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Abstract 

An understanding of ecological and evolutionary responses to global environmental change 

requires both a robust measurement of the change that is occurring and a mechanistic 

framework for understanding the drivers of that change. Such a requirement provides a 

challenge because biological monitoring is often ad hoc, and mechanistic experiments are 

often performed under highly simplified conditions. This study integrates multiple datasets 

to evaluate our current knowledge of the measurement and mechanism of phenological 

shifts in a key pollinator taxon: the hoverflies (Diptera: Syrphidae). First, two large, 

complementary and independent monitoring datasets are used to test for trends in 

phenology: an ad hoc national recording scheme containing >620,000 records, and 

standardised monitoring with consistent methods over 30 years. Results show that ad hoc 

and standardised recording data give quantitatively the same value for phenological 

advance in hoverflies (ca. 12 days°C
-1

 on average at the beginning of the flight period), 

supporting the value of biological recording for the measurement of global ecological 

change. While the end of the flight period appears static in ad hoc recording, the 

standardised dataset suggests a similar advance as in the beginning of the flight period. 

Second, an extensive traits dataset and a novel database of laboratory-derived 

developmental data on Syrphidae (153 published studies) are used to test for mechanistic 

patterns in phenological shifts. The only species trait that influenced phenology was 

voltinism, where species with more generations per year exhibit stronger phenological 

advances. We demonstrate considerable variation in the laboratory-derived sensitivity to 

temperature but this does not match field-derived measures of phenology. The results 

demonstrate that, as for many taxa, we have a strong understanding of the patterns of global 
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ecological change but that we currently lack a detailed mechanistic understanding of those 

processes despite extensive research into the fundamental biology of some taxonomic 

groups. 

Keywords: climate change, phenology, pollination, insect, hoverfly, Syrphidae, 

development, temperature 
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Introduction 

Global climate change drives three main categories of biological response: species are 

shifting their geographical ranges towards the poles ("range shifts", Chen, et al. 2011), 

transitioning between life-history stages earlier ("phenological shifts", Menzel, et al. 2006), 

and becoming smaller at maturity (Daufresne, et al. 2009). Although exceptions exist to 

each, these patterns appear to be broadly consistent across taxa, suggesting general 

biological phenomena (Parmesan 2006). Phenological shifts, in particular, have been 

detected in a range of taxa, including flowering plants, insects, amphibians, birds, and 

mammals (for a review see Thackeray, et al. 2010). The lack of long-term monitoring for 

many taxa has necessitated the use of various types of biological records including 

standardised monitoring schemes, ad hoc recording networks, and digitised museum 

specimens (Powney and Isaac 2015). Although detailed methodologies have been 

developed that allow substantial insight from these datasets (Hassall and Thompson 2010, 

Isaac, et al. 2014, Moussus, et al. 2010), there are few cases in which ad hoc data derived 

from citizen science can be cross-validated using standardised datasets. 

 

Many studies, such as those reviewed above, have described responses to climate change in 

the field, but there has been less effort directed towards the mechanisms underpinning those 

patterns. A mechanistic understanding of global change requires the study of particular 

phenomena under controlled conditions with links (often via mesocosms or field trials) to 

observations in the natural world. Such programmes of research span the continua of 

ecological validity and ecological relevance to provide a comprehensive answer to complex 

questions, but are rare due to the requirement for substantial research effort. Notable 
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exceptions include the International Tundra Experiment, which has used experimental 

warming compared against field monitoring to demonstrate that climate is influencing plant 

communities (Elmendorf, et al. 2015), experimental rearing of birds to demonstrate 

phenological advance (Visser, et al. 2009), and aquatic mesocosm experiments that 

simulate future warming scenarios (e.g. Eklöf, et al. 2012). However, there is a substantial 

gap in our knowledge of how (or, indeed, if) fundamental aspects of species biology at the 

level of the organism are causally related to large-scale spatial and temporal patterns in 

abundance and diversity.  

 

The hoverflies (Diptera: Syrphidae) have received relatively little attention in the literature 

relating to global change despite being a significant contributor to pollination (Larson, et al. 

2001, Ssymank, et al. 2008), particularly in higher latitudes, and playing a commercially 

important role in biocontrol of agricultural and horticultural pests (Tenhumberg and 

Poehling 1995). Successful pollination and biocontrol are dependent upon maintaining 

temporal associations with particular resources (flowers, pests), making the Syrphidae 

particularly reliant upon seasonal timing to maximise their fitness and their associated 

ecosystem services. However, Syrphidae also exhibit a range of different traits that might 

influence exposure to environmental conditions with different degrees of buffering of 

ambient temperature. Adults feed on pollen and nectar, but larvae exhibit a wide range life-

history strategies including saprophagy, commensalism with social insects, and above-

ground carnivory (Rotheray and Gilbert 2011). Species also differ in their seasonal 

development in the UK, with voltinism ranging from a single generation to up to four 

generations, and other species exploiting southern environmental conditions before arriving 
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in the UK as migrants. While some species overwinter as larvae, others overwinter as adults. 

As such, a range of traits may be expected to influence the extent to which phenological 

shifts vary between species. A previous study of 20 hoverfly species in the UK sampled at a 

single site between 1991 and 2007 showed a range of phenological shifts in first sighting, 

last sighting, peak abundance and total abundance (Graham-Taylor, et al. 2009).  A more 

detailed analysis of a 20-year dataset of syrphid abundance and flowering times showed 

that syrphids tracked plant phenology despite changing climate (Iler, et al. 2013). Other 

studies have tended to consider syrphids along with other components of the pollinator 

community as a functional pollinator unit without investigating more nuanced patterns 

within the group (Memmott, et al. 2007). Work is still needed to describe species-level 

shifts in phenology over long time periods of environmental warming, and to explore the 

mechanistic basis for the phenological shifts that have been observed.  

 

Previous studies have called for greater integration of ecological and physiological aspects 

of phenology, and the clarification of organism- (i.e. the physiological basis for changes in 

development time) vs population-level (i.e. the statistical distribution of phenological 

events across multiple individuals) phenomena (Forrest and Miller-Rushing 2010). This 

study presents a complementary view of syrphid phenology using both approaches. At an 

organism-level we have produced a novel database of studies that have described the 

relationship between temperature and development in syrphids, and we make use of an 

extensive traits database for the group. At the population-level we make use of data derived 

from citizen science on syrphid occurrence collected using an ad hoc methodology, 

combined with a second long-term (30-year) dataset of monthly, standardised sampling in a 
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single location. All datasets are complemented by an extensive phylogeny based on 

morphological and molecular data. These data are used together to provide robust tests of 

two central hypotheses: (i) UK Syrphidae are advancing their phenology in response to 

recent climate change; and (ii) species-level phenological shifts are influenced by traits that 

alter sensitivity to environmental temperature (laboratory-derived developmental rates, 

migration, voltinism, larval food source, saproxylic feeding mode, commensalism, and the 

overwintering stage).  

 

Methods  

Phylogenetic data 

We take two approaches to constructing a phylogeny of UK Syrphidae: the first tree is 

based on expert opinion combined with morphological data (hereafter “Expert tree”), and 

the second is a mixed morphological and molecular tree derived using Bayesian methods 

(“Bayesian tree”). For the first genus-level tree, the deeper phylogenetic relationships were 

derived from comparative morphology (Rotheray and Gilbert 1999) and expert opinion 

(FSG). Species were added to genus tips with random structure and branch lengths were 

estimated using the methods of Grafen (Grafen 1989). The final Expert Tree can be found 

in Figure S1. For the second tree, larval morphological data from Rotheray and Gilbert 

(1999) were combined with  barcoding data  to construct a new phylogeny for 123 species 

(see Table S1 for sequence reference codes). COI sequences were accessed from the 

Barcode of Life Data Systems (BOLD) (http://www.barcodinglife.org/) using the bold 

package in R (Chamberlain 2014), converted to FASTA using seqinr (Charif and Lobry 

2007) and aligned using MUSCLE (Edgar 2004). The combined morphological and 
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molecular data were used to construct a phylogenetic tree based on Markov Chain Monte 

Carlo (MCMC) methods (Nylander, et al. 2004) in MrBayes (v3.2; Ronquist, et al. 2012). 

A distance matrix based on DNA similarity was created based on Kimura's 2-parameter 

distance (Kimura 1980), from which a neighbour-joining tree was constructed using 

phangorn (Schliep 2011). The final Bayesian Tree can be found in Figure S2. To evaluate 

congruence between the Expert and Bayesian trees, the trees were reduced to their shared 

taxa (n=95) and a Mantel test was used to compare the matrices of pairwise phylogenetic 

distances between the trees. This showed a very strong correlation (r=0.756, p<0.001), 

confirming the similarity of the trees generated using the two approaches. Qualitatively, as 

with so many phylogenies based on limited molecular data, the Bayesian tree has some 

basal peculiarities (e.g. Anasimyia as basal, Volucella as basal to all non-microdontine 

syrphids), but further up it resembles the Expert Tree in many respects, hence the strong 

correlation in the Mantel test. While we ran all phylogenetic analyses using both trees, the 

results were quantitatively similar and so we present only the data from the Expert Tree, 

which is likely to have more accurate resolution of basal relationships and which contains a 

greater number of species (n=257, compared to n=123 for the Bayesian Tree). A 

comprehensive set of statistical outputs can be found with (i) no phylogenetic control, (ii) 

control using the Bayesian tree, and (iii) control using the Expert tree in the Supplementary 

Information. 

 

Measurement of shift: Ad hoc recording 

Hoverfly sightings were provided by the Hoverfly Recording Scheme (HRS, accessed 

28/01/2015), which at time of access contained 621,407 relating to 288 species and showed 
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a strong period of growth through to 1990 (Figure 1A) over a period of recent warming 

(Figure 1B). The HRS, like other datasets derived from citizen science, requires a phase of 

data validation and verification (Ball and Morris 2012). Validation of HRS data involves 

checking that grid references, dates, and species names are formatted correctly. Verification 

uses the National Biodiversity Network Record Cleaner software to check for consistency 

in grid references and dates (e.g. a grid reference may be formatted correctly, but located at 

sea). Species identification is then verified by checking that the record is consistent with the 

distribution and phenology of the species, with reference to photographs accompanying the 

record where available. Further evidence is requested from the recorder in the case of 

uncertain records, including checking of specimens. Such data quality checks help to 

reduce errors in the dataset. Records were pooled for each species in each year, and the 

distribution of flight dates was used to calculate phenological variables – an approach that 

has been shown to produce reliable results using a similar dataset of UK butterfly records 

(Bishop, et al. 2013). Due to a possible confounding effect of latitude on phenology (e.g. 

Hurlbert and Liang 2012), we present data for only the 371,889 records of 272 hoverfly 

species found south of a line denoting a northing value of 300000 on the British National 

Grid (300 km north of the origin of the grid, 52.45-52.60N due to the relative curvature of 

the projected British National Grid). Percentiles have been shown to be more robust to 

variation in recorder effort than absolute dates (Moussus, et al. 2010), and so the 5
th

, 50
th

 

and 95
th

 percentiles of the distribution of flight dates (hereafter FD0.05, FD0.50 and FD0.95, 

respectively) were calculated for each species in each year between 1960 and 2014 in 

which that species was recorded 30 or more times. Species were included only if there were 

30 or more records in each of 20 or more years (Sparks and Menzel 2002; n=215). 
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Measurement of shift: Standardised recording 

Syrphidae abundance data are available from weekly records carried out at a single 

recording site by a single researcher (JO) in Leicester, UK (52.645N, -1.079E), between 

1972 and 2001 using a standard Malaise trap. This remarkable time series involved the 

collection of 60,689 specimens of 95 species of syrphid across 821 weekly samples over 

this 30-year period (for details on this study and many more conducted at the same site, see 

Owen 2010). Data for the commoner and easily identified species are used here: voucher 

specimens are in JO’s collection. The dataset is also independent of the HRS dataset, 

having not been submitted to the recording scheme and falling ca. 5 km outside of the 

region of the UK on which our HRS analysis focuses. We calculate FD0.05, FD0.50, and 

FD0.95 dates as described above for the HRS, using the standardised sampling data. The 

same constraints were used: species were included only if there were at least 20 years of 

data with at least 30 specimens caught.  

 

Temperature data 

A daily temperature record was selected for each of the biological recording datasets. For 

the HRS dataset, the Central England Temperature (CET) series (Parker, et al. 1992) gives 

a daily aggregate temperature measurement for central England. For the standardised 

dataset, daily temperatures were taken from a weather station situated 10.0 km from the 

sampling site (Newtown Linford, UK station source ID=569, 52.680°N, -1.216°E). 

 

Mechanisms of shift: Species traits 
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We extracted five traits from the SyrphTheNet (StN) traits database (Speight, et al. 2013): 

(i) food source of the larvae (microorganisms, n=72; predators, n=133), (ii) number of 

generations per year (1-4), and whether the species was (iii) commensal (yes, n=24; no, 

n=193), (iv) saproxylic (yes, n=36; no, n=181), or (v) migratory (yes, n=22; no, n=195). 

Small numbers of species exhibiting rare trait states were excluded in analyses of the food 

source of the larvae (herbivores, n=1; mixed microorganisms/herbivore, n=6; mixed 

microorganisms/predators, n=3; omnivorous, n=2). Only species overwintering in the larval 

stage were present in the dataset after the exclusion of rare species, and so this trait was 

disregarded. StN uses fuzzy coding where multiple trait states are observed to allocate 

different species according to their association with particular trait states using a scale from 

0 to 3: 0 = no association , 1 = minor association, 2 = moderate association, 3 = maximum 

association. Voltinism is classified on a four point scale (<1, 1, 2, >2 generations per year) 

and these were converted to intermediate numbers of generations per year by reclassifying 

into four categories (1, 2, 3, 4) and calculating a mean voltinism score weighted by the 

association. 

 

Mechanisms of shift: Developmental rates 

Data on developmental rates through different life-history stages were extracted from 153 

studies, which provided 811 records of temperature and development rate for at least one 

life-history stage, and 225 measures of total pre-adult development (oviposition-eclosion) 

under specified temperatures (Table S2). For each study, the temperature of rearing was 

extracted along with the duration of life-history stages: egg duration, larval duration 

(including of individual instars, if provided), pupal duration, and total duration. Where 
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maximum and minimum values were presented without averages, the mean was assumed to 

be the midpoint of minimum and maximum.  Ideally total pre-adult developmental duration 

would be used in the analysis, but this was present for a smaller subset of species than 

individual life-history stages and so larval and pupal duration were used.  Egg, larval, 

pupal, and total development times are highly correlated, as would be expected from insect 

development rate isomorphy (Jarośík, et al. 2004; see Figure S3 for details).  For each 

species, where sufficient data existed, two measures of developmental rate were calculated.  

The first was the regression slope between the developmental rate (1/development time) 

and the rearing temperature, to give a measure of the thermal sensitivity of development in 

each species.  The second was a mean estimate of development rate at temperatures 

between 20 and 22C which allowed comparable measures of developmental rate for a 

greater number of species. These temperatures were chosen to maximise the number of 

species included. 

 

Data analysis 

Measurement of phenological shift - Linear regression models were conducted with each of 

the three flight dates as the response variable and with either temperature or year as 

predictors. The strength of the relationship between temperature or year and phenology was 

represented by the Pearson correlation coefficient and the rate of change in phenology was 

represented by the regression coefficient for temperature (days°C
-1

) or year (daysyr
-1

).  

Additional results are shown in the supplementary materials for species with fewer than 20 

years of data for completeness. To assess whether the hoverfly community was advancing 

its phenology on average, we fitted an intercept-only generalised least squares (GLS) model 
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to the data using the gls function in the nlme package (Pinheiro, et al. 2013) in R (R 

Development Core Team 2013). We then incorporated the phylogenetic data for the subset 

of species that were included in our Expert Tree (see Supplementary Information; n=257) 

using phylogenetic GLS (PGLS) in the ape package (Paradis, et al. 2004) in R. To test for 

agreement between the phenological shifts recorded in ad hoc and systematic datasets, we 

performed Pearson correlations on the correlation and regression coefficients for FD0.05, 

FD0.50, and FD0.95 against temperature. Additionally, we tested the hypothesis that the 

phenological shifts detected using ad hoc recording were quantitatively similar to those 

from standardised monitoring using reduced major axis (RMA) regression to fit a best-fit 

regression slope to the data. RMA allows for the fitting of regression models where there is 

error in both variables, as is the case in the estimation of phenological shifts and 

developmental rates (Legendre and Legendre 1998). If the slope did not differ significantly 

from a gradient of 1 then we considered there to be agreement between the two forms of 

measurement. 

 

Mechanism of phenological shift - The relationship between the three flight dates
 
and both 

temperature and year was compared across each of the five traits (larval food source, 

voltinism, commensalism, saproxylism, migration) using generalised least squares (gls) in 

nlme. Phylogenetic autocorrelation was incorporated into models using a correlation matrix 

under a Grafen covariance structure implemented in ape. All traits were treated as 

categorical variables apart from voltinism, which was treated as a continuous variable. To 

test whether thermal dependence of development could be used to predict phenological 

shifts in biological records, we used RMA regression to test for a relationship between 
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thermal sensitivity of larval development, larval and pupal development rate at 20-22C, 

and the correlation and regression coefficients of FD0.05 against annual temperature using 

both the ad hoc and systematic recording datasets. RMA was applied using the lmodel2() 

function in the lmodel2 package (Legendre 2011). 

 

Results 

Measurement of shift: Ad hoc recording 

Of the 215 species studied, 200 (93.0%) exhibited a negative correlation between FD0.05 

and year (155 [72.1%] statistically significant), and 198 (92.1%) exhibited negative 

correlations between FD0.05 and temperature (137 [63.7%] statistically significant; Figure 

2B). However, as shown in Figure 2C and D, the proportions of significant negative 

correlations between temperature and the flight dates decline substantially in the middle 

(189 negative, 73 significant and negative, Figure 2C) and end (97 negative, 12 significant 

and negative, Figure 2D) of the flight period. Data for the relationship between year and the 

flight dates show a similar pattern: the proportions of significant negative correlations 

between year and the flight dates decline substantially in the middle (151 negative, 50 

significant and negative) and end (37 negative, 3 significant and negative) of the flight 

period (Table S3). These patterns appear to indicate an extension of the beginning of the 

flight period under climate warming without an accompanying extension of the end of the 

flight period. Figure 2A also suggests that the most-recorded species (i.e. those with the 

greatest numbers of years of data included in the analysis) exhibit the strongest trends.  
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The extents of the phenological shifts also varied among the three sections of the flight 

period.  The regression results show that the mean change in FD0.05 in response to 

temperature was -12.475 daysC
-1

 (95%CI -13.818 to -11.132), while shifts of FD0.50 were 

-7.082 daysC
-1

 (-6.074 to -8.090) and shifts of FD0.95 were 0.649 daysC
-1

 (-0.475 to 

1.773; data are summarised in Figure 2 with full data for species-level responses to 

temperature and year in Table S3).  PGLS showed that the sample of Pearson correlations 

and regression coefficients were significantly different from zero after control for 

phylogenetic autocorrelation in FD0.05 (correlation: t=-16.355, p<0.001; regression: t=-

11.208, p<0.001) and FD0.50 (correlation: t=-10.965, p<0.001; regression: t=-9.284, 

p<0.001) but not FD0.95 (correlation: t=0.556, p=0.579; regression: t=0.981, p=0.329; 

n=117 in all cases). Significance tests showed that there was no significant phylogenetic 

signal in mean species FD0.05 (λ=0.219, p=0.312) but a phylogenetic signal was present in 

FD0.50 (λ=0.578, p=0.001) and FD0.95 (λ=0.608, p=0.001).  There was no evidence of a 

phylogenetic signal in the correlation or regression coefficients of temperature against any 

flight date (λ<0.001, and p≈1 in all cases). Comprehensive analysis of phylogenetic signal 

and significance of community shifts using Bayesian and Expert trees can be found in 

Table S4.  

 

Measurement of shift: Standardised recording 

Of the 16 species for which there were sufficient records to perform the analysis, 15 

(93.8%) showed negative correlations with TEMP, with 5 significant negative correlations, 

and 13 species (81.3%) exhibited negative correlations between FD0.05 and TIME of which 

3 were significant negative relationships (Figure 2F). The extents of the phenological shifts 
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for the standardised monitoring did not vary among the three sections of the flight period as 

was the case in the HRS analysis.  The mean change in FD0.05 in response to temperature 

was -12.139 daysC
-1

 (95%CI: -17.102 to -7.176, Figure 2F), while shifts of FD0.50 were -

11.832 daysC
-1

 (-16.55 to -7.114, Figure 2G) and shifts of FD0.95 were -8.854 daysC
-1

 (-

12.371 to -5.337, Figure 2H; see Table S6 for the full results). PGLS showed that the 

sample of Pearson correlations and regression coefficients were significantly different from 

zero after control for phylogenetic autocorrelation in FD0.05 (correlation: t=-7.100, p<0.001; 

regression: t=-5.151, p<0.001), FD0.50 (correlation: t=-5.068, p<0.001; regression: t=-4.978, 

p<0.001), and FD0.95 (correlation: t=-5.663, p<0.001; regression: t=-5.185, p<0.001). These 

results suggest that the entire flight period of the species involved in the Owen analysis is 

shifting at approximately the same rate at the front, middle and end of the period. 

Comprehensive analysis of phylogenetic signal and significance of community shifts using 

Bayesian and Expert trees can be found in Table S4.  

 

Comparison of ad hoc and standardised recording datasets 

There were significant correlations between the regression (R=0.470, p=0.006, n=32, 

Figure 5A) and correlation coefficients for the relationship between FD0.05 and temperature 

(R=0.442, p=0.011, n=32, Figure 5B) between the Owen and HRS analyses.  RMA showed 

that the intercept did not differ significantly from zero (-9.036, 95% CI -13.786-3.468) and 

the slope of the relationship did not different significantly from 1 (0.734, 95% CI 0.357-

1.726). Due to concerns over leverage effects from outliers in Figure 5A, we calculated hat-

values (a measure of the influence of a point on a regression slope) for all points and 

excluded any points with hat-values greater than 2x the average hat-value. Recalculating 
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the RMA regression with those high leverage points excluded gave a slope of 1.051 (95% 

0.294 to -7.506) and an intercept of -3.915 (95% -13.530 to -112.635). The negative upper 

confidence intervals arise from the upper bound of the confidence interval passing the 

vertical, and so the resulting bound is negative. Hence, the confidence bounds are 

substantially wider without the high leverage points and so the results should be treated 

with caution. However, there is evidence that the standardised and ad hoc measures of 

phenology exhibit agreement both qualitatively and quantitatively in terms of the advance 

of phenology in hoverflies. 

 

Mechanisms of shift: Species traits 

The only trait for which there was evidence of a link with phenological shift (the strength of 

the phenological response in FD0.05, as indicated by the correlation coefficient between 

FD0.05 and TEMP or YEAR) was voltinism, where a greater number of generations per year 

were associated with stronger phenological advances (Figure 3A, Table 1). A 

comprehensive traits analysis of phenological shifts using Bayesian and Expert trees can be 

found in Table S5. Although an analysis of trait-dependence of shifts in the Owen dataset 

was carried out, the small sample sizes (16 species) led to weak statistical power. Results 

for these tests are shown in Table S5 and show no convincing patterns after accounting for 

multiple tests. 

 

Mechanisms of shift: Developmental rates 

The full dataset showed a strong relationship between development time and temperature 

when species were pooled for egg (R=0.523, p<0.001, n=352), larval (R=0.283, p<0.001, 
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n=565), pupal (R=0.412, p<0.001, n=520) and total development (R=0.341, p<0.001, 

n=240). However, for those species that were well-represented in the literature 

(measurements taken at >2 temperatures) there were inconsistent temperature-development 

relationships. Episyrphus balteatus showed a positive relationship but with substantial 

variability, Eumerus vestitus showed a strong relationship with low variability, and Scaeva 

pyrastri showed little change in development rate with temperature (Figure 4). Model II 

regression showed no relationship between species’ larval development rates and field 

measures of phenological shift (Figure 3B), but there was a significant positive relationship 

between pupal development rate at 20-22°C and the correlation of FD0.05 and temperature 

(r=0.661, p=0.014, n=13, Figure 3C), suggesting that slower development at those 

temperatures was associated with a stronger phenological response. Although there was 

evidence of a negative trend in the relationship between development-temperature 

regression coefficients and the rate of phenological change (indicating greater phenological 

advance in species for which there is a greater acceleration in development as temperature 

increases), the sample size does not allow any firm conclusions (Figure 3D).   

 

Discussion 

Through the integration of multiple strands of biological evidence – laboratory rearing 

experiments, phylogenetics, traits analysis, field ecology and citizen science – this study 

has provided a comprehensive attempt to measure and explain the phenological shifts of a 

key pollinator taxon. Strong phenological shifts were found that were consistent across both 

standardised monitoring (-12.139 daysC
-1

, 95%CI: -17.102 to -7.176) and citizen science 

approaches (-12.475 daysC
-1

, 95%CI -13.818 to -11.132). Not only do these two methods 
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provide congruent estimates of the aggregate phenological advances within the Syrphidae, 

but there is also evidence of a correlation at a species-level between the rate of 

phenological shift. However, physiological relationships between temperature and 

development derived from laboratory studies show equivocal links to species-specific 

phenological shifts in the field. Although there is a range of traits that could conceivably 

influence phenology in this diverse taxon, only species with greater numbers of generations 

in each year exhibit stronger phenological shifts accounting for evolutionary relationships 

between taxa. Finally, a phylogenetic signal seems to be present in the average timing of 

the middle and end of the flight period, but not the beginning or the rates of change in 

phenology. 

 

The responses of British hoverflies to environmental warming are striking both in their 

strength and their consistency. Figure 2 suggests increasing consistency among species as 

the number of years of recording increases, which is characteristic of a more accurate 

estimation of an average effect size. Previous analyses of UK hoverflies have provided 

limited data on interspecific variation such that it is not possible to compare those data with 

the result from the present study (Graham-Taylor, et al. 2009). However, it is clear that the 

trends observed are qualitatively similar: there is a considerable advance of the beginning 

of the flight period with a less clear trend for the end of the flight period, suggesting an 

elongation of the period of activity. The only other study of syrphid phenology also 

provided results that were not focused on particular syrphid species’ responses, rather 

expressing change in terms of date of snowmelt or degree day accumulation (Iler, et al. 

2013). However, again there is a strong climatic signal in Iler et al.’s data that corresponds 
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with the strength of the results observed in the present study. Taking the change in 

phenology per year from Table S3, we see that the mean shift in FD0.05 is 0.601 (±0.057 

SE) daysyear
-1

, which is similar to the 0.531 daysyear
−1

 reported by Graham-Taylor et al. 

(2009), and both of which are considerably higher than the 0.25 daysyear
−1

 reported in the 

meta-analysis of Menzel et al. (2006).  However, it is worth noting that the durations of the 

studies and metrics used are different in all three cases. We present our raw results in the 

supplementary information such that future researchers are able to provide a clearer 

comparison with our findings. The observed advances in the start of the flight period were 

around 12 days°C
-1

.  This is considerably greater than the shifts recorded in UK flowering 

plants of between 1.7 and 6.0 days°C
-1

 (Fitter and Fitter 2002), 4 days°C
-1

 (Fitter, et al. 

1995), or 2-10 days°C
-1

 (Sparks, et al. 2000), in line with previous studies showing greater 

rates of advance in insects than in plants (Gordo and Sanz 2005, Visser and Both 2005).  

 

Phylogenetic correlation in phenology has been shown to be inconsistent across other taxa. 

Large-scale analyses of plant phenology suggest that there is a strong phylogenetic pattern 

in the cues to which plants are responding (Davies, et al. 2013). Some more focused studies 

have also detected a phylogenetic signal in phenological shifts both through time and with 

increasing temperature (Willis, et al. 2008), while others have found a pattern with 

temperature but no shift over time (Davis, et al. 2010). In line with our findings, plant 

communities across the northern hemisphere have been shown to exhibit strong 

phylogenetic signals in the timing of flowering, but not in the response of those flowering 

dates to temperature (Wolkovich, et al. 2013). Other studies have shown that only the first 

flowering period and peak flowering period were phylogenetically-correlated, while last 
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flowering and length of flowering period were not (CaraDonna and Inouye 2014). Insect 

phenology shows a degree of phylogenetic correlation where groups of related species 

share traits that impede responses to climate change (e.g. the egg diapause in Odonata, 

Hassall, et al. 2007). However, it may be that where traits are more labile the phylogenetic 

signal can be lost and the traits themselves constitute the main predictor of species 

responses to climate (e.g. butterflies, Diamond, et al. 2011). Our observation that the flight 

period itself is phylogenetically correlated but the response to change is not suggests that 

the flight period under relatively stable conditions is cemented in place by an accumulation 

of other traits that are not temperature sensitive. Under the highly dynamic conditions of 

contemporary climate change, only those species that have not accumulated additional 

phenological cues can respond rapidly. Hence, there may be an antagonistic effect between 

evolutionary inertia represented by an accumulation of non-thermal phenological cues 

during periods of relative climatic stasis (e.g. glacial maxima and minima), and the 

ecological plasticity that enables species to shift rapidly when climate begins to change 

(e.g. relatively rapid climate shifts during glacial transitions). 

 

The data collected from a large, ad hoc recording network as a part of the Hoverfly 

Recording Scheme are shown to correlate with data from a standardised survey spanning 30 

years, although interesting differences are present. The fact that the end of the flight period 

does not show a significant advance in the HRS data, but does show a significant advance 

in the systematic recording supports suggestions that recorders focus on early sightings in 

recording schemes (Bishop, et al. 2013). That the end of the flight in the systematic dataset 

appears to be advancing to the same degree as the beginning of the flight period suggests 
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that phenological decoupling in syrphid-plant pollinator networks may not be mitigated by 

greater overall activity periods (as suggested by Iler, et al. 2013). While a growing number 

of computational and statistical techniques have evolved to deal with the complexities of 

varying recorder effort in heterogeneous biological record datasets (Isaac, et al. 2014), 

more reassuring is the fact that in this analysis there is evidence of congruence between the 

ad hoc data and a standardised dataset. What is unclear is to what extent the single 

standardised dataset is a “true” reflection of the biological signal, and hence the validation 

of biological records would certainly benefit from multiple, independent comparisons. 

Because effort in citizen science programs is often expended to check data validity at point 

of collection (e.g. Newman, et al. 2003), it seems reasonable to suggest that each long-term 

citizen science initiative dedicate a small portion of its resources to these “anchors” against 

which the larger datasets can be compared. It would be of great interest to see whether 

other long-term, standardised monitoring sites (e.g. moth, suction, or Malaise traps) 

correlate with complementary ad hoc data for the same taxa. If this were the case then 

perhaps the problems associated with ad hoc biological recording have been overstated.  

 

The diversity of feeding traits, overwintering stages, and patterns of habitat use within the 

Syrphidae produce opportunities for interspecific variation in exposure to ambient 

temperatures that might mediate phenological shifts. However, despite a comprehensive 

analysis of available data, both in traits databases and derived from experimental studies of 

development, there were far fewer patterns than might have been predicted. First, the 

laboratory-derived measures of development produced only very equivocal correlations 

with field measures of phenology. It is clear that either (i) the mechanisms underlying 
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phenological variation in the field cannot be grasped using reductive laboratory studies, or 

(ii) the data-mining of studies has not produced a dataset of sufficient detail or quality to 

reveal those mechanisms. More reassuring is the evidence that a greater number of 

generations in a year is associated with stronger phenological advances. Although climate 

change has been shown to increase voltinism (Altermatt 2010), it is unclear what the link 

might be between a given number of generations per year and phenological advance. The 

answer may lie in the more rapid embryological development in multivoltine species which 

has been shown in aquatic insects (Gillooly and Dodson 2000). This pattern is also seen in 

the present study in the egg development times at 20-22°C which are negatively correlated 

with voltinism (R=-0.553, p=0.050, n=13). This more rapid development time may allow 

greater exploitation of warmer springs.  

 

This study provides a nuanced view of the measurement and mechanisms underlying large-

scale ecological change through the integration of ecology, physiology, phylogenetics, and 

citizen science. Taken together, the results suggest that the common hoverflies in general 

are advancing the beginning of their flight periods at a greater rate than many other taxa. 

Ad hoc recording suggests that hoverflies are expanding their flight periods, while 

standardised recording suggests that the end of the flight period is also responding 

(although not to the same extent). As such, there is no reason based on phenological shifts 

to believe that the function of this taxon as biocontrol agents and pollinators is at risk under 

current climate change. Although rare species are unlikely to have been included in this 

analysis, the ecosystem services provided by Syrphidae (and, indeed, many other taxa) are 

generated mainly by the small number of very common species and are only supplemented 
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by the rarer species (Kleijn, et al. 2015). The results demonstrate the utility of ad hoc 

recording data, particularly when supported by data from standardised monitoring, for the 

detection of large scale ecological trends. Despite many candidate traits that may be 

predicted to influence the phenological response, only voltinism appears to correlate with 

variation in phenological shifts, with species exhibiting greater numbers of generations per 

year showing stronger phenological advances. We suggest that higher numbers of 

generations per year may be associated with higher egg development rates, and these may 

allow a subset of species to exploit ephemeral microclimates in early spring. However, 

there are equivocal relationships between laboratory-derived measures of development rate 

under varying temperature, and how species are responding to changes in environmental 

temperature under climate change. This weak link between existing laboratory and field 

data on syrphid development suggests that experiments geared specifically towards 

studying phenology may be required to reveal the mechanism underlying phenological 

shifts in this group. 
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Figure Legends 

 

Figure 1: Changes in (A) the number of records in the Hoverfly Recording Scheme dataset 

and (B) mean annual temperature (from the Central England Temperature time series) over 

the course of the study period. 
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Figure 2: Phenological change in UK hoverflies (Diptera: Syrphidae) using two different 

datasets: biological records (A-D) and a 30-year standardised monitoring dataset (E-H). (A) 

and (E) show the number of years of data used in the analysis for each species. For each 

species the remaining panels show the rate of change of the 5% flight date (FD0.05, shown 

in B and F), 50% flight date (FD0.50, shown in C and G), and 95% flight date (FD0.95, shown 

in D and H) in response to changing temperature. Rates of change are all measured in days 
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per °C change in temperature. For B-D and F-H, black bars represent p<0.05, grey bars 

indicate p≥0.05. 
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Figure 3: The relationship between phenological response from ad hoc recording (Pearson 

correlation between FD0.05 and temperature) and species traits: (A) the number of 

generations per year (using fuzzy coding, see text for details), (B) laboratory larval 

development rate at 20-22°C, (C) laboratory pupal development at 20-22°C, and (D) the 

temperature dependence of development measured as the slope of the relationship between 

temperature and development rate. In B-D, each point is a species. Error bars in A and D 

represent 1SE.  
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Figure 4: Laboratory estimates of interspecific variability in larval (open symbols) and 

pupal (filled symbols) development time in relation to temperature in nine well-studied 

species of hoverflies.  
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Figure 5: Relationships between (A) the extent (days·°C
-1

) and (B) the strength (Pearson 

correlation coefficient) of the phenological response in FD0.05 to temperature in ad hoc 

(HRS) and standardised (Owen) analyses. Solid line in (A) indicates the RMA regression 

line and shaded area is the 95% confidence interval, with the dotted line showing the 1:1 

relationship.  
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Table Legend 

Table 1: Analysis of the strength of the phenological advance (Pearson correlation between 

FD0.05 and either year or temperature) against species traits, both without (GLS) and with 

(PGLS) control for phylogenetic autocorrelation. Test statistics are F-statistics for all traits 

apart from voltinism, which are t-statistics.  

 Generalised least squares (GLS)  Phylogenetic generalised least squares (PGLS) 

 Temperature  

response 

 Temporal  

response 

  Temperature 

response 

 Temporal  

response 

 

 Test stat p  Test stat p n  Test stat p  Test stat p n 

Voltinism 0.616 0.434  9.370 0.003 181  15.697 <0.001  21.699 <0.001 83 

Larval food 0.364 0.547  0.175 0.677 169  0.141 0.708  0.553 0.459 83 

Saproxylic 1.044 0.308  0.569 0.452 181  0.039 0.843  0.003 0.956 83 

Commensalism 0.425 0.516  0.738 0.392 181  0.110 0.741  0.495 0.484 83 

Migration 0.554 0.458  2.281 0.133 181  0.179 0.674  0.247 0.620 83 
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