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Abstract. Although dynamic programming could ideally solve any com-
binatorial optimization problem, the curse of dimensionality of the search
space seriously limits its application to large optimization problems. For
example, only few papers in the literature have reported the applica-
tion of dynamic programming to workforce scheduling problems. This
paper investigates approximate dynamic programming to tackle nurse
scheduling problems of size that dynamic programming cannot tackle
in practice. Nurse scheduling is one of the problems within workforce
scheduling that has been tackled with a considerable number of algo-
rithms particularly meta-heuristics. Experimental results indicate that
approximate dynamic programming is a suitable method to solve this
problem effectively.
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1 Introduction

The 1956 paper by Richard Bellman [1] described the principle of optimality and
dynamic programming, the algorithm based on this principle. Basically, dynamic
programming breaks an optimization problem into simpler sub-problems that
can be solved recursively and it has been applied to a variety of optimization
problems [2]. The nurse scheduling problem is a complex combinatorial opti-
mization problem that consists in assigning shifts to nurses in each day of a
given planning period (usually a number of weeks). This problem has been in-
vestigated to a considerable extent and many algorithms have been proposed
to solve it [3]. Constructing high-quality schedules for their nurses are crucial
for many hospitals because minimizing salary costs and maximizing the overall
satisfaction of nurses with their working patterns are key aims. In the context
of workforce scheduling, it appears that dynamic programming algorithms have
been applied only on small problem instances [4].

The limitation of dynamic programming to tackle larger workforce scheduling
problems lies on the curse of dimensionality, which means that the search space
grows exponentially as the input size increases. This means that implementations
of dynamic programming require too much memory to store the search space and
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too much computation time for evaluating all states of the search. To make the
search more efficiently, approximate dynamic programming selects only a small
part of the search space based on approximation functions [2]. The solution
obtained by approximate dynamic programming is close to the optimal solution
and the computational time is decreased considerably.

This paper investigates the ability of approximate dynamic programming to
solve nurse scheduling problems. There seems to be no previous papers conduct-
ing such investigation. The intended contribution of this work is to propose a
methodology to solve larger workforce scheduling problems to near-optimality
in practical computation time using approximate dynamic programming. The
structure of this paper is organized as follows. Section 2 reviews the literature
on approximate dynamic programming and nurse scheduling. Section 3 describes
how the nurse scheduling problem can be seen as a typical Markov decision
model. Section 4 describes the proposed methodology and Section 5 discusses
the experimental results. Conclusions are given in Section 6.

2 Literature Review

This section consists of two parts. Some background on the nurse scheduling
problem is given first followed by an overview of the approximate dynamic pro-
gramming technique.

2.1 Nurse Scheduling Problem

The Nurse Scheduling Problem (NSP) can be grouped into two categories: cyclic
scheduling problem and non-cyclic scheduling problem. In cyclic scheduling,
nurse shift preferences are not considered so assigned shift patterns can be repli-
cated across planning periods. In non-cyclic scheduling, nurse shift preferences
are considered which limits such replication of shift patters. Surveys such as [5,
6] provide detailed reviews of terminology, constraints and objectives. In this
paper we tackle the non-cyclic NSP. In this type of NSP, hard constraints are
the shift requirements for the whole solution, such as maximum or minimum
working shifts, while soft constraints are related to daily nurse requirements.

There are two widely-used benchmark data sets for non-cyclic nurse schedul-
ing by researchers at the University of Nottingham [7] and the University of
Ghent [8]. Benchmark in [7] consists of nurse scheduling problems collected from
various real-world scenarios. The number of instances is limited but the prob-
lem size ranges from small with 2 weeks, 8 nurses and 1 shift type to larger
with 52 weeks, 150 nurses and 32 shifts. On the other hand, benchmark in [8] is
artificially generated base on 9 indicators. Overall there are 6 sets of instances
according to the number of nurses and the planning period ranges from one week
to one month. Both benchmarks also keep a record of the best known solutions.

A wide range of methodologies, such as constraint programming and meta-
heuristics have been applied to solve nurse scheduling problems and achieving
very good solutions [5, 6]. However, it seems that no paper has applied dynamic



programming directly to solve this type of problem due to the curse of dimen-
sionality. Only one publication describes the use of dynamic programming as
part of a column generation method [7].

2.2 Approximate Dynamic Programming

The Bellman Equation (1) conveys the strength of dynamic programming be-
cause of the principle of optimality, but this equation also reflects the issue that
prevents applying dynamic programming broadly.

(St) = max {C (A (St, St+1)) + V (St+1)} (1)

In this equation, t indicates a given stage, St and St+1 represent the space of sub-
problem combinations at stages t and t+ 1 respectively, A(∗) is an action space
that records all connections from stage t to stage t + 1, C(∗) is the action cost
function, V (∗) is the value function that being in this stage St+1. The purpose
of dynamic programming is to evaluate all the combinations terminating in each
stage and select the optimal one. However, for a problem with a large action
space, it is infeasible for dynamic programming to calculate the optimal solution
because of either time or memory consumption. This is known as the curse
of dimensionality and this issue makes dynamic programming algorithms non-
practical to be applied widely to large combinatorial optimization problems.

Hence, developing algorithms that satisfy the principle of optimality but are
also practical to solve large combinatorial problems has attracted the attention
from researchers in recent decades. Hence, research into Approximate Dynamic
Programming (ADP) has increased. Basically, ADP algorithms are divided into
two categories. In one category, there are algorithms using linear programming
based approaches with dynamic programming that then determine approximate
solutions [9]. These approaches have obtained impressive results on solving prob-
lems such as backgammon, job shop scheduling and elevator scheduling. The
other category is to construct an approximate solution to the Bellman Equation
with simulation based procedures. Instead of evaluating the whole action space,
the Monte-Carlo simulation mechanism is employed to rank the importance of
stage links by processing a number of iterations. The final solution is constructed
by selecting the links with minimum penalty cost.

The whole idea of Approximate Dynamic Programming is also known as
Reinforcement Learning [10] in Artificial Intelligence or Neuro-Dynamic Pro-
gramming [11] in engineering. ADP has achieved impressive progress on solving
Markov Decision Problems (MDP). MDP is a branch of mathematics based on
probability theory, optimal control and mathematical analysis [12]. Any MDP
model can be summarized in the underlying object collection level with four
important factors {S,A, Pr(s, a), R(s, a)} where S is a state search space, A is
an action search space that moves to the next possible state, Pr(s, a) is the
probability of selecting a particular action a from the current state s to move to
the next state, and R(s, a) is the reward function that calculates the reward of
taking the action a.



The work presented by Colorini and Dorigo [13] is similar to the idea of simu-
lation based ADP in combinatorial optimisation. The aim of their algorithm is to
search an optimal solution based on simulation outcomes of a parallel clients set.
This algorithm is called Ant Colony System (ACS) and mimics the behaviour
of ants seeking food. They applied ACS to solve a travelling salesman prob-
lem. However, the simulation behaviours of ADP and ACS are distinguishable,
especially with the new ACS extensions developed.

Despite this, approximate dynamic programming algorithms are new con-
sideration on solving stochastic optimization problems. Schuetz and Kolisch [9]
applied ADP to solve capacity allocation problems in the service industry. Their
algorithm, called λ-SMART, is a simulation based ADP. Their algorithm per-
formed well in terms of solution quality, computational time and memory usage.
Koole and Pot [14] applied ADP to solve a stochastic workforce scheduling prob-
lem with multi-skills in a call center. Their paper suggested a general structure to
apply ADP to this type of problem. It also presented some mathematical proofs
on the accuracy of ADP. Instead of comparing with other methods, Koole and
Pot investigated the relationship between parameters setting and the quality of
the obtained solutions.

Given the successful applications of ADP in the literature, we believe this
mechanism can also be applicable to solve the nurse scheduling problem and
hence the motivation for the work in this paper as a new research direction on
tackling nurse scheduling. This paper uses Q-learning as an ADP approach to
solve the nurse scheduling problem. The aim of Q-learning [2] is to solve any
problem with a representation based on environmental states S, possible actions
A from states, and the value of state-action pairs, called Q value. Basically, Q-
learning evaluates state-action pairs and increases or reduces the corresponding
Q value depending on the outcome (i.e. state that the state-action led to).

3 Nurse Scheduling as a Markov Decision Process

Every MDP model is summarized as {S,A, Pr(s, a), R(s, a)} and Figure 1 de-
picts the decision process for NSP it is explained in what follows. The state space
S is represented as STATE in the figure. There two types of states: pre-condition
state and post-condition state. In every MDP iteration, a state is selected as a
starting point. This state is called pre-condition state while the post-condition
state is the outcome state after making a decision. In the NSP, an example of
pre-condition state is the nurse scheduling at day 4 and the post-condition state
is the scheduling at day 5 as depicted in the figure.

The action space A is represented as ACTION in the figure. The daily re-
quirement in NSP is to select w nurses out of the total W nurses with various
shift assignment for each nurse. In the consequence, the action space for NSP
is modelled as any possible assignment in the next day for any given scheduling
period. While in order to cover the curse of dimensionality, the action space is
decomposed with two parts. The first part is to select a subset of w required
nurses (with constraints) or any number (without constraints). With these se-



Fig. 1: Transition Process Between State and Action in Markov Decision Process

lected nurses there will be wSH various shift assignment among these nurses in
total. In the consequence, the search space is decreased because only a subset
need to be constructed for iterations. Finally, the selected action will be allocated
to different nurses. As shown in figure 1, the allocation process is the outcome
to produce a post-condition state.

Pr(s, a) is the transition probability from the state in the current stage with
a selected action to the next stage. In most of the MDP models, this value will
be updated within the algorithm no matter what is the initial value. While in
the NSP, the action is the possible shift assignment in the next day. So, the
probability value is unchanged in the current implementation.

R(s, a) is the reward function for taking an action from the current stage. The
reward should be considered in two parts. In each scheduling day, there are hard
constraints and/or soft constraints to be considered. For a produced scheduling it
can be evaluated if the scheduling is in conflict with any nurse preference and this
is the hard constraint. The number of nurses scheduled or on duty is a kind of soft
constraint that is evaluated according to the daily nurse requirements. For the
selected next day scheduling we should consider the previous working patterns.
For example in most NSP models, there is a hard constraint on the maximum
number of working days. Even though the pre-condition state is feasible, the
post-condition state should be tested after the selected action. The value of the
reward will be fully described in the next section.

4 The Proposed Approximate Dynamic Programming

This section presents both dynamic programming (DP) and approximate dy-
namic programming (ADP) procedures applied to solve the NSP. A simple ex-
ample with 2 nurses, 2 shifts and a 2-days section of the whole planning period
is used below to explain the implementation of these two approaches.



4.1 Dynamic Programming Procedure

Algorithm 1 outlines the steps of dynamic programming. The NSP is divided
into several sub-problems or stages corresponding to the number of days T in
the planning period. In each stage t ∈ {1, · · · , T}, all possible daily assignments
are constructed based on the number of nurses W and the number of shifts
SH. Each daily assignment in the stage is treated as a state. In a single step of
dynamic programming, every state in the current stage t is added to the input.
This input is a half-built solution until stage t− 1. Solutions are constructed by
recursively repeating this single step from a initial stage until the final stage.

Algorithm 1: Dynamic Programming

Data: DP = (Sol, t) where t is the current stage and Sol is the solution
assignment up to the previous stage t− 1

Result: Sol the final solution
1 begin
2 if t = T then
3 return Sol;

4 else
5 NA← ConstructAssignment(t+ 1);
6 for na ∈ NA do
7 ta← Combine(Sol, na);
8 DP (ta, t+ 1);

A NSP example is presented in figure 2. The initial input of this example is
{D,N}. D is a day shift and N is a night shift. The circle in each stage represents
one assignment for the two nurses and the set of circles is the value of NA in the
algorithm. For instance, the circle with pair {D,N} in stage t + 1 means that
a day shift is assigned to the first nurse a night shift is assigned to the second
nurse in that day. The overall number of possible solutions that are constructed
by dynamic programming is 16 in this example. The solution with the optimal
value will be selected based on the objective function (2).

f = min(V +

W∑
i=1

xit × cit), t ∈ [1, · · · , T ] (2)

W is the number of nurses and t represents different stages. xit is an individual
daily nurse shift assignment and the cost is cit. V is the solution soft and hard
constraints violation that is calculated in 3. Vhc is the number of hard constraint
violations and ch is the penalty due to the violation of a hard constraint. Vsc
is the number of soft constraint violations and cs is the penalty cost due to the
violation of a soft constraint.

V (= ch × Vhc + cs × Vsc (3)



Fig. 2: Structure of NSP for Dynamic Programming

4.2 Simulation based Approximate Dynamic Programming

The approximate dynamic programming implementation in this paper is a mod-
ification from algorithm 1 that uses a simulation process. The objective function
and the recursive process are kept as in algorithm 1. Different to dynamic pro-
gramming, the essence of ADP is to only evaluate one solution per process. With
this purpose, the storage space of ADP is changed as recording the importance
of a link that connected stages t and t + 1. Our proposed ADP is an extension
of Q-Learning.
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Instead of updating V as described in the previous section, the whole process
of Q-learning is to update the Q value Q(s, a) which is the value of a pair state
s and action a. In equation (4), t is the iteration value, n is the process value, s
is the state space. One iteration in ADP is finished by completing the input to a
fully constructed solution with a number of processes. In this paper, one iteration
is finished until a feasible solution is explored. In every process, only one action
will be selected between two stages. The action selection could be random or
follow some designed rules. In our proposed algorithm, the selection method is
ε-greedy. The random and greedy selection method will be processed based on the
value of ε. This selection method is able to guarantee that Q-learning explores
a wide search space and converges into a optimum. In the nurse scheduling
problem snt is the nurse assignment combination from the initial stage 1 to stage
n in current the iteration t. a is the action space. ant is the links between stage
n − 1 and n in iteration t. A is the set of all links between any two continuous
stages. The meaning of equation ant is to select the next action or links from
the current stage to the next stage. The structure of this approximate dynamic
programming is outlined in algorithm 2.



Algorithm 2: Q-Learning

1 begin
2 Initial value of α, ε and max iter;
3 i← 0,M ← Empty;
4 while i < max iter do
5 Sol← Empty;
6 for j ← 1 to T do
7 c← RandomNumberGenerator();
8 NA← ConstructAssignment(t);
9 if c < ε then

10 a← RandomSelection(NA);

11 else
12 a← GreedySelection(NA);

13 q(Sol, a) = FitnessFunction(Sol, a);
14 if (Sol, a) ∈M then
15 Q(Sol, a) = GetQV alue(Sol, a);

16 else
17 Q(Sol, a) = 0;

18 Q(Sol, a)← α ∗ q(Sol, a) + (1− α)Q(Sol, a);
19 Insert(M, (Sol, a));
20 Sol← Combine(Sol, a);
21 j ← j + 1;

22 Update(α, ε);
23 i← i+ 1;

Algorithm 2 outlines the steps of Q-learning on solving NSP instance. These
steps are explained with the example 2. A set of parameters need to be initialized:
α is an importance factor and ε is a learning rate. Parameters with higher values
are able to guarantee Q-learning exploring enough of the search space. M will
record the q value of a link between two stages.

The number of processes per iteration in this example is 2, and its output
is moved to the next stage. For any given iteration, the initial input is {D,N}
at day t. In the first process, there are four actions leading to the next stage.
The method to select an action is based on the random value c. If c is less than
ε then the action will be randomly selected from the four actions. Otherwise,
actions with lowest Q value will be selected. For example {D,D} is selected and
there is a state-action pair {{D,N}, {D,D}}. This selection will be evaluated
through both the daily preference cost of {D,D} and the validity of this pair.
In the next step, the Q value of the pair will be updated based on line 18 and
added to M . Before starting a new process, part of a temporal solution will be
constructed based on the selected action. All the rest processes are repeated
until a solution is fully explored. Q-learning will start a new iteration until this
solution is feasible.



One possible solution in the last iteration could be {{D,N}, {D,D}, {N,N}}.
With a higher value of ε this solution will not be repeated in the next few itera-
tions. Moreover, a number of state-action pairs will be evaluated until a feasible
solution is found. These two points will guarantee the Q-learning process to
explore more of the search space.

After a number of iterations, the greedy selection method will be considered
for evaluating all selected state-action pairs. With this method, new pairs will
not be added to the storage space M while it will be helpful to highlight the
important pairs among all previous experience. At the end of the whole algo-
rithm, there is a temporal solution that records the best solution found during
the iterations. While there is also the storage space M that indicates which pair
is more important (with lower value) for constructing the optimal solution.

5 Experiments and Results

The Q-learning and dynamic programming (DP) algorithm presented in the
previous section was implemented in Java and all computations were performed
on an Intel (R) Core (TM) i7 CPU with 3.2 GHz. Some of the code implemented
was extended from the BURLAP framework [15]. One sub-group of instances was
considered in these experiments. There are 7290 instances in this sub-group,
each with 25 nurses, 7 scheduling days and 4 shift types. The set of hard and
soft constraints were selected from the Case 1 file. The detialed descriptions of
the instances is given in [16, 8]. Maenhout and Vanhoucke [17] published their
mechanisms to solve the NSPLib instances with the particular case. Here, results
from the proposed ADP are compared to the best known solutions from the
literature.

5.1 Comparing with Dynamic Programming Procedure

Table 1 shows a summary of the experimental results from applying Q-learning
and DP to solve the same selected NSP instances. The performance of the pro-
posed Q-learning and DP methods is compared using four aspects. No. Solution
is the number of solutions that each algorithm found. Avg. Cost is the average
objective cost of the solutions. Avg. Violation is the average soft constraint vio-
lations in the solutions. Avg. Time is the average time to generate the solutions.
The parameters values for the Q-learning method to produce the results shown
in the table are the best after tuning. The initial value of α and ε are both set
to 0.9 and the maximum number of iterations is set to 500.

No. Solution Avg. Cost Avg. Violation Avg Time

Q-Learning 7290 306.0798 0.471056241 9.946227709

DP Could not be solvable

Table 1: Comparison of Q-learning with Dynamic Programming



The contribution of approximate dynamic programming is to extend the us-
age of dynamic programming on larger instances. To give an illustration, the
selected instances are not solvable by dynamic programming due to the state
space is exceeded the memory availability. Instead of providing an outcome, the
dynamic programming algorithm will return an error message, as exhibited on
the last row. In comparison, the current experiment results are with great im-
portance to support that the approximate dynamic programming is an improve-
ment from the standard approach especially on the nurse scheduling problem.
Not only the computational speed but also the algorithm efficiency is improved
by considering only the useful partial state space.

In our experiments, the outcome of one iteration is to construct and evaluate
a feasible solution, as described in the last section. Constructing such feasible so-
lution might cause a large number of processes because of the infeasible solutions.
The value state-action pairs that construct an infeasible solution are updated
within the iterations. In the consequence, the number of evaluations within one
iteration is larger than those required for a single feasible solution. This is also
the reason why the average computation time is longer when comparing to other
mechanisms in the next section. Figure 3 shows the solution convergence for a
problem instance. The number of iterations is set to 2000 but the objective func-
tion value settles at around 817 in iteration 453 (instead of 500) for this problem
instance. Experimental results show similar results for other instances.

50 100 150 200 250 300 350 400 450 500 550 600 650

800

900

1,000

1,100

1,200

1,300

1,400

1,500

1,600

Iterations

Be
st

Re
sul

ts
Fo

un
dU

pt
oC

urr
ent

Ite
rat

ion

Fig. 3: The Convergence of Objective Value Updating for Sample Instance

5.2 Comparing with Meta-Heuristic Approaches

A number of published papers describe approaches to solve the NSPLib in-
stances. For comparison in this paper we use the results from [17] because they
provide detailed results for every instance. That paper combined two meta-
heuristics, an Electromagnetism Approach (EA) and Scatter Search (SS). Com-
parison in carried out using the 5 aspects shown in table 2.



No. Solution Avg. Cost Avg. Violation Avg Time Achievements

Q-Learning 7290 306.0798 0.471056241 9.946227709 84.79%

EA and SS 7290 305.776 0.53 0.532 88.27%

Table 2: Comparison of Q-Learning with Electromagnetism (EM) and Scatter
Search (SS) [17]

The achievement is calculated using equation 5. V (Approach) is the number
of solutions by an approach that equal to or better than the others. For example
V (ADP ) is the number of solutions solved by ADP that at least the same as [17].
The average objective cost, violation and achievements for both the proposed
Q-learning and meta-heuristics are very close, a difference within 5%. From
this point of view, the quality of our solutions is comparable with the others
and the approximate dynamic programming could make contributions to the
state of art for the Nurse Scheduling Problem. While the computation time
of solving instances by meta-heuristics approaches are much faster than the
proposed algorithm. This shortcoming still encouraged our research to make an
improvement on Q-learning or approximate dynamic programming to make it
more efficient in the future studies.

Achievement(%) = V (Approach)/7290× 100% (5)

6 Conclusion

This paper proposed an approximate dynamic programming (ADP) algorithm
to solve the nurse scheduling problem (NSP). For this, the NSP is modelled
as a Markov Decision Process. Then, a typical ADP algorithm, Q-Learning,
is applied to generate solutions. Instead of evaluating the whole state-action
space like in standard dynamic programming, ADP only works on a subset of
the space, the most promising state-actions according to the objective function.
The experimental results here support the idea of modelling NSP as a Markov
Decision Process and provide evidence that ADP exhibits very good performance
by achieving as good solutions as heuristics proposed in the literature.

This paper has shown that ADP is able to solve effectively a range of NSP
instances that dynamic programming is not able to solve. Although the instances
solved are of realistic size, it is still a challenge to solve larger instances with ADP.
Hence, future work will focus on speeding up ADP and make improvements on
the procedure so that applying it to solve more challenging problem instances
becomes practical in terms of computational time. This paper demonstrates
that applying ADP to solve difficult combinatorial optimization problems like
workforce scheduling is a viable and interesting research direction.
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