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Abstract 

A finite-element-based wear modelling methodology and a computational device for decoupling wear effects is presented in 

this study. The decoupling of wear effects facilitates the capture of plasticity accumulation on a particular wear-scarring profile 

after a specific number of cycles. It was determined that significant plasticity accumulation due to plastic shakedown was 

predicted in a partial-slip case, while a saturation of plastic deformation was predicted in a gross-sliding case. It was also 

predicted that a significant amount of plasticity does not meaningfully contribute to the stress and strain range observed in the 

contact region. It was assumed that plasticity accumulation contributes towards wear of the material and feeds the stress 

changes, which indirectly affects fatigue life. 
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1. Introduction 

 

Fretting is a mechanical problem that arises from small repetitive motion between the surfaces of two 

elements in a contact pair. The amount of displacement that occurs during fretting can range from a few 

nanometres to a few hundred micrometres [1]. The actual causes of failure at the contact region are attributed to 

induced cyclic loading and/or wear on the contact region. The onset of fretting was originally studied by Catteneo 

[2] and independently by Mindlin [3], based on contact with Hertzian geometry under normal and tangential loads 

[4]. Full sliding (gross-sliding) between the contact surfaces will occur if the total tangential traction, Q, between 

the surfaces is greater than the limiting frictional force. This effect can be described by the relation, Q > P, 

where P is the normal load between the bodies, and  is the coefficient of friction. Partial-slip contact occurs 

below the limiting value.  

The partial-slip contact surface is divided into two distinct regions: a central stick zone |x| < c, and a slip 

zone c < |x| < a where x is the horizontal position on the contact surface. c represents the central stick zone and a 

represents the half contact width of the contact area. In many applications (e.g. contacts subject to vibration), the 

tangential force varies cyclically with time. The stress fields for partial-slip can be obtained by careful 

superposition of reversed tangential force elliptical distribution, resulting in the new stick zone |x| < b from the 

reverse cycle. Please refer to Fig. 1 for an illustration [5].  
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Fig. 1. Partial-slip loading cycle and the corresponding shear traction distributions, after [5]. 

 

Fretting fatigue is commonly experienced in partial-slip contact because the stress concentration site 

develops between the slip and stick zones. A reduction in fatigue life results from accelerated crack growth in this 

regime. In the case of gross-sliding, slip occurs across the entire contact region. Fretting wear is characterised by 

severe surface damage by wear followed by an overall reduction in contact stresses due to contact conformity [6].  

A finite element analysis of fretting behaviour can be used to increase the understanding of fretting wear 

and fatigue test results, and also provide an enhanced foundation for behavioural predictions. An approach 

involving an incremental wear simulation was developed by McColl et al. for a cylinder on flat arrangement. The 

approach used a modified Archard wear equation (including experimental validation), which was applied 

differentially in terms of contact pressure and slip, on a nodal basis to incorporate material removal effects [7]. 

Similar concepts were applied in [8] using an energy-based wear model. Previous attempts to model fretting wear 

have been conducted by implementing the cycle jump technique. This technique involves the use of a single cycle 

in the model to represent N number of cycles of fretting wear [7, 9 & 10]. This has been done due to limited 

computational capability and assuming that the incremental wear depth is similar throughout the cycle jump.  

Ding et al. investigated the evolution of elastic stress and strain distributions with fretting wear [9]. The 

major effect of gross-sliding fretting is the rapid decay of contact stresses. This occurs because of the wear-

induced contact pressure redistribution, which is the result of the widening of the wear scar. In contrast, for the 

partial-slip case, the corresponding direct and shear stresses are predicted to increase and concentrate at the stick-
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slip interface. Research dedicated to the modelling of fretting wear with plasticity behaviour was first introduced 

by Mohd Tobi et al., using linear kinematic hardening of Archard-based wear on titanium alloy Ti-6Al-4V [10]. It 

was determined that plasticity will accumulate, similar to the ratchetting phenomenon, which suggests a 

possibility of interaction between cyclic plasticity with wear formation, and crack initiation.  

Wear modelling based on plasticity behaviour has improved understanding of the evolution of wear and 

damage in fretting contact [10–13]. Works have involved on wear behaviour [10], to fatigue damage prediction 

[12 & 14], crystal plasticity model [15], and energy quantification [16]. The major finding from the research 

conducted in [13] was that the stick region in the partial-slip case became smaller as wear increased. However, 

with elastic behaviour, the saturation of the stick region caused infinitely high contact pressure, which is 

impossible.  

Garcin et al. [17] studied the effect of wear and damage accumulation due to fretting wear under elastic 

conditions. The author found that the crack nucleation region in the gross-sliding case decreased with an increased 

wear rate. For the partial-slip case, the crack nucleation region was unaffected by the wear rate because the 

frictional dissipation energy was small, as a result of the small displacement amplitude. Gandiolle & Fouvry [14] 

compared the effect of elastic-only and elastic-plastic behaviour in crack nucleation and crack propagation on the 

fretting fatigue of 316L stainless steel. It was expected that the crack nucleation and crack propagation predictions 

based on the elastic–plastic fracture mechanics approach would be closer to the experimental results than the 

elastic behaviour prediction. The elastic-only prediction was found to be overly conservative in regard to the 

prediction of crack nucleation and propagation. 

This study investigates the prediction of plasticity accumulation as the effect of simulated incremental 

wear. In addition, the effect of the surface profile generated by the wear is separated in order to develop an 

understanding of the plasticity accumulation in fretting wear modelling based solely on its geometrical surface 

profile shape. A finite-element-based wear modelling methodology, along with a computational device that 

facilitates the capture of plasticity accumulation on a particular profile of wear scar at a specific number of cycles, 

is presented in this study. The plastic accumulation predicted by the analysis is quantified and the Smith–Watson–

Topper (SWT) fatigue life parameter is calculated.  

 

 

2. Finite Element (FE) modelling 

 

2.1. Wear modelling 

 

The wear model used in this analysis is a modified version of the Archard wear model, as previously 

described in [7, 9 & 10]. It utilizes an FE model to analyse fretting wear. It is briefly outlined here for 

completeness. The Archard wear equation is given by: 
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H

P
K

S

V
 , (1) 

 

where V is the total wear volume, S is the sliding distance, K (dimensionless) is the wear coefficient, P is the 

normal load, and H is hardness of the material. 

In order to simulate the evolution of wear along the contact surface using wear cycles, the wear must be 

calculated locally for a specific point on the contact surface. For a given individual (nodal) point on the contacting 

surface (in the FE model), Eq. (1) can be expressed in terms of the local wear depth increment, dh, over the 

increment of local slip, dS, as follows [18]: 

 

 )(1 xpk
dS

dh
 , (2) 

 

where K/H from Eq. (1) is replaced by k1, a local wear coefficient. Owing to our inability to measure this local 

wear coefficient, one approach is to assume that a bulk wear coefficient, k, which is measured across the complete 

contact width, can be employed. This bulk wear coefficient can be determined from the measured wear scar [7] 

using the following equation: 

 

 
PN

Wbh
k

tactual

m




4
, (3) 

 

where W is the wear scar width, b is the width of the flat specimen, hm is the average wear scar depth on the x-

coordinate axis, and Nt is the total number of fretting fatigue cycles. The Wbhm term is the estimated total wear 

volume, Vexp, of the flat specimen. The rationale adopted in this study follows a combined experimental-

computational methodology to arrive at an average local wear coefficient, k . The averaging is affected with 

respect to the spatial-temporal evolution of the contact interface geometry, as described in [10], and uses the bulk 

wear coefficient, k, as an initial estimate for k  (i.e. both over the number of cycles and across the contact width, 

thus averaging with respect to contact pressure and relative slip over the evolution of the wearing contact). 

McColl et al. further developed Eq. (2) in order to simulate the material removed due to fretting wear in a 

finite element simulation [7]. A modified Archard equation that defines the incremental wear depth, Δh, for a 

specific point, x, experiencing an incremental slip,  and pressure, p, at specific time, t, is thus given as: 

 

 ),(),(),( txtxpktxh  . (4) 
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Owing to computational limitations, the wear simulation cannot model individual wear cycles. Therefore, a cycle 

jump technique was used and the method developed in [7, 9 & 10] was followed. This technique applies the wear 

corresponding to a cycle jump of ΔN cycles in increments during a single simulated fretting cycle. Therefore, by 

multiplying Eq. (4) with the cycle jump, ΔN, the wear corresponding to ΔN cycles can be simulated in one 

simulated fretting cycle. Eq. (4) can now be presented with respect to time, within one cycle corresponding to 

N wear cycles, as follows: 

 

 ),(),(),(  xxpkNxh  . (5) 

 

 The wear determined by the modified Archard equation was implemented in the analysis using an 

adaptive mesh technique via the UMESHMOTION user subroutine within ABAQUS (Version 6.11). The adaptive 

meshing algorithm in ABAQUS applies the local wear increment for all surface nodes in two steps. First, the local 

wear increment is applied by moving the surface nodes in the local normal direction. This geometry update is 

executed purely as an Eulerian analysis. Secondly, the material quantities (variables) are remapped to the new 

positions by advection. This is accomplished by solving the advection equations using a second-order numerical 

method called the Lax–Wendroff method. ABAQUS accounts for the remapping of the residual plastic strain with 

simulated wear. These two steps cause an equilibrium loss that is corrected by solving the last time increment of 

the contact problem [10].  

A similar method has also been employed by [17]. The current method of adaptive meshing will remap 

the variable values, including the plastic strains. It is important to note that at this current stage, it was assumed 

that the subsequent plastic strain prediction was based on continuity from the remapped variable, as described in 

the methodology. A more advanced wear model that includes the effect of plastic strain release should be 

developed in future to achieve a more realistic simulation of fretting wear. The wear analyses simulate up to 

300×10
3
 cycles, using a cycle jump ΔN of 3 × 10

3
, with 100 increments in one simulated tangential fretting cycle. 

For gross-sliding and partial-slip tests in the present work, the resulting values of k  are 8.5×10
-9 

MPa
-1

 for gross-

sliding and 4.5 × 10
-8 

MPa
-1

 for partial-slip [10]. 

Recently published work on fretting wear modelling with plasticity, either in wear prediction or cracking 

prediction, has not encountered the issue of plastic strain release [12 & 13]. The experimental results show good 

agreement with the wear prediction. The only difficulty that has not yet been overcome is the prediction of the 

shape of the wear scar. This study is trying to highlight the mechanism by which the plasticity is introduced with 

active interaction between the effect of geometrical changes with wear.  

Thus, in order to make progress towards improving wear prediction, this study seeks to distinguish 

between plasticity that is accumulated due to worn geometrical profiles, and plasticity that accumulates due to the 

effects of increasing wear depth caused by the wear model. The author has conducted preliminary wear modelling 

for a gross-sliding case with N = 1 up to 100 cycles. The model predicted that the plasticity accumulation at the 

central contact region would saturate after five cycles, and it also predicted that there would be an increase in 
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equivalent plastic strain at the contact edge. This corresponds to the edge effect generated from worn geometry. 

This model suggests a trend that is qualitatively similar to the trend predicted in the research conducted in [10]. 

For the partial-slip case, no plasticity accumulation was predicted at the end of 100 cycles when N = 1 was used, 

since the peak pressure at the stick-slip interface was not developed yet.  

 

 

2.2. FE model 

 

Fig. 2 shows the gross-sliding and partial-slip FE models for the cylinder on the flat fretting specimen. These 

meshes were arrived at through an iterative process in order to achieve a compromise between (i) the accuracy of 

the predicted surface and subsurface variables, (ii) reasonable CPU times for incremental wear simulations, and 

(iii) the capacity to cater for wear-induced increases in contact width. Plane strain, linear quadrilateral elements 

were employed in the analysis due to their reliable contact performance, as second order elements can give 

fluctuating pressure distributions for frictional contact problems [10]. 
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c) d) 

 

Fig. 2. Mesh details for a) full model for gross-sliding, b) contact region detail for gross-sliding, c) full model for partial-slip 

and d) contact region detail for partial-slip, after [10]. 

 

Contact interaction between the cylinder and the flat surface was defined by using a finite sliding-contact-pair 

algorithm. This algorithm established the relationship between the master nodes on the cylinder contact surface 

and the slave nodes on the flat contact surface. The maximum allowable penetration depth (h-crit) between the 

slave and master nodes during the iterative solution process was defined to equal 1 m. The minimum allowable 

distance between the initial coordinates of the adjacent nodes on the mating contact surfaces (ADJUST parameter) 

was set to 0.001 m. In order to improve the stress resolution while maintaining a reasonable computational time, 

the mesh size was gradually refined towards the contact regions, as shown in Fig. 2. The element size in the 

contact region was approximately a 10 m square, and the transition from a fine to coarse mesh was achieved via 

the mesh control algorithm in ABAQUS. Coulomb friction is employed based on the Lagrange multiplier contact 

algorithm. It was used to ensure the exact stick condition when the shear stress is less than the critical shear value 

according to the Coulomb friction law. A 0.9 coefficient of friction was applied to the contact surface, and was 

based on the stabilised gross-sliding values from [10]. 

The elastic material properties used for the cylinder and the flat surface include a Young’s modulus of 115 

GPa and a Poisson’s ratio of 0.342. The kinematic hardening model is a simplified representation used to model 

this effect. In this study, the plasticity data used to model Ti-6Al-4V cyclic plastic behaviour was obtained from 

[19]. A yield stress, y , of 840 MPa and a hardening modulus, c , of 7.32 GPa were employed. The results of 

the wear modelling were validated with the published work by [10] under the same conditions and wear 

modelling. 
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2.3. Novel fretting wear model extension 

 

 A new FE fretting model was created once the original FE wear model was completed. This new model 

used the state variables, loading conditions, and the updated geometrical shape generated from the initial FE wear 

model at the end of every Ni
th

 number of cycles required for the remodel analysis (Fig. 3). Five new models were 

created from the recorded state variables, representing loading conditions at the 0
th

, 15,000
th

, 75,000
th

, 150,000
th
, 

and 300,000
th

 cycle.  

An additional five cycles of fretting were then simulated for each of the models without wear modelling. 

It is important to note that the new FE model will not experience the effects of the active wear model, since the 

wear subroutine is not included in the new model. However, the new model will have the same worn shape, 

stresses, strains, and loading conditions generated during the initial wear modelling process. This will allow the 

new model to predict the amount of plasticity accumulation due to its worn geometrical and state variable 

conditions, without being subjected to the effects of active wear simulation. The flowchart of the new fretting 

wear model extension methodology in addition to the initial wear modelling, is shown in Fig. 3. 
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Fig. 3. Flowchart illustrating FE-based incremental wear simulation methodology in ABAQUS with the new fretting 

model extension. 

 

The purpose of this study is to further discuss the results presented by the author in [10] and to study the 

effects of plasticity deformation on the wear profile and stress distribution in the contact region. There are two 

points in the article that merit further discussion. First, even though the plasticity behaviour is modelled, the 

predicted wear profile for the gross-sliding case predicted a U-shaped wear profile instead of the W-shaped profile 

that was observed experimentally. The second point is that a determination needs to be made as to whether 

plasticity accumulation contributes to wear development, or whether wear development contributes to plasticity 

accumulation. 

As a result, this study preserved the method that has been presented in [10] while separately assessing the 

accumulation of plasticity when the wear simulation is being decoupled. This study aims for future research to 

build on the results from this research and develop a new wear model that correlates the effect of the plasticity 
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accumulation to be derived and applied without cycle jump on the first attempt. It is expected that the formation of 

the W-shaped wear scar that was observed experimentally [10] can be predicted. 

 

3. FE results 

 

3.1. Wear modelling results 

3.1.1. Gross-sliding case 

 

The results of the wear modelling analysis (up to 300,000 cycles) for the gross-sliding case are presented 

in Fig. 4. The contact pressure distribution is shown in Fig. 4a. This value is taken as the contact passes through 

the centre of the contact. A reduction in pressure is predicted (Fig. 4a) as the contact becomes conforming, as 

evidenced from the evolution of the flat specimen wear profile shown in Fig. 4b. For the equivalent plastic strain 

prediction (Fig. 4c), the central region experiences a sudden increase in plastic strain, close to 0.25% at the 

15,000
th

 cycle, before subsequently reducing with further wear cycles. This is due to central region wear, which 

removes the residual plastic strain as it wears down. The development of plasticity at the contact edge is due to the 

edge effect plasticity, as explained in [6 & 10]. The results are validated with the FE modelling performed by [10], 

which show the same results under the same conditions. 

 
(a) 

 
(b) 

 
(c) 

Fig. 4. FE-predicted wear-induced evolution for the gross-sliding case up to 300,000 cycles (2δapp = 120 m, P = 1000 
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N); a) contact pressure, b) wear profile, and c) equivalent plastic strain. 

 

3.1.2. Partial-slip case 
 

Figs. 5(a–c) show the wear modelling results up to 300,000 cycles for the partial-slip case. The 

contact pressure distribution (Fig. 5a) shows the development of peak pressure up to the 75,000
th

 cycle before 

a near Hertzian-like shape develops at the 300,000
th

 cycle. The values are taken as the contact passes through 

the centre of the contact. The predicted wear profile is shown in Fig. 5b. Typical wear depth was developed 

at the slip region, and there was a reduction in the stick region as the wear increased. For the predicted 

equivalent plastic strain distribution (Fig. 5c), it is clearly shown that a significant amount of plasticity was 

predicted (up to 200%) at the stick-slip interface as the wear increases. Similar results were predicted in [10]. 

 
(a) 

 
(b) 

 
(c) 

Fig. 5. FE-predicted wear-induced evolution for partial-slip case up to 300,000 cycles (2δapp = 50 m, P = 1000 N); a) 

contact pressure, b) wear profile, and c) equivalent plastic strain. 

 
 

 

 

3.2. New model extension results 
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 The equivalent plastic strain results for the new extension model in the gross-sliding case are shown in 

Figs. 6(a-e) at the 0
th

, 15,000
th

, 75,000
th

, 150,000
th

, and 300,000
th

 cycle. The distribution plots are shown after 

zero, one, and five additional cycles of simulated fretting contact without the wear effect. At the 0
th

 cycle (Fig. 

6a), with one additional fretting cycle, the plastic strain builds up significantly at the central region of the contact, 

close to 0.3% value. With further simulated fretting cycles, no significant increase in plastic strain was predicted. 

 At a higher number of cycles, with additional simulated fretting cycles, the accumulation of plasticity can 

only be seen on the left side of the contact edge. The reason for that is due to the less worn profile generated by 

the wear modelling. The contact will travel farther on the right side of contact, since the first fretting wear cycle 

model is moving to the right from the central position and stops at the far left of contact. This movement is 

exaggerated further with the cycle jump implemented during the wear modelling, and causes the left wear scar 

edge to have a shallower surface profile and greater surface discontinuity than the right side. The residual plastic 

strains generated from the wear modelling are present in the new extension model at zero additional cycles. 

Increases in plastic strain are predicted after one additional cycle for the 15,000
th

, 75,000
th
, 150,000

th
, and 

300,000
th

 cycles. For the subsequent additional fretting cycles, there is no predicted increase in plastic strain for 

the 300,000
th

 cycle case (Fig. 6e). Comparing the magnitude of the increase in plastic strain between the 15,000
th

, 

75,000
th

, and 150,000
th

 cycle after five additional cycles, it can be seen that the plastic strain increase rate is 

growing from the 15,000
th

 to the 75,000
th
 cycle, but decreasing for the 150,000

th
 cycle. Only the first additional 

cycle shows an increase in plastic strain for the 300,000
th

 cycle case (Fig. 6e). 

 
(a) 

 
(b) 

 
(c) 

 
(d) 

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Eq
u

iv
al

e
n

t 
p

la
st

ic
 s

tr
ai

n

Horizontal position (mm)

At 0th cycle

after 5 cycles

after 1 cycle

after 0 cycle

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Eq
u

iv
al

en
t 

p
la

st
ic

 s
tr

ai
n

Horizontal position (mm)

At 15,000th cycle

after 5 cycles

after 1 cycle

after 0 cycle

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Eq
u

iv
al

en
t 

p
la

st
ic

 s
tr

ai
n

Horizontal position (mm)

At 75,000th cycle

after 5 cycles

after 1 cycle

after 0 cycle

0

0.0005

0.001

0.0015

0.002

0.0025

0.003

0.0035

0.004

-1 -0.8 -0.6 -0.4 -0.2 0 0.2 0.4 0.6 0.8 1

Eq
u

iv
al

e
n

t 
p

la
st

ic
 s

tr
ai

n

Horizontal position (mm)

At 150,000th cycle

after 5 cycles

after 1 cycle

after 0 cycle



 1 
 2 
 3 
 4 
 5 
 6 
 7 
 8 
 9 
10 
11 
12 
13 
14 
15 
16 
17 
18 
19 
20 
21 
22 
23 
24 
25 
26 
27 
28 
29 
30 
31 
32 
33 
34 
35 
36 
37 
38 
39 
40 
41 
42 
43 
44 
45 
46 
47 
48 
49 

 14 

 
(e) 

Fig. 6. FE-predicted equivalent plastic strain evolution for the gross-sliding case (2δapp = 120 m, P = 1000 N) after one 

and five applied cyclic displacements at a specific geometrical wear shape at a given nth cycle; a) 0th cycle, b) 15,000th 

cycle, c) 75,000th cycle, d) 150,000th cycle, and e) 300,000th cycle (wear effect is suppressed during the applied cyclic 

displacement). 

 

 

3.2.2. Partial-slip case 

 

 Figs. 7(a–e) show the predicted plastic strain for the partial-slip case at the 0
th

, 15,000
th

, 75,000
th

, 

150,000
th

, and 300,000
th

 cycles. No plasticity is predicted at the 0
th

 cycle. At the 15,000
th

 cycle (Fig. 7b), plasticity 

accumulation of up to 0.2% of strain is predicted after five additional fretting cycles are applied. The value of the 

predicted equivalent plastic strain increases to 0.125% of strain after one additional cycle is simulated. Similar 

trends are predicted at different numbers of cycles. For the 75,000
th

 cycle (Fig. 7c), the predicted equivalent 

plastic strain increased from 6% to 9% of strain after five additional fretting cycles. An increase from 35% to 45% 

of equivalent plastic strain was predicted for the 150,000
th
 cycle (Fig. 7d). An increase of up to 200% of strain 

was predicted for the equivalent plastic strain at the 300,000
th

 cycle (Fig. 7e). Most of the increases in plastic 

strain were predicted to occur at the stick-slip interface, and were expected to increase with every additional 

fretting cycle.  
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(c) 

 
(d) 

 
(e) 

Fig. 7. FE-predicted equivalent plastic strain evolution for the partial-slip case (2δapp = 50 m, P = 1000 N) after one and 

five applied cyclic displacements, at a specific geometrical wear shape at a given nth cycle: a) 0th cycle, b) 15,000th cycle, 

c) 75,000th cycle, d) 150,000th cycle, and e) 300,000th cycle (wear effect is suppressed during the applied cyclic 

displacement). 

 

 

4. Discussion 

4.1. Gross-sliding 

 

 The predicted equivalent plastic strain using the new extension model provides insight into the 

magnitude of the plasticity accumulation experienced by the fretting contact without the overlapping material 

removal effect from the wear model. However, the model is based on the captured state variables and the 

geometrical shape at a particular cycle generated from the initial wear model. This allows the effect of wear to be 

explicitly incorporated. 

 As shown in the predicted equivalent plastic strain in the new extension model for the gross-sliding case 

(Fig. 6), the value of the predicted plastic strain generally tends to saturate as the number of additional cycles 

increases. The contact experienced material hardening as it is plastically deformed, causing subsequent cycles to 

produce less plasticity. At the 0
th

 cycle, a significant increase in plasticity was generated after one additional 

fretting cycle. This was due to high contact pressure at the centre, causing the surface to yield in shear as the 

contact is completely in sliding, which occurred without the effect of wear. This suggests that a significant amount 

of plasticity was initially generated in the central contact region. 
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 As the number of fretting cycles increases, and the wear effect causes changes in shape and increases in 

contact conformity, the accumulation of plasticity at the centre no longer occurs. This is due to less shear yield 

plasticity generated at the centre caused by lower contact pressure distribution. Now, the plasticity is predicted at 

the contact edge due to the ploughing effect (Figs. 6(b–e)). The amount of plastic strain per additional cycle is 

higher for the first cycle compared to the fifth cycle.  

 Comparing the results at the 15,000
th

 cycle (Fig. 6b) with the 75,000
th

 cycle (Fig. 6c), the plastic strain 

accumulation is higher at the 75,000
th

 cycle with additional fretting cycles. As the wear scar edge developed, the 

tendency to generate edge plasticity increased in the early fretting cycles. However, as the pressure drops with 

additional fretting wear (at the 150,000
th

 cycle (Fig. 6d) and the 300,000
th

 cycle (Fig. 6e), the edge plasticity 

decreases since the overall pressure distribution is decreasing (Fig. 4a). This reduces the predicted equivalent 

plastic strain increment with additional fretting cycles in the 150,000
th

 and 300,000
th

 cycle cases. In addition, there 

is not a meaningful increase in equivalent plastic strain predicted after the first additional cycle at the higher 

cycles (150,000
th

 and 300,000
th

 cycle). Once the material at the edge hardens, the low-pressure distributions are 

not able to yield the edge. 

 This prediction can potentially explain the W-shaped wear scar observed in the fretting test conducted by 

[10 & 20]. At a low number of cycles, a large magnitude of predicted plastic accumulation in the central region of 

the wear scar can cause a significant amount of wear (Fig. 8). This will initially generate a U-shaped wear scar. 

The next stage is the generation of the ploughing effect at the U-shaped wear scar. This effect causes an 

accumulation of plasticity at the edge of the wear scar. By assuming that the area with plasticity accumulation will 

have a higher wear rate than the rest of the contact region, a slightly deeper wear scar was developed at the edge, 

rather than in the region without plasticity (Fig. 8). This causes W-shaped wear. With further advancement of 

fretting cycles, the reduced contact pressure is not capable of generating edge plasticity, thus maintaining the W-

shape (Fig. 8).  
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Fig. 8. Schematic view of the plasticity-induced wear mechanism with the changes in pressure reduction showing the region of 

plasticity accumulation in the gross-sliding condition. 

 

4.2. Partial-slip 

 

In contrast to the gross-sliding case, no plasticity increment was predicted at the 0
th

 cycle with an additional 

fretting cycle in the partial-slip case (Fig. 7a). The low applied displacement does not generate sufficient sliding to 

shear yield the surface; thus, no increment in equivalent plastic strain was predicted. Based on all of the new 

extension model results, except those obtained at the 0
th

 cycle, the plastic strain will be accumulated in the 

additional fretting cycle (Figs. 7(b–e)). The plasticity continues to increase even after five additional cycles owing 

to high peak pressure at the stick-slip interface. The value of the increment is higher at later fretting wear cycles 
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due to higher pressure distributions. It can be assumed that in the partial-slip case, for large numbers of wear 

cycles where the peak pressure has been developed at the stick-slip interface, a significant amount of plastic strain 

will be generated for every contact pass it experiences. This occurs without the effect of wear and reveals the 

amount of plasticity accumulation that the stick-slip interface experiences during fretting.  

The assumption can then be made that this amount of plasticity accumulation contributes to either the 

wear or the fatigue of the material. Fig. 9 shows the SWT fatigue parameter for the new extension model at the 

75,000
th

, 150,000
th

, and 300,000
th

 cycles. The SWT [21] fatigue parameter is based on a combination of the high 

cycle fatigue (Basquin), and low-cycle fatigue (Coffin–Manson), strain life equations. Since strain life equations 

do not include the mean stress effect on fatigue life, an additional maximum stress term, max, was used to allow 

the effect of mean stress on fatigue life to be considered. 

 SWT = 
CB

fff

B

f

f
NN

E

 )2()2(
'

2

''2

2

max 


 , (6) 

 

where ’f and B are the fatigue strength coefficient and exponent, respectively, and ’f and C are the fatigue 

ductility coefficient and exponent, respectively. E is Young’s modulus and Nf is the number of cycles required to 

initiate a crack of a given length.  

 It can be seen from the SWT prediction distribution for the case of the 75,000
th

, 150,000
th
, and 300,000

th
 

cycle extension model that there is no significant change in the value of SWT after five additional fretting cycles 

(Figs. 9(a–c)). Even after the strain had increased as much as 0.1 for every additional cycle, the SWT value 

remained nearly the same. In addition, the SWT prediction at the 75,000
th

 and 150,000
th

 cycle keeps decreasing 

with additional cycles (Fig. 9d). This suggests that plastic strain accumulation does not meaningfully affect 

fatigue behaviour. 
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(c) 

 
(d) 

Fig. 9. SWT fatigue parameter prediction for the subsequent additional five cycle remodel analysis for surface profiles at 

the: a) 75,000th cycle, b) 150,000th cycle, c) 300,000th cycle, and d) maximum SWT evolution for all the surface profiles 

modelled (partial-slip case: 2δapp = 50 m, P = 1000 N). 

 

In order to understand the contribution of stress and strain to the SWT fatigue parameter, a stress-strain plot 

of the tangential and shear components located at the maximum value of SWT is presented in Figs. 10(a–b) for the 

150,000
th

 cycle case and Figs. 10(c–d) for the 300,000
th

 cycle case. For the 150,000
th
 cycle case, with the 

additional five cycles modelled, there were no significant changes in the shape of the stress-strain loops for the 

tangential and shear components. The loops show that the material had undergone a plastic shakedown rather than 

plastic ratchetting. For every additional cycle, plastic strain was generated and accumulated, but the overall strain 

range remained nearly the same. This explains that there were no significant changes in SWT prediction, but there 

was very high plastic accumulation. For the 300,000
th

 cycle case (Figs. 10(c-d)), it can be seen that the shear 

stress-strain loops (Fig. 10d) did experience increments of strain (ratchetting) along with plastic-shakedown-type 

plasticity accumulation.  
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(c) 

 
(d) 

Fig. 10. Stress and strain loops for the 150,000th cycle case: a) tangential component, b) shear component; Stress and 

strain loops for the 300,000th cycle case: c) tangential component, d) shear component (partial-slip case: 2δapp = 50 m, P 

= 1000 N). 

 

 Therefore, the results show that the accumulated plastic strain contributes to the wear of the material at 

the stick-slip interface rather than towards the contact fatigue. A similar mechanism of wear by plasticity 

accumulation (as explained in the gross-sliding case) might occur and create a high-wear regime at the stick-slip 

interface. Evidence from literature shows that there are a number of cases where Ti-6Al-4V partial-slip fretting 

tests experience crack mouth widening at the stick-slip interface [6 & 10] (Fig. 11). This significant crack mouth 

widening can be associated with plasticity-induced wear at the stick-slip interface.  

 

 
(a) 

 
(b) 

Fig. 11. Cross-section of Ti-6Al-4V partial-slip flat specimen wear scar showing crack mouth widening; a) from [6], (P = 1000 

N, 20 mm diameter indenter, 100,000 cycles, 25 m applied displacement), and b) from [10] (P = 1000 N, 6 mm diameter 

indenter, 100,000 cycles, 25 m applied displacement). 
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 Previously, it had been predicted that plasticity caused ratchetting in partial-slip fretting wear modelling 

[10] because of the change in geometry caused during simulated wear. This paper discovered that plasticity 

accumulation is significant in the partial-slip case at later cycles, and is significant in the early cycles in the gross-

sliding case. Furthermore, the interpretation of the wear model throughout the contact region can be improved by 

using multiple wear rates across the contact to simulate W-shaped wear in gross-sliding. 

 

5. Conclusions 

 

 In this study, a novel finite element modelling method was developed to investigate the accumulation of 

plastic strain in fretting wear without the active interaction of a wear model. The model was based on the 

conditions generated from a wear modelling analysis, which was conducted separately at the beginning of the 

experiment. This new method preserved the state conditions generated during the initial wear modelling process, 

and allowed for the prediction of plastic accumulation of the non-wear fretting cycle to be conducted. The 

following conclusions can be drawn from this study: 

 For the gross-sliding case: 

o The plasticity accumulation was predicted to saturate as the material hardened under additional 

fretting cycle. A significant accumulation of plastic strain occurred at the central region of the 

contact due to a high contact pressure distribution that occurs before the wear effect activates. 

As the contact is worn and the contact pressure distribution is reduced, no central plasticity 

accumulation was predicted. 

o After a worn profile was generated, the wear scar edge plasticity was predicted to accumulate 

due to the ploughing effect. However, the amount of plasticity accumulation saturates with 

additional fretting cycles. At higher cycles with lower pressure distributions, a lower amount of 

edge wear plasticity was predicted. 

o The prediction of plasticity accumulation in the gross-sliding case can be used to support the 

development of a W-shaped wear scar in gross-sliding fretting wear of Ti-6Al-4V. 

 For the partial-slip case: 

o In contrast to the gross-sliding case, no plasticity accumulation was predicted at the 0
th

 cycle 

due to there being no significant amount of sliding to shear yield the contact surface. 

o Once the peak pressure was generated at the stick-slip interface, a significant amount of 

plasticity accumulation with additional fretting cycle was predicted. The incremental amount is 

more significant at a higher number of cycles, as the peak pressure developed by stick-slip wear. 

o The plasticity accumulation does not meaningfully contribute to the fatigue life due to the 

similar stress-strain loops predicted from the new model. The plasticity accumulation arises 

from the plastic shakedown behaviour in the contact region. 
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o The widening of the crack mouth observed experimentally in partial-slip fretting of Ti-6Al-4V 

from literature might be associated with the accumulation of the plastic strain at the stick-slip 

interface, which generates wear and widening of the crack mouth. 
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