the cohort unfairness and where the two groups in
that cohort end up with closer penalty values.

Table 7: The objective function values of the selected non-dominated solutions: sol 1, 74 and
103

Sol ID s.Pen (A) AJFI(A) s.Pen(C1) AJFI(C1) s.Pen(C2) AJFI(C2) s.Pen(C3) AJFI(C3) AJFI(C)
1 157.06 0.1001 226.00 0 126.38 0.0097 136.87 0.0014 0.0037

74 157.66 0.0971 226.04 0 127.62 0.0038 137.28 0.0014 0.0017
103 157.97 0.0957 226.00 0 128.96 0.0086 136.95 0.0019 0.0035

30



Figure 4: Three selected solutions (id:1,74,103) from Final Pareto set of solutions for instance
STA-83 generated with the proposed hyper-heuristics approach represented in parallel co-
ordinate: Trade-off between standard penalty, overall unfairness i.e. AJFI(A), and average
unfairness within a cohort i.e. AJFI(C)

Table 8: The changes (in percentage) of objective function values if the selected non-dominated
solutions: sol 1, 74 and 103 are compared to each other

Sol #
1 74 103

s.Pen (A) AJFI(A) AJFI(C) s.Pen (A) AJFI(A) AJFI(C) s.Pen (A) AJFI(A) AJFI(C)
1 X X X 0.38 -3.00 -54.05 0.58 -4.40 -5.41
74 -0.38 3.09 117.65 X X X 0.20 -1.44 105.88
103 -0.58 4.60 5.71 -0.20 1.46 -51.43 X X X

The objective function values of the solutions visualised in Figure 4 and
Figure 6 are given in Table 7, with the differences in these objective function
values over each solution presented in Table 8. For example, from solution
1 to solution 74, we can decrease ’unfairness within cohort’ by 54.05% as a
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Figure 5: The final Pareto set of solutions with two objectives: standard penalty and unfairness
within cohort, i.e. AJFI(C), for instance STA83.

consequence of increasing the standard penalty by 0.38%.

7. Conclusion

Our survey of student views found that over half of them were unhappy
with their examination timetables. Furthermore, about 30% of respondents
even believed that their examination timetable negatively affected their aca-
demic achievement. We have no evidence that the timetables actually did affect
student performance, but the perception is important; especially with Univer-
sities competing for students. Therefore, this work intends to contribute to
generating examination timetables that match student preferences and enhance
their satisfaction. In particular, we have proposed and studied methods to
improve fairness amongst students in the timetables they receive. A crucial
contribution of this paper is to introduce the novel concept of ‘fairness within a
cohort of students’; this complements and widens the concept of fairness within
the entire student body. To support this, we proposed a specific formulation of
these concepts with an associated algorithm, based on hyper-heuristics, together
with a multi-objective optimisation approach to improve fairness. We have pre-
sented experimental results showing that, unsurprisingly, there is a non-trivial
Pareto Front; in other words, there exists a trade-off between enhancing fair-
ness and satisfying the standard objective function. It is possible to improve
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Figure 6: Penalty associated with each student within three non-dominated solutions: Sol.1,
sol.74, and sol.103 for problem instance STA83. A different colour represents a different
cohort.

fairness overall and within cohorts, though, of course, this results in slightly
increasing the standard soft constraints violation penalty. Future work should
investigate whether the fairer timetables are in practice actually preferred by
students; such studies may well further refine the notions of fairness. Also, al-
though we use fairness measures based on the Jain fairness index (JFI), we are
not claiming that such JFI-based measures are the only reasonable ones. Other
formulations could be studied for fairness, such as GINI index, or the simple
application of higher powers than the quadratic implicit in the JFI measure
(e.g. see our preliminary work in [5]). Also, although we have used stochastic
local search methods, for small problems it may be feasible to use exact integer
programming methods, possibly in the form of non-linear extensions along the
lines of branch-and-cut in [74]. Of course, many other meta-heuristics may by
applicable.

As a final but important note regarding fairness within ’cohort’ information,
we observe that current studies are somewhat hampered because the existing
benchmarks do not include the ‘meta-data’ (e.g. information about student’s
course and year, exam’s school and faculty) that can be used to define ‘cohorts’.
Hence, we strongly encourage researchers and practitioners in the area, and all
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those who create and share public datasets, to also preserve and share suit-
able meta-data. Such meta-data can then be used to aid the development of
formulations and algorithms that better meet student preferences.
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[64] S. Asta, E. Özcan, A. J. Parkes, Batched mode hyper-heuristics, in:
G. Nicosia, P. Pardalos (Eds.), Learning and Intelligent Optimization, Lec-
ture Notes in Computer Science, Springer Berlin Heidelberg, 2013, pp.
404–409.

[65] M. Kahar, G. Kendall, A great deluge algorithm for a real-world examina-
tion timetabling problem, Journal Of The Operational Research Society.

[66] K. Miettinen, Nonlinear Multi-objective Optimization, Kluwer, Boston,
MA, 1999, 1999.

[67] H. T. Kung, F. Luccio, F. P. Preparata, On finding the maxima of a set of
vectors, J. ACM 22 (4) (1975) 469–476.

[68] A. Muklason, Exam Timetabling Problem With Fairness Datasets (2015
(accessed February 1, 2015)).
URL http://www.cs.nott.ac.uk/~abm/research/exam-fairness-data/

examproblemwithfairness/

[69] A. Hmer, M. Mouhoub, A multi-phase hybrid metaheuristics approach for
the exam timetabling, in: Proceeding of 10th International Conference of
the Practice and Theory of Automated Timetabling PATAT 2014, 26-29
August 2014, York, United Kingdom, 2014, pp. 233–251.

39

http://www.cs.nott.ac.uk/~abm/research/exam-fairness-data/examproblemwithfairness/
http://www.cs.nott.ac.uk/~abm/research/exam-fairness-data/examproblemwithfairness/
http://www.cs.nott.ac.uk/~abm/research/exam-fairness-data/examproblemwithfairness/


[70] T. Müller, ITC2007 solver description: a hybrid approach, Annals of Op-
erations Research 172 (1) (2009) 429–446.

[71] N. R. Sabar, M. Ayob, R. Qu, G. Kendall, A graph coloring constructive
hyper-heuristic for examination timetabling problems, Applied Intelligence
37 (1) (2012) 1–11.

[72] E. K. Burke, R. Qu, A. Soghier, Adaptive selection of heuristics for im-
proving exam timetables, Annals of Operations Research 218 (1) (2014)
129–145.

[73] A. Inselberg, Parallel Coordinates: Visual Multidimensional Geometry and
Its Applications, 1st Edition, Springer, 2009.

[74] E. K. Burke, J. Marec̆ek, A. J. Parkes, H. Rudová, A branch-and-cut pro-
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