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Ongoing declines among the world’s coral reefs1,2 require novel approaches to 77	  

sustain these ecosystems and the millions of people who depend on them3. A 78	  

presently untapped approach that draws on theory and practice in human health 79	  

and rural development4,5 is systematically identifying and learning from the 80	  

‘outliers’- places where ecosystems are substantially better ('bright spots') or 81	  

worse ('dark spots') than expected, given the environmental conditions and 82	  

socioeconomic drivers they are exposed to. Here, we compile data from more 83	  

than 2,500 reefs worldwide and develop a Bayesian hierarchical model to 84	  

generate expectations of how standing stocks of reef fish biomass are related to 85	  

18 socioeconomic drivers and environmental conditions. We then identified 15 86	  

bright spots and 35 dark spots among our global survey of coral reefs, defined as 87	  

sites that had biomass levels more than two standard deviations from 88	  

expectations. Importantly, bright spots were not simply comprised of remote 89	  

areas with low fishing pressure- they include localities where human populations 90	  

and use of ecosystem resources is high, potentially providing novel insights into 91	  

how communities have successfully confronted strong drivers of change. 92	  

Alternatively, dark spots were not necessarily the sites with the lowest absolute 93	  

biomass and even included some remote, uninhabited locations often considered 94	  

near-pristine6. We surveyed local experts about social, institutional, and 95	  

environmental conditions at these sites to reveal that bright spots were 96	  

characterised by strong sociocultural institutions such as customary taboos and 97	  

marine tenure, high levels of local engagement in management, high dependence 98	  

on marine resources, and beneficial environmental conditions such as deep-99	  

water refuges. Alternatively, dark spots were characterised by intensive capture 100	  

and storage technology and a recent history of environmental shocks. Our 101	  
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results suggest that investments in strengthening fisheries governance, 102	  

particularly aspects such as participation and property rights, could facilitate 103	  

innovative conservation actions that help communities defy expectations of 104	  

global reef degradation.  105	  

  106	  
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Main text  107	  

Despite substantial international conservation efforts, many of the world's ecosystems 108	  

continue to decline1,7. Most conservation approaches aim to identify and protect 109	  

places of high ecological integrity under minimal threat8. Yet, with escalating social 110	  

and environmental drivers of change, conservation actions are also needed where 111	  

people and nature coexist, especially where human impacts are already severe9. Here, 112	  

we highlight an approach for implementing conservation in coupled human-natural 113	  

systems focused on identifying and learning from outliers - places that are performing 114	  

substantially better than expected, given the socioeconomic and environmental 115	  

conditions they are exposed to. By their very nature, outliers deviate from 116	  

expectations, and consequently can provide novel insights on confronting complex 117	  

problems where conventional solutions have failed.  This type of positive deviance, or 118	  

‘bright spot’ analysis has been used in fields such as business, health, and human 119	  

development to uncover local actions and governance systems that work in the 120	  

context of widespread failure10,11, and holds much promise in informing conservation.   121	  

 122	  

To demonstrate this approach, we compiled data from 2,514 coral reefs in 46 123	  

countries, states, and territories (hereafter ‘nation/states’) and developed a Bayesian 124	  

hierarchical model to generate expected conditions of how standing reef fish biomass 125	  

(a key indicator of resource availability and ecosystem functions12) was related to 18 126	  

key environmental variables and socioeconomic drivers (Fig. 1; Extended Data Tables 127	  

1-4; Extended Data Figures 1-3; Methods). Drawing on a broad body of theoretical 128	  

and empirical research in the social sciences13-15 and ecology2,6,16 on coupled human-129	  

natural systems, we quantified how reef fish biomass (Fig. 1a) was related to distal 130	  

social drivers such as markets, affluence, governance, and population (Fig. 1b,c), 131	  
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while controlling for well-known environmental conditions such as depth, habitat, and 132	  

productivity (Fig. 1d) (Extended Data Table 1, Methods). In contrast to many global 133	  

studies of reef systems that are focused on demonstrating the severity of human 134	  

impacts6, our examination seeks to uncover potential policy levers by highlighting the 135	  

relative role of specific social drivers. A key and significant finding from our global 136	  

analysis is that our metric of potential interactions with urban centres, called market 137	  

gravity17 (Methods), more so than local or national population pressure, management, 138	  

environmental conditions, or national socioeconomic context, had the strongest 139	  

relationship with reef fish biomass (Fig.1). Specifically, we found that reef fish 140	  

biomass decreased as the size and accessibility of markets increased (Extended Data 141	  

Fig. 1b). Somewhat counter-intuitively, fish biomass was higher in places with high 142	  

local human population growth rates, likely reflecting human migration to areas of 143	  

better environmental quality18-a phenomenon that could result in increased 144	  

degradation at these sites over time. We found a strong positive, but less certain 145	  

relationship (i.e. a high standardized effect size, but only >75% of the posterior 146	  

distribution above zero) with the Human Development Index, meaning that reefs 147	  

tended to be in better condition in wealthier nation/states (Fig. 1c). Our analysis also 148	  

confirmed the role that marine reserves can play in sustaining biomass on coral reefs, 149	  

but only when compliance is high (Fig.1b), reinforcing the importance of fostering 150	  

compliance for reserves to be successful.  151	  

 152	  

Next, we identified 15 ‘bright spots’ and 35 ‘dark spots’ among the world's coral reefs, 153	  

defined as sites with biomass levels more than two standard deviations higher or 154	  

lower than expectations from our global model, respectively (Fig. 2; Methods; 155	  

Extended Data Table 5). Rather than simply identifying places in the best or worst 156	  
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condition, our bright spots approach reveals the places that most strongly defy 157	  

expectations. Using them to inform the conservation discourse will certainly 158	  

challenge established ideas of where and how conservation efforts should be focused. 159	  

For example, remote places far from human impacts are conventionally considered 160	  

near-pristine areas of high conservation value6, yet most of the bright spots we 161	  

identified occur in fished, populated areas (Extended Data Table 5), some with 162	  

biomass values below the global average. Alternatively, some remote places such as 163	  

parts of the NW Hawaiian Islands underperform (i.e. were identified as dark spots).  164	  

 165	  

Detailed analysis of why bright spots can evade the fate of similar areas facing 166	  

equivalent stresses will require a new research agenda gathering detailed site-level 167	  

information on social and institutional conditions, technological innovations, external 168	  

influences, and ecological processes19 that are simply not available in a global-scale 169	  

analysis. As a hypothesis-generating exploration to begin uncovering why bright and 170	  

dark spots may diverge from expectations, we surveyed data providers who sampled 171	  

the sites and other experts with first-hand knowledge about the presence or absence of 172	  

10 key social and environmental conditions at the 15 bright spots, 35 dark spots, and 173	  

14 average sites with biomass values closest to model expectations (see Methods and 174	  

SI for details). Our initial exploration revealed that bright spots were more likely to 175	  

have high levels of local engagement in the management process, high dependence on 176	  

coastal resources, and the presence of sociocultural governance institutions such as 177	  

customary tenure or taboos (Fig. 3, Methods). For example, in one bright spot, Karkar 178	  

Island, Papua New Guinea, resource use is restricted through an adaptive rotational 179	  

harvest system based on ecological feedbacks, marine tenure that allows for the 180	  

exclusion of fishers from outside the local village, and initiation rights that limit 181	  
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individuals’ entry into certain fisheries20. Bright spots were also generally proximate 182	  

to deep water, which may help provide a refuge from disturbance for corals and fish21 183	  

(Fig. 3, Extended Data Fig. 4). Conversely, dark spots were distinguished by having 184	  

fishing technologies allowing for more intensive exploitation, such as fish freezers 185	  

and potentially destructive netting, as well as a recent history of environmental shocks 186	  

(e.g. coral bleaching or cyclone; Fig. 3). The latter is particularly worrisome in the 187	  

context of climate change, which is likely to lead to increased coral bleaching and 188	  

more intense cyclones22.  189	  

 190	  

Our global analyses highlight two novel opportunities to inform coral reef governance. 191	  

The first is to use bright spots as agents of change to expand the conservation 192	  

discourse from the current focus on protecting places under minimal threat8, toward 193	  

harnessing lessons from places that have successfully confronted high pressures.  194	  

Our bright spots approach can be used to inform the types of investments and 195	  

governance structures that may help to create more sustainable pathways for impacted 196	  

coral reefs. Specifically, our initial investigation highlights how investments that 197	  

strengthen fisheries governance, particularly issues such as participation and property 198	  

rights, could help communities to innovate in ways that allow them to defy 199	  

expectations. Conversely, the more typical efforts to provide capture and storage 200	  

infrastructure, particularly where there are environmental shocks and local-scale 201	  

governance is weak, may lead to social-ecological traps23 that reinforce resource 202	  

degradation beyond expectations. Effectively harnessing the potential to learn from 203	  

both bright and dark spots will require scientists to increase research efforts in these 204	  

places, NGOs to catalyze lessons from other areas, donors to start investing in novel 205	  

solutions, and policy makers to ensure that governance structures foster flexible 206	  
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learning and experimentation. Indeed, both bright and dark spots may have much to 207	  

offer in terms of how to creatively confront drivers of change, identify paths to avoid 208	  

and those offering novel management solutions, and to prioritize conservation actions. 209	  

Critically, the bright spots we identified span the development spectrum from low to 210	  

high income (e.g., Solomon Islands and territories of the USA, respectively; Fig. 2), 211	  

showing that lessons about effective reef management can emerge from diverse places. 212	  

 213	  

A second opportunity stems from a renewed focus on managing the socioeconomic 214	  

drivers that shape reef conditions. Many social drivers are amenable to governance 215	  

interventions, and our comprehensive analysis (Fig. 1) suggests that an increased 216	  

policy focus on social drivers such as markets and development could result in 217	  

improvements to reef fish biomass. For example, given the important influence of 218	  

markets in our analysis, reef managers, donor organisations, conservation groups, and 219	  

coastal communities could improve sustainability by developing interventions that 220	  

dampen the negative influence of markets on reef systems. A portfolio of market 221	  

interventions, including eco-labelling and sustainable harvesting certifications, 222	  

fisheries improvement projects, and value chain interventions have been developed 223	  

within large-scale industrial fisheries to condition access to markets based on 224	  

sustainable harvesting24,25. Although there is considerable scope for adapting these 225	  

interventions to artisanal coral reef fisheries in both local and regional markets, 226	  

effectively dampening the negative influence of markets may also require developing 227	  

novel interventions that address the range of ways in which markets can lead to 228	  

overexploitation. Existing research suggests that markets create incentives for 229	  

overexploitation not only by affecting price and price variability for reef products26, 230	  
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but also by influencing people’s behavior27,28, including their willingness to cooperate 231	  

in the collective management of natural resources29.  232	  

 233	  

The long-term viability of coral reefs will ultimately depend on international action to 234	  

reduce carbon emissions22. However, fisheries remain a pervasive source of reef 235	  

degradation, and effective local-level fisheries governance is crucial to sustaining 236	  

ecological processes that give reefs the best chance of coping with global 237	  

environmental change30. Seeking out and learning from bright spots is a novel 238	  

approach to conservation that may offer insights into confronting the complex 239	  

governance problems facing coupled human-natural systems such as coral reefs.	  240	  

 241	  
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Figure Legends 242	  

Figure 1| Global patterns and drivers of reef fish biomass. (a) Reef fish biomass 243	  

[(log)kg/ha] among 918 study sites. Points vary in size and colour proportional to the 244	  

amount of fish biomass. b-d) Standardised effect size of local scale social drivers, 245	  

nation/state scale social drivers, and environmental covariates, respectively. 246	  

Parameter estimates are Bayesian posterior median values, 95% uncertainty intervals 247	  

(UI; thin lines), and 50% UI (thick lines). Black dots indicate that the 95%UI does not 248	  

overlap 0; Grey closed circles indicates that 75% of the posterior distribution lies to 249	  

one side of 0; and grey open circles indicate that the 50%UI overlaps 0. 250	  

 251	  

Figure 2 | Bright and dark spots among the world’s coral reefs. (a) Each site’s 252	  

deviation from expected biomass (y-axis) along a gradient of nation/state mean 253	  

biomass (x-axis). The 50 sites with biomass values >2 standard deviations above or 254	  

below expected values were considered bright (yellow) and dark (black) spots, 255	  

respectively. Each grey vertical line represents a nation/state;  those with bright or 256	  

dark spots are labelled and numbered. There can be multiple bright or dark spots in 257	  

each nation/state. (b) Map highlighting bright and dark spots with large circles, and 258	  

other sites in small circles. Numbers correspond to panel a. 259	  

 260	  

Figure 3 | Differences in key social and environmental conditions between bright 261	  

spots, dark spots, and ‘average’ sites. *=p<0.05, **=p<0.01, ***=p<0.001. P 262	  

values are determined using Fisher’s Exact test. Intensive netting includes beach seine 263	  

nets, surround gill nets, and muro-ami. 264	  

  265	  



	   14	  

Methods  266	  

 267	  

Scales of data 268	  

Our data were organized at three spatial scales: reef (n=2514), site (n=918), and 269	  

nation/state (n=46). 270	  

i) reef (the smallest scale, which had an average of 2.4 surveys/transects - 271	  

hereafter 'reef').  272	  

ii) site (a cluster of reefs). We clustered reefs together that were within 4km 273	  

of each other, and used the centroid of these clusters (hereafter ‘sites’) to 274	  

estimate site-level social and site-level environmental covariates 275	  

(Extended Data Table 1). To make these clusters, we first estimated the 276	  

linear distance between all reefs, then used a hierarchical analysis with the 277	  

complete-linkage clustering technique based on the maximum distance 278	  

between reefs. We set the cut-off at 4km to select mutually exclusive sites 279	  

where reefs cannot be more distant than 4km. The choice of 4km was 280	  

informed by a 3-year study of the spatial movement patterns of artisanal 281	  

coral reef fishers, corresponding to the highest density of fishing activities 282	  

on reefs based on GPS-derived effort density maps of artisanal coral reef 283	  

fishing activities31. This clustering analysis was carried out using the R 284	  

functions ‘hclust’ and ‘cutree’, resulting in an average of 2.7 reefs/site. 285	  

iii) Nation/state (nation, state, or territory). A larger scale in our analysis was 286	  

‘nation/state’, which are jurisdictions that generally correspond to 287	  

individual nations (but could also include states, territories, overseas 288	  

regions, or extremely remote areas within a state such as the northwest 289	  
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Hawaiian Islands; Extended Data Table 2), within which sites and reefs 290	  

were nested for analysis.  291	  

 292	  

Estimating Biomass 293	  

Reef fish biomass can reflect a broad selection of reef fish functioning and benthic 294	  

conditions12,32-34, and is a key metric of resource availability for reef fisheries. Reef 295	  

fish biomass estimates were based on instantaneous visual counts from 6,088 surveys 296	  

collected from 2,514 reefs. All surveys used standard belt-transects, distance sampling, 297	  

or point-counts, and were conducted between 2004 and 2013. Where data from 298	  

multiple years were available from a single reef, we included only data from the year 299	  

closest to 2010. Within each survey area, reef associated fishes were identified to 300	  

species level, abundance counted, and total length (TL) estimated, with the exception 301	  

of one data provider who measured biomass at the family level. To make estimates of 302	  

biomass from these transect-level data comparable among studies, we:  303	  

i) Retained families that were consistently studied and were above a 304	  

minimum size cut-off. Thus, we retained counts of >10cm diurnally-active, 305	  

non-cryptic reef fish that are resident on the reef (20 families, 774 species), 306	  

excluding sharks and semi-pelagic species. We also excluded three groups 307	  

of fishes that are strongly associated with coral habitat conditions and are 308	  

rarely targets for fisheries (Anthiinae, Chaetodontidae, and Cirrhitidae). 309	  

Families included are: Acanthuridae, Balistidae, Diodontidae, Ephippidae, 310	  

Haemulidae, Kyphosidae, Labridae, Lethrinidae, Lutjanidae, 311	  

Monacanthidae, Mullidae, Nemipteridae, Pinguipedidae, Pomacanthidae, 312	  

Serranidae, Siganidae, Sparidae, Synodontidae, Tetraodontidae, Zanclidae.   313	  

We calculated total biomass of fishes on each reef using standard 314	  
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published species-level length-weight relationship parameters or those 315	  

available on FishBase35. When length-weight relationship parameters were 316	  

not available for a species, we used the parameters for a closely related 317	  

species or genus. 318	  

ii) Directly accounted for depth and habitat as covariates in the model (see 319	  

“environmental conditions” section below); 320	  

iii) Accounted for any potential bias among data providers (capturing 321	  

information on both inter-observer differences, and census methods) by 322	  

including each data provider as a random effect in our model.  323	  

Biomass means, medians, and standard deviations were calculated at the reef-scale. 324	  

All reported log values are the natural log.  325	  

 326	  

Social Drivers 327	  

1. Local Population Growth: We created a 100km buffer around each site and used 328	  

this to calculate human population within the buffer in 2000 and 2010 based on the 329	  

Socioeconomic Data and Application Centre (SEDAC) gridded population of the 330	  

world database36. Population growth was the proportional difference between the 331	  

population in 2000 and 2010. We chose a 100km buffer as a reasonable range at 332	  

which many key human impacts from population (e.g., land-use and nutrients) might 333	  

affect reefs37. 334	  

 335	  

2. Management: For each site, we determined if it was: i) unfished- whether it fell 336	  

within the borders of a no-take marine reserve. We asked data providers to further 337	  

classify whether the reserve had high or low levels of compliance; ii) restricted - 338	  

whether there were active restrictions on gears (e.g. bans on the use of nets, spearguns, 339	  
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or traps) or fishing effort (which could have included areas inside marine parks that 340	  

were not necessarily no take); or iii) fished - regularly fished without effective 341	  

restrictions. To determine these classifications, we used the expert opinion of the data 342	  

providers, and triangulated this with a global database of marine reserve boundaries38.  343	  

 344	  

3. Gravity:  We adapted the economic geography concept of gravity17,39-41, also called 345	  

interactance42, to examine potential interactions between reefs and: i) major urban 346	  

centres/markets (defined as provincial capital cities, major population centres, 347	  

landmark cities, national capitals, and ports); and ii) the nearest human settlements. 348	  

This application of the gravity concept infers that potential interactions increase with 349	  

population size, but decay exponentially with the effective distance between two 350	  

points. Thus, we gathered data on both population estimates and a surrogate for 351	  

distance: travel time.  352	  

 353	  

 Population estimations 354	  

We gathered population estimates for: 1) the nearest major markets (which 355	  

includes national capitals, provincial capitals, major population centres, ports, 356	  

and landmark cities) using the World Cities base map from ESRITM; and 2) the 357	  

nearest human settlement within a 500km radius using LandScanTM 2011 358	  

database. The different datasets were required because the latter is available in 359	  

raster format while the former is available as point data. We chose a 500km 360	  

radius from the nearest settlement as the maximum distance any non-market 361	  

fishing activities for fresh reef fish are likely to occur.  362	  

 363	  

 Travel time calculation 364	  
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Travel time was computed using a cost-distance algorithm that computes the 365	  

least ‘cost’ (in minutes) of travelling between two locations on a regular raster 366	  

grid. In our case, the two locations were either: 1) the centroid of the site (i.e. 367	  

reef cluster) and the nearest settlement, or 2) the centroid of the site and the 368	  

major market. The cost (i.e. time) of travelling between the two locations was 369	  

determined by using a raster grid of land cover and road networks with the 370	  

cells containing values that represent the time required to travel across them43: 371	  

- Tree Cover, broadleaved, deciduous & evergreen, closed; regularly 372	  

flooded Tree Cover, Shrub, or Herbaceous Cover (fresh, saline, & 373	  

brackish water) = speed of 1 km/h 374	  

- Tree Cover, broadleaved, deciduous, open (open= 15-40% tree cover) 375	  

= speed of 1.25 km/h 376	  

- Tree Cover, needle-leaved, deciduous & evergreen, mixed leaf type;  377	  

Shrub Cover, closed-open, deciduous & evergreen; Herbaceous Cover, 378	  

closed-open; Cultivated and managed areas;  Mosaic: Cropland / Tree 379	  

Cover / Other natural vegetation, Cropland / Shrub or Grass Cover = 380	  

speed of 1.5 km/h 381	  

- Mosaic: Tree cover / Other natural vegetation; Tree Cover, burnt = 382	  

speed of 1.25 km/h 383	  

- Sparse Herbaceous or sparse Shrub Cover = speed of 2.5 km/h 384	  

- Water = speed of 20 km/h 385	  

- Roads = speed of 60 km/h 386	  

- Track = speed of 30 km/h 387	  

- Artificial surfaces and associated areas = speed of 30 km/h 388	  

- Missing values = speed of 1.4 km/h 389	  
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We termed this raster grid a friction-surface (with the time required to travel 390	  

across different types of surfaces analogous to different levels of friction). To 391	  

develop the friction-surface, we used global datasets of road networks, land 392	  

cover, and shorelines: 393	  

- Road network data was extracted from the Vector Map Level 0 394	  

(VMap0) from the National Imagery and Mapping Agency's (NIMA) 395	  

Digital Chart of the World (DCW®). We converted vector data from 396	  

VMap0 to 1km resolution raster.  397	  

 - Land cover data were extracted from the Global Land Cover 200044.  398	  

-To define the shorelines, we used the GSHHS (Global Self-consistent, 399	  

Hierarchical, High-resolution Shoreline) database version 2.2.2.  400	  

 401	  

These three friction components (road networks, land cover, and water bodies) 402	  

were combined into a single friction surface with a Behrmann map projection. 403	  

We calculated our cost-distance models in R45 using the accCost function of 404	  

the 'gdistance' package. The function uses Dijkstra’s algorithm to calculate 405	  

least-cost distance between two cells on the grid and the associated distance 406	  

taking into account obstacles and the local friction of the landscape46. Travel 407	  

time estimates over a particular surface could be affected by the infrastructure 408	  

(e.g. road quality) and types of technology used (e.g. types of boats). These 409	  

types of data were not available at a global scale but could be important 410	  

modifications in more localised studies.  411	  

 412	  

 Gravity computation  413	  
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i) To compute the gravity to the nearest market, we calculated the population 414	  

of the nearest major market and divided that by the squared travel time 415	  

between the market and the site. Although other exponents can be used47, we 416	  

used the squared distance (or in our case, travel time), which is relatively 417	  

common in geography and economics. This decay function could be 418	  

influenced by local considerations, such as infrastructure quality (e.g. roads), 419	  

the types of transport technology (i.e. vessels being used), and fuel prices, 420	  

which were not available in a comparable format for this global analysis, but 421	  

could be important considerations in more localised adaptations of this study. 422	  

ii) To determine the gravity of the nearest settlement, we located the nearest 423	  

populated pixel within 500kms, determined the population of that pixel, and 424	  

divided that by the squared travel time between that cell and the reef site.  425	  

As is standard practice in many agricultural economics studies48, an assumption in 426	  

our study is that the nearest major capital or landmark city represents a market. 427	  

Ideally we would have used a global database of all local and regional markets for 428	  

coral reef fish, but this type of database is not available at a global scale. As a 429	  

sensitivity analysis to help justify our assumption that capital and landmark cities 430	  

were a reasonable proxy for reef fish markets, we tested a series of candidate 431	  

models that predicted biomass based on: 1) cumulative gravity of all cities within 432	  

500km; 2) gravity of the nearest city; 3) travel time to the nearest city; 4) 433	  

population of the nearest city; 5) gravity to the nearest human population above 40 434	  

people/km2 (assumed to be a small peri-urban area and potential local market); 6) 435	  

the travel time between the reef and a small peri-urban area; 7) the population size 436	  

of the small peri-urban population; 8) gravity to the nearest human population 437	  

above 75 people/km2 (assumed to be a large peri-urban area and potential market); 438	  
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9) the travel time between the reef and this large peri-urban population; 10)  the 439	  

population size of this large peri-urban population; and 11) the total population 440	  

size within a 500km radius. Model selection revealed that the best two models 441	  

were gravity of the nearest city and gravity of all cities within 500km (with a 3 442	  

AIC value difference between them; Extended Data Table 3). Importantly, when 443	  

looking at the individual components of gravity models, the travel time 444	  

components all had a much lower AIC value than the population components, 445	  

which is broadly consistent with previous systematic review studies49. Similarly, 446	  

travel time to the nearest city had a lower AIC score than any aspect of either the 447	  

peri-urban or urban measures. This suggests our use of capital and landmark cities 448	  

is likely to better capture exploitation drivers from markets rather than simple 449	  

population pressures. This may be because market dynamics are difficult to 450	  

capture by population threshold estimates; for example some small provincial 451	  

capitals where fish markets are located have very low population densities, while 452	  

some larger population centres may not have a market. Downscaled regional or 453	  

local analyses could attempt to use more detailed knowledge about fish markets, 454	  

but we used the best proxy available at a global scale.  455	  

 456	  

4. Human Development Index (HDI): HDI is a summary measure of human 457	  

development encompassing: a long and healthy life, being knowledgeable, and having 458	  

a decent standard of living. In cases where HDI values were not available specific to 459	  

the State (e.g. Florida and Hawaii), we used the national (e.g. USA) HDI value.  460	  

 461	  
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5. Population Size: For each Nation/state, we determined the size of the human 462	  

population. Data were derived mainly from census reports, the CIA fact book, and 463	  

Wikipedia.   464	  

 465	  

6. Tourism: We examined tourist arrivals relative to the nation/state population size 466	  

(above). Tourism arrivals were gathered primarily from the World Tourism 467	  

Organization’s Compendium of Tourism Statistics.  468	  

 469	  

7. National Reef Fish Landings: Catch data were obtained from the Sea Around Us 470	  

Project (SAUP) catch database (www.seaaroundus.org), except for Florida, which 471	  

was not reported separately in the database. We identified 200 reef fish species and 472	  

taxon groups in the SAUP catch database50. Note that reef-associated pelagics such as 473	  

scombrids and carangids normally form part of reef fish catches. However, we chose 474	  

not to include these species because they are also targeted and caught in large 475	  

amounts by large-scale, non-reef operations. 476	  

 477	  

8. Voice and Accountability: This metric, from the World Bank survey on governance, 478	  

reflects the perceptions of the extent to which a country's citizens are able to 479	  

participate in selecting their government, as well as freedom of expression, freedom 480	  

of association, and a free media. In cases where governance values were not available 481	  

specific to the Nation/state (e.g. Florida and Hawaii), we used national (e.g. USA) 482	  

values.  483	  

 484	  

Environmental Drivers 485	  
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1. Depth: The depth of reef surveys were grouped into the following categories: <4m, 486	  

4-10m, >10m to account for broad differences in reef fish community structure 487	  

attributable to a number of inter-linked depth-related factors. Categories were 488	  

necessary to standardise methods used by data providers and were determined by pre-489	  

existing categories used by several data providers. 490	  

 491	  

2. Habitat: We included the following habitat categories: i) Slope: The reef slope 492	  

habitat is typically on the ocean side of a reef, where the reef slopes down into deeper 493	  

water; ii) Crest: The reef crest habitat is the section that joins a reef slope to the reef 494	  

flat. The zone is typified by high wave energy (i.e. where the waves break). It is also 495	  

typified by a change in the angle of the reef from an inclined slope to a horizontal reef 496	  

flat; iii) Flat: The reef flat habitat is typically horizontal and extends back from the 497	  

reef crest for 10’s to 100’s of metres; iv) Lagoon / back reef: Lagoonal reef habitats 498	  

are where the continuous reef flat breaks up into more patchy reef environments 499	  

sheltered from wave energy. These habitats can be behind barrier / fringing reefs or 500	  

within atolls. Back reef habitats are similar broken habitats where the wave energy 501	  

does not typically reach the reefs and thus forms a less continuous 'lagoon style' reef 502	  

habitat. Due to minimal representation among our sample, we excluded other less 503	  

prevalent habitat types, such as channels and banks. To verify the sites’ habitat 504	  

information, we used the Millennium Coral Reef Mapping Project (MCRMP) 505	  

hierarchical data51, Google Earth, and site depth information.  506	  

 507	  

3. Productivity: We examined ocean productivity for each of our sites in mg C / m2 / 508	  

day (http://www.science.oregonstate.edu/ocean.productivity/). Using the monthly data 509	  

for years 2005 to 2010 (in hdf format), we imported and converted those data into 510	  
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ArcGIS. We then calculated yearly average and finally an average for all these years. 511	  

We used a 100km buffer around each of our sites and examined the average 512	  

productivity within that radius. Note that ocean productivity estimates are less 513	  

accurate for nearshore environments, but we used the best available data.    514	  

 515	  

Analyses 516	  

We first looked for collinearity among our covariates using bivariate correlations and 517	  

variance inflation factor estimates (Extended Data Fig. 2, Extended Data Table 4). 518	  

This led to the exclusion of several covariates (not described above): i) Geographic 519	  

Basin (Tropical Atlantic, western Indo-Pacific, Central Indo-Pacific, or eastern Indo-520	  

Pacific); ii) Gross Domestic Product (purchasing power parity); iii) Rule of Law 521	  

(World Bank governance index); iv) Control of Corruption (World Bank governance 522	  

index); and v) Sedimentation. Additionally, we removed an index of climate stress, 523	  

developed by Maina et al.52, which incorporated 11 different environmental 524	  

conditions, such as the mean and variability of sea surface temperature due to 525	  

repeated lack of convergence for this parameter in the model, likely indicative of 526	  

unidentified multi-collinearity. All other covariates had correlation coefficients 0.7 or 527	  

less and Variance Inflation Factor scores less than 5 (indicating multicolinearity was 528	  

not a serious concern). Care must be taken in causal attribution of covariates that were 529	  

significant in our model, but demonstrated colinearity with candidate covariates that 530	  

were removed during the aforementioned process. Importantly, the covariate that 531	  

exhibited the largest effect size in our model, market gravity, was not strongly 532	  

collinear with other candidate covariates.  533	  

 534	  
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To quantify the multi-scale social, environmental, and economic factors affecting reef 535	  

fish biomass we adopted a Bayesian hierarchical modelling approach that explicitly 536	  

recognized the three scales of spatial organization: reef (j), site (k), and nation/state (s).   537	  

 538	  

In adopting the Bayesian approach we developed two models for inference: a null 539	  

model, consisting only of the hierarchical units of observation (i.e. intercepts-only) 540	  

and a full model that included all of our covariates (drivers) of interest. Covariates 541	  

were entered into the model at the relevant scale, leading to a hierarchical model 542	  

whereby lower-level intercepts (averages) were placed in the context of higher-level 543	  

covariates in which they were nested. We used the null model as a baseline against 544	  

which we could ensure that our full model performed better than a model with no 545	  

covariate information. We did not remove 'non-significant' covariates from the model 546	  

because each covariate was carefully considered for inclusion and could therefore 547	  

reasonably be considered as having an effect, even if small or uncertain; removing 548	  

factors from the model is equivalent to fixing parameter estimates at exactly zero - a 549	  

highly-subjective modelling decision after covariates have already been selected as 550	  

potentially important53. 551	  

 552	  

The full model assumed the observed, reef-scale observations of fish biomass (yijks) 553	  

were modelled using a noncentral-t distribution, allowing for fatter tails than typical 554	  

log-normal models of reef fish biomass32. We chose the noncentral-t after having 555	  

initially used a log-normal model because our model diagnostics suggested that 556	  

several model parameters had not converged. We ran a supplemental analysis to 557	  

support our use of the noncentral t-distribution with 3.5 degrees of freedom (See 558	  

Supplementary Information). Therefore our model was: 559	  
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 560	  

log(yijks) ~ NoncentralT(μijks,τreef,3.5) 561	  

μijks = β0jks + βreef Xreef 562	  

τreef ~ U(0,100)-2 563	  

 564	  

with Xreef representing the matrix of observed reef-scale covariates and βreef array of 565	  

estimated reef-scale parameters. The τreef (and all subsequent τ’s) were assumed 566	  

common across observations in the final model and were minimally informative53. 567	  

Using a similar structure, the reef-scale intercepts (β0jks) were structured as a 568	  

function of site-scale covariates (Xsit): 569	  

 570	  

β0jks ~ N(μjks,τsit) 571	  

μjks = γ0ks + γsit Xsit 572	  

τsit ~ U(0,100)-2 573	  

 574	  

with γsit representing an array of site-scale parameters. Building upon the hierarchy, 575	  

the site-scale intercepts (γ0ks) were structured as a function of state-scale covariates 576	  

(Xsta):  577	  

 578	  

γ0ks ~ N(µks,τsta) 579	  

µks = γ0s + γsta Xsta 580	  

τsta ~ U(0,100)-2 581	  

 582	  
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Finally, at the top scale of the analysis we allowed for a global (overall) estimate of 583	  

average log-biomass (μ0): 584	  

 585	  

γ0s ~ N(µ0,τglo) 586	  

µ0 ~ N(0.0,1000) 587	  

τglo ~ U(0,100)-2 588	  

 589	  

The relationships between fish biomass and reef, site, and state scale drivers was 590	  

carried out using the PyMC package54 for the Python programming language, using a 591	  

Metropolis-Hastings (MH) sampler run for 106 iterations, with a 900,000 iteration 592	  

burn in thinned by 10, leaving 10,000 samples in the posterior distribution of each 593	  

parameter; these long burn-in times are often required with a complex model using 594	  

the MH algorithm. Convergence was monitored by examining posterior chains and 595	  

distributions for stability and by running multiple chains from different starting points 596	  

and checking for convergence using Gelman-Rubin statistics55 for parameters across 597	  

multiple chains; all were at or close to 1, indicating good convergence of parameters 598	  

across multiple chains. 599	  

 600	  

Overall model fit 601	  

 602	  

We conducted posterior predictive checks for goodness of fit (GoF) using Bayesian p-603	  

values43 (BpV), whereby fit was assessed by the discrepancy between observed or 604	  

simulated data and their expected values. To do this we simulated new data (yi
new) by 605	  

sampling from the joint posterior of our model (θ) and calculated the Freeman-Tukey 606	  
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measure of discrepancy for the observed (yi
obs) or simulated data, given their expected 607	  

values (µi): 608	  

 609	  

D(y|θ) = ∑i(√yi - √µi)2 610	  

 611	  

yielding two arrays of median discrepancies D(yobs|θ) and D(ynew|θ) that were then 612	  

used to calculate a BpV for our model by recording the proportion of times D(yobs|θ) 613	  

was greater than D(ynew|θ) (Extended Data Fig. 3a). A BpV above 0.975 or under 614	  

0.025 provides substantial evidence for lack of model fit.  Evaluated by the Deviance 615	  

Information Criterion (DIC), the full model greatly outperformed the null model 616	  

(ΔDIC=472). 617	  

 618	  

To examine homoscedasticity, we checked residuals against fitted values. We also 619	  

checked the residuals against all covariates included in the model, and several 620	  

covariates that were not included in the model (primarily due to collinearity), 621	  

including: 1) Atoll - A binary metric of whether the reef was on an atoll or not; 2) 622	  

Control of Corruption: Perceptions of the extent to which public power is exercised 623	  

for private gain, including both petty and grand forms of corruption, as well as 624	  

'capture' of the state by elites and private interests. Derived from the World Bank 625	  

survey on governance; 3) Geographic Basin- whether the site was in the Tropical 626	  

Atlantic, western Indo-Pacific, Central Indo-Pacific, or eastern Indo-Pacific; 4) 627	  

Connectivity – we examined 3 measures based on the area of coral reef within a 30km, 628	  

100km, and 600km radius of the site; 5) Sedimentation; 6) Coral Cover (which was 629	  

only available for a subset of the sites); 7) Climate stress52; and 8) Census method. 630	  
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The model residuals showed no patterns with these eight additional covariates, 631	  

suggesting they would not explain additional information in our model.  632	  

 633	  

Bright and dark spot estimates 634	  

Because the performance of site scale locations are of substantial interest in 635	  

uncovering novel solutions for reef conservation, we defined bright and dark spots at 636	  

the site scale. To this end, we defined bright (or dark) spots as locations where 637	  

expected site-scale intercepts (γ0ks) differed by more than two standard deviations 638	  

from their nation/state-scale expected value (μks), given all the covariates present in 639	  

the full hierarchical model: 640	  

SSspot = |(μks - γ0ks)| > 2[SD(μks - γ0ks)] 641	  

This, in effect, probabilistically identified the most deviant sites, given the model, 642	  

while shrinking sites toward their group-level means, thereby allowing us to 643	  

overcome potential bias due to low and varying sample sizes that can lead to extreme 644	  

values from chance alone. After an initial log-Normal model formulation, where we 645	  

were not confident in model convergence, we employed a noncentral-t distribution at 646	  

the observation scale, which facilitated model convergence and dampened any effects 647	  

of potentially extreme reef-scale observations on the bright and dark spot estimates. 648	  

Further, we did not consider a site a bright or dark spot if the group-level (i.e. 649	  

nation/state) mean included fewer than 5 sites. 650	  

 651	  

 652	  

Analysing conditions at bright spots 653	  
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For our preliminary exploration into why bright and dark spots may diverge from 654	  

expectations, we surveyed data providers and other experts about key social, 655	  

institutional, and environmental conditions at the 15 bright spots, 35 dark spots, and 656	  

14 sites that performed most closely to model specifications. Specifically, we 657	  

developed an online survey (SI) using Survey Monkey (www.surveymonkey.com) 658	  

software, which we asked data providers who sampled those sites to complete with 659	  

input from local experts, where necessary. Data providers generally filled in the 660	  

survey in consultation with nationally-based field team members who had detailed 661	  

local knowledge of the socioeconomic and environmental conditions at each of the 662	  

sites. Research on bright spots in agricultural development19 highlights several types 663	  

of social and environmental conditions that may lead to bright spots, which we 664	  

adapted and developed proxies for as the basis of our survey into why our bright and 665	  

dark spots may diverge from expectations. These include: 666	  

i) Social and institutional conditions. We examined the presence of 667	  

customary management institutions such as taboos and marine tenure 668	  

institutions, whether there was significant engagement by local people in 669	  

management (specifically defined as there being substantial active 670	  

engagement by local people in reef management decisions. Token 671	  

involvement and consultation were not considered significant engagement), 672	  

and whether there were high levels of dependence on marine resources 673	  

(specifically, whether a majority of local residents depend on reef fish as a 674	  

primary source of food or income). All social and institutional conditions 675	  

were converted to presence/absence data. Dependence on resources and 676	  

engagement were limited to sites that had adjacent human populations. All 677	  
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other conditions were recorded regardless of whether there is an adjacent 678	  

community;  679	  

ii) Technological use/innovation. We examined the presence of motorised 680	  

vessels, intensive capture equipment (such as beach seine nets, surround 681	  

gill nets, and muro-ami nets), and storage capacity (i.e. freezers);  682	  

iii) External influences (such as donor-driven projects). We examined the 683	  

presence of NGOs, fishery development projects, development initiatives 684	  

(such as alternative livelihoods), and fisheries improvement projects. All 685	  

external influences were recorded as present/absent then summarised into 686	  

a single index of whether external projects were occurring at the site; 687	  

iv) Environmental/ecological processes (e.g. recruitment & connectivity). We 688	  

examined whether sites were within 5km of mangroves and deep-water 689	  

refuges, and whether there had been any major environmental disturbances 690	  

such as coral bleaching, tsunami, and cyclones within the past 5 years. All 691	  

environmental conditions were recorded as present/absent.  692	  

 693	  

As an exploratory analysis of associations between these conditions and whether sites 694	  

diverged more or less from expectations, we used two complementary approaches. 695	  

The link between the presence/absence of the aforementioned conditions and whether 696	  

a site was bright, average, or dark was assessed using a Fisher’s Exact Test. Then we 697	  

tested whether the mean deviation in fish biomass from expected was similar between 698	  

sites with presence or absence of the mechanisms in question (i.e. the presence or 699	  

absence of marine tenure/taboos) using an ANOVA assuming unequal variance. The 700	  

two tests yielded similar results, but provide slightly different ways to conceptualise 701	  

the issue, the former is correlative while the latter explains deviation from 702	  
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expectations based on conditions, so we provide both (Fig. 3, Extended Data Fig. 703	  

4). It is important to note that some of these social and environmental conditions were 704	  

significantly associated (i.e. Fisher’s Exact probabilities <0.05), and further research 705	  

is required to uncover how these and other conditions may make sites bright or dark. 706	  

  707	  
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End Notes 823	  

Supplementary Information is linked to the online version of the paper at 824	  

www.nature.com/nature. 825	  
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Extended Data Tables 848	  

 849	  

Extended Data Table 1 | Summary of social and environmental covariates. 850	  

Further details can be found in the Supplemental Online Methods. The smallest scale 851	  

is the individual reef. Sites consist of clusters of reefs within 4km of each other. 852	  

Nation/states generally correspond to country, but can also include or territories or 853	  

states, particularly when geographically isolated (e.g. Hawaii).  854	  

 855	  

Extended Data Table 2 | List of ‘Nation/states’ covered in study and their 856	  

respective average biomass (plus or minus standard error) In most cases, 857	  

nation/state refers to an individual country, but can also include states (e.g. Hawaii or 858	  

Florida), territories (e.g. British Indian Ocean Territory), or other jurisdictions. We 859	  

treated the NW Hawaiian Islands and Farquhar as separate ‘nation/states’ from 860	  

Hawaii and Seychelles, respectively, because they are extremely isolated and have 861	  

little or no human population. In practical terms, this meant different values for a few 862	  

nation/state scale indicators that ended up having relatively small effect sizes, anyway 863	  

(Fig. 1b): Population, tourism visitations, and in the case of NW Hawaiian Island, fish 864	  

landings.   865	  

 866	  

Extended Data Table 3| Model selection of potential gravity indicators and 867	  

components.  868	  

 869	  

Extended Data Table 4 | Variance Inflation Factor Scores (VIF) for continuous 870	  

data before and after removing variables due to colinearity. X = covariate 871	  

removed.  872	  

 873	  

Extended Data Table 5| List of Bright and Dark Spot locations, population status, 874	  

and protection status.  875	  

  876	  



	   41	  

Extended Data Figure Legends 877	  

 878	  

Extended Data Figure 1 | Marginal relationships between reef fish biomass and 879	  

social drivers. a) local population growth, b) market gravity, c) nearest settlement 880	  

gravity, d) tourism, e) nation/state population size, f) Human development Index, g) 881	  

high compliance marine reserve (0 is fished baseline), h) restricted fishing (0 is fished 882	  

baseline), i) low compliance marine reserve (0 is fished baseline), j) voice and 883	  

accountability, k) reef fish landings, l) ocean productivity; m) depth (-1= 0-4m, 0= 4-884	  

10m, 1=>10m), n) reef flat (0 is reef slope baseline), o) reef crest flat (0 is reef slope 885	  

baseline), p) lagoon/back reef flat (0 is reef slope baseline). All X variables are 886	  

standardized. Red lines are the marginal trend line for each parameter as estimated by 887	  

the full model. Grey lines are 100 simulations of the marginal trend line sampled from 888	  

the posterior distributions of the intercept and parameter slope, analogous to 889	  

conventional confidence intervals.  ** 95% of the posterior density is either a positive 890	  

or negative direction (Fig. 1b-d); * 75% of the posterior density is either a positive or 891	  

negative direction. 892	  

 893	  

Extended Data Figure 2| Correlation plot of candidate continuous covariates 894	  

before accounting for colinearity (Extended Data Table 4). Colinearity between 895	  

continuous and categorical covariates (including biogeographic region, habitat, 896	  

protection status, and depth) were analysed using boxplots. 897	  

 898	  

Extended Data Figure 3 | Model fit statistics. a) Bayesian p Values (BpV) for the 899	  

full model indicating goodness of fit, based on posterior discrepancy. Points are 900	  

Freeman-Tukey differences between observed and expected values, and simulated 901	  

and expected values. Plot shows no evidence for lack of fit between the model and the 902	  

data.  b)  Posterior distribution for the degrees of freedom parameter (ν) in our 903	  

supplemental analysis of candidate distributions. The highest posterior density of 3.46, 904	  

with 97.5% of the total posterior density below 4, provides strong evidence in favour 905	  

of a noncentral t-distribution relative to a normal distribution and supports the use of 906	  

3.5 for ν . 907	  

 908	  
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Extended Data Figure 4| Box plot of deviation from expected as a function of the 909	  

presence or absence of key social and environmental conditions expected to 910	  

produce bright spots.  Boxes range from the first to third quartile and whiskers 911	  

extend to the highest value that is within 1.5 * the inter-quartile range (i.e., distance 912	  

between the first and third quartiles). Data beyond the end of the whiskers are outliers, 913	  

which are plotted as points. 914	  


