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Abstract: 

A novel highly thermal stable propargyl functional compound containing 

benzoxazole ring, N, N, N’, N’-tetra propargyl-5-amino-2-(p-aminophenyl) 

benzoxazole (TPAPB), was proposed and synthesized using phase-transfer catalytic 

method. The cure behavior of TPAPB was investigated by non-isothermal differential 

scanning calorimetry analysis (DSC). The solubility and rheological properties of 

TPAPB, as well as its broad temperature window from 130 °C to 200 °C with low 

viscosity, offered excellent processability for TPAPB to be used as a potential 

monomer of thermosetting polymer resin. It was found that the glass transition 
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temperature (Tg) of cured TPAPB was 359 °C, and the temperature of 5% weight loss 

(Td5) was 418 °C in argon with the char residue up to 70% at 700 °C. The 

polymerized resin exhibited high heat resistance and thermal stability, together with 

its processability, making it good candidate as highly heat-resistant polymer matrix 

for advanced composite applications. 
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Instruction 

Resins terminated with acetylene1, 2 or phenylacetylene3, 4 have a long shelf life and 

their cured products have excellent solvent resistance and favorable combination of 

physical and mechanical properties at high temperature. However, the small processing 

window is a major concern on processability of acetylene-terminated resins and the high 

cure temperature makes phenylacetylene-terminated resins less processable.5 Moreover, 

the high material cost also restricts their applications.6 In contrast to terminal acetylene 

or phenylacetylene functional resins, propargyl derivatives are much attractive for their 

easiness of synthesis and polymerization.7 Furthermore, excellent thermal and 

mechanical properties facilitate the resins suitable for composites,8 adhesives9 and 

special coatings.10 

Many aromatic heterocyclic moieties, such as pyridine,11 benzothiazole,12 

benzoxazole13 and benzimidazole,14 can improve thermal and mechanical properties of 

resins. Significant efforts have been paid on introducing an aromatic benzoxazole15 or 

benzobisxazole16 unit into the main chain of the polymer to improve thermal stabilities. 

In addition, most of the studies have been devoted to synthesis and polymerization of a 

few propargyl ether systems.17, 18 Liu et al.19 introduced benzimidazole moieties into the 

backbone of polyimide and the co-PI fibers exhibit extremely high tensile strength and 

initial modulus along with good thermal properties. Wang et al.20 synthesized 



 

 

high-temperature multiple-shape memory poly(benzoxazole-co-imide)s with superior 

thermal stability. The polymer possessed high tensile strength and good elongation. 

However, one of the critical drawbacks of benzoxazole is its poor solubility in 

organic solutions due to its stiff structure, which is detrimental to its processability.21 

From our previous results, the introduction of propargyl would enhance the solubility of 

highly heat-resistant resins and reduce the melting point of the monomers,22, 23 which is 

beneficial to their processing. 

To achieve highly thermal stability, the present work aims on the synthesis of a 

novel monomer with a broad processing window. A propargyl-functional compound 

containing benzoxazole ring, N, N, N’, N’-tetra propargyl-5-amino-2-(p-aminophenyl) 

benzoxazole (TPAPB) has been synthesized by phase-transfer catalysis method. The 

investigation involved the synthesis and characterization of TPAPB as well as the 

optimization of the reaction conditions. The properties of TPAPB and its polymerized 

product were also studied. 

Experimental 

Materials 

Dichloromethane (AR, Beijing chemical works China), propargyl bromide (CP, 

Yangcheng Longsheng fine chemical works China), tetrabutyl-ammonium bromide (AR, 

Tianjin fine chemicals institute China), 2,4-diamino-phenol hydrochloride (Beijing 

chemical regent company China, recrystallized before further use), p-aminobenzoic acid 



 

 

(AR, Beijing Yili fine chemicals Co. Ltd China), phosphoric acid (AR 85%, Beijing 

chemical regent company China), stannous chloride (AR, Shantou Xilong Chemical 

Works China). 

Measurements 

1H NMR spectrum was recorded on a FX-90Q 300 (300 MHz) with CDCl3 as 

solvent. FT-IR spectrum was obtained from a Nicolet NEXUS-470 FT-IR spectrometer. 

Thermal analysis was performed on Differential Scanning Calorimetry (DSC) and 

Thermal Gravimetric Analysis (TGA) was conducted with a NETZSCH STA449C 

DSC-TGA analyzer, at a heating rate of 20 °C/min under argon atmosphere. The 

rheological characteristics of TPAPB were carried out on an Advanced Rheometric 

Expansion System rheometer under nitrogen atmosphere at a heating rate of 5 °C/min in 

a frequency of 1 Hz. The melting point was measured by an X-5 microscopic melting 

point apparatus. 

Synthesis of 5-amino-2-(p-aminophenyl) benzoxazole 

The reaction scheme for the synthesis of 5-amino-2-(p-aminophenyl) benzoxazole 

by dehydration-condensation reaction24 was shown in Scheme 1. 

 

Scheme 1. Synthesis of 5-amino-2-(p-aminophenyl) benzoxazole 



 

 

First, polyphosporic acid was prepared as follows. Phosphorus pentoxide (60 g, 

0.42 mol) was added in a 250mL three-necked, round flask with a nitrogen gas inlet 

tube. Then 85% phosphoric acid was injected into the reaction flask within 0.5 h, the 

flask was shaken so that the phosphorus pentoxide could be completely dissolved in 

phosphoric acid. The reaction mixture was slowly heated to 140 °C, stirred continuously 

and kept at this temperature for 4h. When the mixture changed to transparent, 

polyphosporic acid was obtained and then cooled to 60 °C. 2, 4-diamino-phenol 

hydrochloride (9.85 g, 0.05 mol), p-amino-benzoic acid (7.54 g, 0.055 mol) and 

stannous chloride (0.3 g, 1.58 mmol) were added to the flask respectively. The reaction 

was processed by vacuum pumping intermittently to remove hydrogen chloride in the 

temperature range of 60-110 °C for 12 h, and the reaction mixture was slowly heated to 

200 °C for 5 h. Then the reaction mixture was cooled to 100 °C and poured into the 

mixture of ice and water. The sediment product was washed, neutralized by 10% 

sodium carbonate solution, repeatedly washed, air pump filtered, and dried in vacuum. 

Finally, a kind of yellow solid powder was obtained. Yield: 9.4 g, 83.6%. m.p.:230～

231 °C. Elemental analysis, measured value (calculated value), %: C 68.87 (69.31); H 

4.92(4.92); N 18.44 (18.66). 1H-NMR (DMSO2-d6, 300MHz), δ: 7.284, 7.313 (m, 1H, 

Ar-H); 6.796 (m, 1H, Ar-H); 7.757, 7.786 (d, 2H, J =6 Hz); 5.643, (s, 4H, NH2 ×2). IR 

(KBr), ν, cm-1: 3394, 3323, 1610, 1579, 1498, 1268, 950. 



 

 

Synthesis of N, N, N’, N’-tetra propargyl-5-amino-2-(p-aminophenyl) benzoxazole 

(TPAPB) 

TPAPB was synthesized from 5-amino-2-(p-aminophenyl) benzoxazole and 

propargyl bromide by phase-transfer catalysis. The reaction scheme for synthesizing 

TPAPB was shown in Scheme 2. 

 

Scheme 2. Synthesis of TPAPB 

5-amino-2-(p-aminophenyl) benzoxazole, NaOH, deionized water, solvent and 

phase transfer agent were poured into a 100 mL three-neck bottom flask with a nitrogen 

gas inlet tube. Then propargyl bromide was added dropwise at 30 °C within 1 h under 

intensive stirring. The reaction mixture was continuously stirred at 20-50 °C for several 

hours. In each experiment, the amount of propargyl bromide, 

5-amino-2-(p-aminophenyl) benzoxazole, NaOH, deionized water and solvent was 8.33 

g (0.07 mol), 2.25 g (0.01 mol), 1.6 g (0.04 mol), 5.74 g, and 5.74 g, respectively. The 

different reaction conditions for synthesis of TPAPB were shown in Table I. On the 

completion of the reaction, the solvent layer was separated from aqueous layer and 

washed with deionized water three times. 



 

 

Table I. Different reaction conditions for the synthesis of TPAPB 

No. Solvent 
Temp. 

(°C) 

Alkali 

liquor 

Phase 

transfer 

agent 

Amount of 

phase 

transfer 

agentb (%) 

Time 

(h) 

Yield 

(%) 

1 dichloromethane 20 NaOH TBABa 4.9 16 0 

2 dichloromethane 50 NaOH TBAB 4.9 11 95.3 

3 DMF 70 NaOH − − 11 62.7 

4 dichloromethane 50 NaOH TBAB 2.5 11 54.1 

5 dichloroethane 70 K2CO3 TBAB 4.9 11 66.9 

6 dichloroethane 70 NaOH TBAB 4.9 11 82.1 

7 dichloromethane 50 K2CO3 TBAB 4.9 11 49.5 

8 dichloromethane 50 KOH TBAB 4.9 11 72.3 
a Tetrabutyl-ammonium bromide was short for TBAB. 

b The amount of phase transfer agent was accounted for the amount of 

5-amino-2-(p-aminophenyl)benzoxazole(mole fraction) 

After distillation, a solid product was obtained, which was subjected to further 

purification and separation to obtain pure compound. Finally, a yellow solid powder 

was obtained. FT-IR and 1H-NMR spectra were employed to determine the structure of 

the product.  

Curing of TPAPB 

The curing was carried out by heating the monomer in air by the following 

gradually heating procedure: 180 °C/1 h, 200 °C/2 h, 230 °C/2 h and 250 °C/10 h. 

Thereafter, the resin was post cured at 300 °C for 1 h. A black polymerized product was 

obtained.  



 

 

Results and discussion 

Synthetic reaction conditions of TPAPB 

From the principle of phase-transfer catalysis, synthesis of TPAPB is a 

nucleophilic substitution reaction and 5-amino-2-(p-aminophenyl) benzoxazole is the 

nucleophile. To establish the optimum reaction conditions according to the yield of 

product, different methods have been applied to synthesize TPAPB by changing 

reaction conditions. 

There are many clear advantages of phase-transfer catalytic method compared with 

other organic synthesis methods. It can reduce reaction time and lower reaction 

temperature. Moreover, the degree of reactions can be significantly increased because 

the catalysis can assist reactants to contact mutually. The reaction conditions of 

experiment No.3 to No.6 were same except the solvent and phase transfer agent. Owing 

to phase transfer agent, the yield of experiment No.6 (82.1%) was much improved from 

that of No.3 (62.7%). 

Inherent characteristic of phase transfer agent is one of decisive factors to improve 

reaction rate. Usually, quaternary ammonium salt containing 15-25 carbon atoms has 

good catalytic effect25 and the amount of salt account for 1-5% of reactant (mole 

fraction). Tetrabutyl-ammonium bromide was chosen as the phase transfer agent in this 

investigation for its approximate symmetry molecular structure. From experiment No.2 



 

 

and No.4, it can be seen that when the amount of tetrabutyl-ammonium bromide was 

4.9%, the yield was higher under the same conditions. 

Generally speaking, all solvents used in phase transfer catalytic reaction are 

nonpolar or little polar, such as benzene, toluene, THF, dichloromethane, and 

dichloroethane, etc. Dichloromethane is the most commonly used solvent. Comparing 

experiment No.2 and No.6, it is found that the yield was increased when 

dichloromethane was used. 

In the synthesis of TPAPB, the alkali liquor was another critical factor affecting the 

yield. From Table I, the yield of experiment No.8 (72.3%) was higher than that of No.7 

(49.5%), and the yield of experiment No.2 (95.3%) was higher than that of No.8 

(72.3%), indicating that NaOH was an optimal alkali liquor. 

Purification and characterization of TPAPB 

Thin layer chromatography and column chromatography were used for the 

purification in this study. Ethyl acetate/dichloromethane blended solvent with the 

volume ratio of 1:8 was used as developing solvent. The yield of purified product was 

60%. The melting point of TPAPB was 125 °C, determined by the X-5 microscopic 

melting point apparatus. 

Purified TPAPB can be verified from the spectra analysis of FT-IR and lH-NMR 

results: 1H-NMR: δ (ppm): 2.25 (s, 4H, ≡CH), 4.12 (s, 8H, -CH2-). FT-IR: (KBr, cm-1) 



 

 

≡C-H: 3276, C≡C: 2109. The FT-IR and lH-NMR spectra were shown in Figure 1 and 2, 

respectively.  

 

Figure 1. The FT-IR spectrum of TPAPB 

 



 

 

Figure 2. The lH-NMR spectrum of TPAPB 

Solubility of TPAPB 

The solubility of TPAPB was shown in Table II. The compound can be dissolved 

in many common solvents, such as acetone, dichloromethane, and Dichloroethane, etc. 

The result indicated that the propargyl groups incorporated into 

5-amino-2-(p-aminophenyl) benzoxazole can improve the solubility of the product. 

Therefore, it is suitable for solution prepreg preparation in composite fabrication. 

Table II. Solubility of TPAPB 

Solvent Acetone CH2Cl2 CHCl3 DMF Toluene Ether Ethanol 

Solubility ++ ++ ++ ++ +− +− −− 

++ easily soluble, +- slightly soluble , -- unsoluble. 

Rheological behavior of TPAPB 

The viscosity of the TPAPB was measured at temperatures ranging from melting 

point (125 °C) to 257 °C (heating rate =5 °C/min) by an Advanced Rheometric 

Expansion System rheometer. The rheological curvet was shown in Figure 3. 

 



 

 

Figure 3. Viscosity and complex modulus curves of TPAPB 

The new synthesized compound, TPAPB, melt at about 125 °C. The viscosity was 

steadily below 0.1 Pa·s in the range of 130-200 °C, and the viscosity increased quickly 

with temperature over 200 °C. A broad temperature window from 130 °C to 200 °C with 

low viscosity was suitable for resin transfer molding (RTM) process and the fabrication 

of thermosetting composite materials. 

Cure behavior analysis 

The cure of TPAPB is thermally activated, and both the polymerization and post 

cure proceed with no generation of by-products. The reaction behavior of the curing 

process was systematically studied. The non-isothermal differential scanning 

calorimetry (DSC) test was used to study the curing mechanism. The phenomenological 

kinetics of cure can be generally described as Eq. (1): 

        =K exp a

d
T f A E R f

dt
T


     (1) 

where K(T) is reaction rate constant dependent on temperature, f (α) is the function 

of conversion(α) determined by the cure mechanism, A and Ea represent pre-exponential 

factor and  activation energy of the Arrhenius equation respectively, R is the universal 

gas constant (8.3145 J∙mol-1∙K-1), and T is absolute temperature. 



 

 

 

Figure 4. DSC curves of monomer TPAPB at different scanning rates 

The kinetic parameters, activation energy and pre-exponential factor, were 

evaluated by Kissinger, Ozawa methods.23, 26, 27 The order of reaction (n) was calculated 

by Kissinger equation and Crane equation.28 The dynamic DSC curves for TPAPB in 

the range of 25-350 °C at the heating rates of 5, 10, 15, 20 °C/min were presented in 

Figure 4. The data obtained from the curves were used to calculate the kinetic 

parameters. The results indicated that for calculating the activation energy value, both 

Kissinger and Ozawa’s methods gave fairly close results: 145.91 and 147.43 kJ∙mol-1, 

respectively. The kinetic parameters were summarized in Table III. 

Table III. Kinetic parameters of the cure reaction 

parameter Ea a (kJ·mol-1) A (min-1) n 

value 145.91 4.20×1013 0.94 
a Obtained by Kissinger method. 

Substituting the kinetic parameters into Eq. (1), the mathematic model of curing 

processes of TPAPB was obtained, as described in Eq. (2). 



 

 

   
0.9413 44.20 10 exp 1.76 10 1


    

d
T

dt
   (2) 

By integrating the above kinetic equation (Eq. (2)), the function of the three 

variables (α, t, T) was derived in Eq. (3). The conversion-time relationships of the 

TPAPB for isothermal curing at 25, 40, 150, 200 and 240 °C were plotted in Figure 5. 

The figure showed that the compound cured in a relatively short period of time upon 

200 °C but it kept extremely low conversion rate within a fairly long time when the 

temperature was below 40 °C. Considerable conversion did not occur at 25 °C after one 

year. It can be speculated that the newly synthesized compound can be stably stored for 

an incredibly long period at room temperature.  

  
16.67

12 41 1 2.64 10 exp 1.76 10      
 

 T t   (3) 

 



 

 

Figure 5. Conversion rate versus time at different curing temperatures: 25 °C, 40 °C, 

150 °C, 200 °C, and 240 °C 

According to the conversion-time relationship of TPAPB in figure 5, the 

conversion approached 100% rapidly within 2h at 240 °C. So the curing process could 

be: 180 °C/1 h, 200 °C/2 h, 230 °C/2 h and 250 °C/4 h. 

The curing behavior of TPAPB was studied by FT-IR and DSC. The DSC curve 

was shown in Figure 6. The curing was completed with the end of the curing exothermic 

effect. The FT-IR spectra were shown in Figure 7. The disappearance of ≡C-H and C≡C 

stretching vibrations at 3276 and 2109 cm-1 indicated that propargyl groups had been 

completely converted during the thermal curing process. Cross-linking reaction 

involving C≡C bond might have occurred to form a thermally stable structure. Further 

study will be needed to clarify the mechanism of the reaction and the resulting thermal 

stability. The thermal polymerization is believed to proceed through addition reactions 

between the acetylene groups to form a conjugated polyene, 29 which then participated 

in more complex reactions to yield crosslinked structures. Other reactions are also 

possible such as polycyclotrimerization reaction.30 The plausible mechanism of the 

polymerization of TPAPB was demonstrated in Scheme 3. 



 

 

 

Figure 6. DSC trace of TPAPB and the polymerized product (Ar, heating rate 

20 °C/min) 

 



 

 

Figure 7. FT-IR spectra of TPAPB and its polymerized product 

 

Scheme 3. Plausible mechanism of the polymerization of TPAPB 

Thermal properties of cured TPAPB 

Thermogravimetric analysis (TGA) and differential scanning calorimetry (DSC) 

under argon were used to study the thermal properties of TPAPB. The DSC curve and 

TGA curve were shown in Figure 8 and Figure 9, respectively. 

The results showed that the glass transition temperature (Tg) of cured TPAPB was 

359 °C and there was no exothermal peak in DSC curve, exhibiting good thermal 

stability. 



 

 

 

Figure 8. DSC of the cured TPAPB (Ar, heating rate 20 °C/min) 

 

Figure 9. TGA result of the cured TPAPB (Ar, heating rate 20 °C/min) 

Td5 (temperature of 5% weight loss, determined by the TGA trace, under argon) 

was 418 °C, and the residue (under argon) at 700 °C was 70%. These values were much 

higher than those of the bis-propargyl ether resins, e.g. Dipropargyl ether of bisphenol A 

(DPEBA), of which residue at 700 °C was 57%.31 From these results, it can be drawn 



 

 

that the benzoxazole and propargyl structures can increase the heat resistance and 

thermal stability of the resin, mainly because they are rigid groups and thermally stable 

structure might be formed by cross-linking reaction involving C≡C bond. 

Conclusions 

N, N, N’, N’-tetra propargyl-5-amino- 2-(p-aminophenyl) benzoxazole (TPAPB), a 

novel propargyl-terminated compound, was proposed and synthesized using 

phase-transfer catalytic method. 

TPAPB can be dissolved in many common solvents, such as acetone, ethyl acetate, 

and dichloromethane, etc. The solubility and rheological properties of TPAPB, as well 

as its broad temperature window from 130 °C to 200 °C with low viscosity, offered 

excellent processability for TPAPB to be used as a monomer of thermosetting polymer 

resin. The curing behavior of TPAPB evaluated by nonisothermal DSC method showed 

that the apparent activation energies of the cure reaction were 145.9 kJ∙mol-1 and 147.4 

kJ∙mol-1 determined by Kissinger and Ozawa methods respectively and that the novel 

compound possessed extraordinarily long shelf life. Tg of TPAPB was 359 °C, Td5 (the 

temperature of 5% weight loss, under argon) was 418 °C and the residue at 700 °C 

under argon was 70%. The polymerized product showed good heat resistance and 

thermal stability indicating that the resin has good potential to be used as thermal 

resistant polymer matrix for advanced composite applications. 
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