
J. Intell. Syst. 2015; aop

Leila Baccour*, Adel M. Alimi and Robert I. John

Intuitionistic Fuzzy Similarity Measures and 
Their Role in Classification
DOI 10.1515/jisys-2015-0086
Received August 13, 2015.

Abstract: We present some similarity and distance measures between intuitionistic fuzzy sets (IFSs). Thus, 
we propose two semi-metric distance measures between IFSs. The measures are applied to classification of 
shapes and handwritten Arabic sentences described with intuitionistic fuzzy information. The experimental 
results permitted to do a comparative analysis between intuitionistic fuzzy similarity and distance measures, 
which can facilitate the selection of such measure in similar applications.
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1  Introduction
Similarity and distance measures between IFSs [1, 2] have been proposed and discussed using differ-
ent approaches. Some of the proposed measures are generalizations of crisp or fuzzy distance measures. 
 Atanassov [2] and Szmidt and Kacprzyk [39] generalized crisp Hamming and Euclidean distance measures to 
IFSs, and Hung and Yang [24, 25] generalized Hausdorff distance and Lp metric to propose similarity meas-
ures between IFSs. Hung and Yang [26] generalized similarity measures between type-1 fuzzy sets to propose 
intuitionistic fuzzy similarity measures (IFSMs).

The existing intuitionistic fuzzy similarity measures (IFSMs) in literature are examined and compared 
[8, 29], and many measures are proposed to resolve deficiencies of existing measures. For instance, Hong 
and Kim [22] proposed IFSMs to resolve deficiencies found in the measures presented in Refs. [14, 15], but 
these IFSMs have some counter-intuitive cases resolved by Fan and Zhangian [20] who proposed another 
IFSM. Szmidt and Kacprzyk [40] proposed IFSMs using the complementary of intuitionistic fuzzy sets to 
measure the dissimilarity between IFSs in addition to their similarity. More details about IFSMs are pre-
sented in Ref. [11].

In general, the existing IFSMs are demonstrated to validate properties. However, some of them do not 
validate one or more properties, and others are shown to have some counter-intuitive cases. A compara-
tive analysis by Li et al. [29] shows the problems found in some IFSMs from literature, and the relationship 
between some IFSMs are done in Ref. [10].

In crisp logic, a distance measure, which does not validate triangular inequality, is considered as 
 semi-metric distance measure (see Appendices). Some measures between intuitionistic fuzzy sets, in lit-
erature, do not validate the fourth property of similarity or distance measure. Could these measures be 
used in operations of classification? Is the satisfaction of the fourth property mandatory to obtain good 
results in classification? Through analogy to crisp distance measures, we propose semi-metric distance 
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measures, and we apply them to classification to answer the precedent questions. Intuitionistic fuzzy simi-
larity measures are crucial operators for comparison between two patterns and are used in many systems 
such as recognition systems, classification systems, etc.; as examples, applications include handwritten 
Arabic sentences recognition [5, 9], logic programming [3, 4], decision-making problems [38], and medical 
diagnosis [27, 37]. Despite the numerous works on IFSMs and the different propositions of similarity and 
distance measures, most of them did numerical applications on some artificial samples and did not use a 
large data set to show the validation of IFSMs for classifying patterns or another domain in which similarity 
can influence results. Hung and Yang [26] applied some IFSMs to students’ evaluation, but the used data 
set was not large. A comparative analysis between IFSMS in practical and in real applications is needed. 
This is the objective of the paper in which we apply IFSMs to two applications of classifications using large 
data sets.

In Section 2, we present the definition of IFSs followed by distance and similarity measures from the 
 literature. In Section 4, we propose two semi-metric distance measures, and we apply them to some numer-
ical examples. Therefore, we apply them and the measures from literature to the classification of shapes 
and  recognition of handwritten Arabic sentences. The set of sentences is extracted from the IFN/ENIT data 
set (set A) [36], and the shapes represent the SQUID data set. The extraction process of intuitionistic fuzzy 
features of the two data sets is described in Sections 5 and 6, respectively. The results of the classification 
obtained with all measures are compared in Sections 5 and 6.

2  Intuitionistic Fuzzy Sets
An intuitionistic fuzzy set A (IFS) in a universe of discourse X is defined by Ref. [1] as:

A  =  {〈x, μA(x), νA(x)〉|x ∈ X}, where μA(x) : X → [0,1] and νA(x) : X → [0,1] with the condition 0   ≤   μA(x) + νA(x)    
≤   1 ∀x ∈ X. IFSs(X) is the set of all IFSs in X.

The numbers μA(x), νA(x) denote, respectively, the degrees of membership and of non-membership of the 
element x ∈ X to A. Also, μA and νA are called, respectively, truth membership function and false membership 
function.

In addition to membership and non-membership functions, a function of hesitancy or uncertainty of x to 
A denoted by πA(x) must be taken into consideration. πA(x) is computed as:

( ) 1 ( ) ( )  with 0 ( ) 1A A A Ax x x xπ µ ν π= − − ≤ ≤

3  Similarity, Distance, and Semi-metric Measures Between IFSs
An intuitionistic fuzzy similarity measure S(A, B) serves to match between two IFSs A and B of IFSs(X) and 
should satisfy the following properties

( 1) 0 ( , ) 1
( 2) ( , ) 1 if and only if 
( 3) ( , ) ( , )
( 4) ( , ) ( , )   ( , ) ( , )   . ( )

P S A B
P S A B A B
P S A B S B A
P S A C S A B and S A C S B C if A B C C IFSs X

≤ ≤
= =
=
≤ ≤ ⊆ ⊆ ∈

Note that similarity and distance (dissimilarity) measures are complementary; when the first increases, 
the second decreases. Normalized distance measure and similarity measure are dual concepts. So,  
S(A, B)  =  1 − d(A, B) and vice versa. The properties of distance measures below are complementary to those 
of similarity measures:
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( 1) 0 ( , ) 1
( 2) ( , ) 0 
(

if and only if 

If  then 
3) ( , ) ( , )

( 4) , , , ( ), ( , ) ( , )  and ( , ) ( , )

DP d A B
DP d A B A B
DP d A B d B A
DP A B C A B C IFSs X d A C d A B d A C d B C

≤ ≤
= =
=

⊆ ⊆ ∈ ≥ ≥

In crisp logic, distance measures are classified to distance, index of distance, index of dissimilarity, semi-
metric distance, or distance ultra-metric (see Appendices) according to their validations of the whole or some 
of properties. For IFSs, with reference and analogy to crisp distance, measures that do not validate the prop-
erty DP4 of distance measures can also be considered if they show correct classification, and thus, they will 
be called semi-metric distance measures.

Notation The following notations are used to simplify the formulas of distance and similarity measures:

and 
and 

and 

( )  ( )
( )  ( )

,  ,

i i
A A i B B i

i i
A A i B B i
i i i i i i i i i

A B A B A B

x x
x x

µ ν π

µ µ µ µ

ν ν ν ν

∆ µ µ ∆ ν ν ∆ π π

= =
= =
= − = − = −

In the sequel, we present existing similarity and distance measures in Tables 1 and 2 between tow IFSs A 
and B of n elements.

3.1  Similarity Measures Between Intuitionistic Fuzzy Sets

3.1.1  Comments on Measures From Literature

 – The measures 
1

p
CS  (23) and 

2

p
CS  (24) can be correct only if each of the sum is divided by n (second part of 

the formulas after 1-).
 – In the measures 

1

p
CS  and 

2
,p

CS  it is very difficult to determine the weight for n elements especially if the 
sum of the weights is one. So, the weight could be eliminated in these measures, that it will be possible 
to compute them.

 –
1 SK

p
C HS d=  when δ1  =  δ2  =  δ3 and when ωi is omitted.

 – SP cannot classify patterns when they are described with both fuzzy and intuitionistic fuzzy information.
 – The measure Spk3 (13) does not satisfy the property (P4) of similarity measures between IFSs.

Proof 1 Let A ⊆ B ⊆ C, then μA(x)   ≤   μB(x)   ≤   μC(x) and νA(x)  ≥  νB(x)  ≥  νC(x). Therefore,

| ( ) ( ) | | ( ) ( ) |, | ( ) ( ) | | ( ) ( ) |,
| ( ) ( ) | | ( ) ( ) |  and | ( ) ( ) | | ( ) ( ) |

A B A C A B A C

A B A C A B A C

x x x x x x x x
x x x x x x x x

µ µ µ µ ν ν ν ν

µ µ µ µ ν ν ν ν

− ≤ − − ≤ −
+ ≤ + + ≥ +

According to the above hypothesis, we have:

but the inequali| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |  
| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( )

ty
is not t .| e ru

A B A B A C A C

A B A B A C A C

x x x x x x x x
x x x x x x x x

µ µ ν ν µ µ ν ν

µ µ ν ν µ µ ν ν

− + − ≤ − + −
+ + + ≥ + + +

Consequently, this inequality is not true, too:

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |
1 1 ,

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |
A B A B A C A C

A B A B A C A C

x x x x x x x x
x x x x x x x x

µ µ ν ν µ µ ν ν

µ µ ν ν µ µ ν ν

− − − −
− + ≥ − +

+ + + +

and then S(A, B)  ≥  S(A, C) is not true. Thus, the property P4 is not verified for the similarity measure Spk3.

Other comments about similarity measures and their relationships are given in Ref. [10].
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Table 1: Similarity Measures Between IFSs.

Authors   IFSMs  

Chen [14, 15]  
=

−
= −

∑ 1
| ( ) ( )|

( , ) 1
2

n

A i B ii
C

S x S x
S A B

n

  (1)

  where SA(xi)  =  μA(xi) − νA(xi) and SB(xi)  =  μB(xi) − νB(xi).  

Hong and Kim [22]   µ ν=
∆ + ∆

= −
∑ 1

| | | |
( , ) 1 .

2

n i i
i

HS A B
n

  (2)

Fan and Zhangian [20]   µ ν= =
− ∆ + ∆

= − −
∑ ∑1 1

| ( ) ( )| | | | |
( , ) 1

4 4

n n i i
A i B ii i

L

S x S x
S A B

n n

  (3)

Dengfeng and Chuntian 
[19]

  ϕ ϕ
=

= − −∑ 1

1( , ) 1 | ( ) ( )|np pp
d A i B ip i

S A B x x
n

  (4)

  µ ν
ϕ

+ −
=

( ) 1 ( )
( )

2
A i A i

A i

x x
x  and 

µ ν
ϕ

+ −
=

( ) 1 ( )
( )

2
B i B i

B i

x x
x  with 1   ≤   p  <  +∞  

Mitchell [32]  
µ

ϕ ϕΦ= +1( , ) ( ( , ) ( , ))
2modS A B A B A B   (5)

  where ϕ
μ
(A, B) and ϕΦ(A, B) denote, respectively, the similarity measures between the 

low membership functions μA and μB and the high membership functions ΦA  =  1 − νA 
and ΦB  =  1 − νB as follows:

 

 
µ µ

ϕ µ µ
=

= = − ∆∑ 1

1( , ) ( ( ), ( )) 1 | |np i pp
d A i B i p i

A B S x x
n

 

 
ν

ϕΦ =
= Φ Φ = − ∆∑ 1

1( , ) ( ( ), ( )) 1 | |np i pp
d A i B i p i

A B S x x
n

 

Liang and Shi [28]  
µ ν

ϕ ϕ
=

= − +∑ 1

1( , ) 1 ( ( ) ( ))
AB AB

np pp
e i ip i

S A B x x
n

  (6)

 
where µ

µ
ϕ

∆
=

| |
( )

2AB

i

ix  and 
ν

ν ν
ϕ

− −
= −

1 ( ) 1 ( )
( )

2 2AB

A i B i
i

x x
x

 

  ϕ ϕ
=

= − +∑
1 21

1( , ) 1 ( ( ) ( ))np pp
s s i s ip i

S A B x x
n

  (7)

 
with ϕ

−
= 1 1

1

| ( ) ( )|
( )

2
A i B i

s i

m x m x
x  and ϕ

−
= 2 2

2

| ( ) ( )|
( )

2
A i B i

s i

m x m x
x

 

  where A1 and A2 are the sub-intervals from A divided by the median value denoted 
µ ν+ −

=
( ) 1 ( )

( )
2

A i A i
A i

x x
m x  of the interval [μA(xi), 1 − νA(xi)]. The median values of A1 

and A2 are 
µ ν+ + −

= =
1 2

( ) ( ) ( ) 1 ( )
( )  and ( ) .

2 2
A i A i A i A i

A i A i

m x x m x x
m x m x  The median 

values 
1
( )B im x  and 

2
( )B im x  of B1 and B2 are computed similarly.

 

  ( )ω ϕ
= =

= − ∑ ∑ 3

1 1

1( , ) 1 ( )
pnp p

h m m ip i m
S A B x

n
  (8)

  where: ω ω ϕ ϕ ϕ ϕ ϕ ϕ

ϕ ϕ
=

≤ ≤ = = + = −∑
1 2

3

1 21
0 1, 1, ( ) ( ) ( ), ( ) | ( ) ( )|,

( ) and ( ) are defined in formula (4).
m m i s i s i i A i B im

A i B i

x x x x x x

x x

 

  π π π π
ϕ

   
= −      3

( ) ( ) ( ) ( )
( ) max , min , .

2 2 2 2
A i B i A i B i

i

x x x x
x  

Zhang and Fu [44]   δ δ α α
=

= − − + −∑ 1

1( , ) 1 (| ( ) ( )| | ( ) ( )|)
2

n

ZF A i B i A i B ii
S A B x x x x

n
  (9)

  where: δA(xi)  =  μA(xi) + πA(xi)μA(x) and αA(xi)  =  νA(xi) + πA(xi)νA(xi)  

Hung and Yang [26]   µ µ ν ν

µ µ ν ν=

+
=

+∑1 1

min( ( ), ( )) ( ( ), ( ))1( , )
max( ( ), ( )) max( ( ), ( ))

n A i B i A i B i
w i

A i B i A i B i

x x min x x
S A B

n x x x x
  (10)
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Authors   IFSMs  

  µ µ ν ν

µ µ ν ν

=

=

+
=

+

∑
∑

1
1

1

min( ( ), ( )) min( ( ), ( ))
( , )

max( ( ), ( )) ( ( ), ( ))

n

A i B i A i B ii
pk n

A i B i A i B ii

x x x x
S A B

x x max x x

  (11)

  µ µ ν ν= − − + −2
1( , ) 1 (max | ( ) ( )| max | ( ) ( )|)
2pk i A i B i i A i B iS A B x x x x   (12)

  µ µ ν ν

µ µ ν ν

=

=

− + −
= −

+ + +

∑
∑

1
3

1

| ( ) ( )| | ( ) ( )|
( , ) 1

(| ( ) ( )| | ( ) ( )|)

n

A i B i A i B ii
pk n

A i B i A i B ii

x x x x
S A B

x x x x

  (13)

 
µ µ ν ν

=

 
− − − + −  

= −
− −

∑ 1

1

11 exp | ( ) ( )| | ( ) ( )|
2( , ) 1

1 exp( )

n

A i B i A i B ii

new

x x x x
S A B

n

  (14)

 
µ µ ν ν

=

 
− − − + −  

= −
− −

∑ 1

2

11 exp | ( ) ( )| | ( ) ( )|
2( , ) 1

1 exp( )

n

A i B i A i B ii

new

x x x x
S A B

n

  (15)

Szmidt and Kacprzyk [40]  Similarity measures between elements x and y:  
  = −1 ( , ) 1 ( ( , ), ( , ))

SK SK

c
H HSim x y f d x y d x y   (16)

  −
=

+2

1 ( ( , ), ( , ))
( , )

1 ( ( , ), ( , ))
SK SK

SK SK

c
H H

c
H H

f d x y d x y
Sim x y

f d x y d x y
  (17)

  −
=

+

2

3 2

1 ( ( , ), ( , ))
( , )

1 ( ( , ), ( , ))
SK SK

SK SK

c
H H

c
H H

f d x y d x y
Sim x y

f d x y d x y
  (18)

  − − −
=

− −4

exp( ( ( , ), ( , ))) exp( 1)
( , )

1 exp( 1)
SK SK

c
H Hf d x y d x y

Sim x y
  (19)

 
where: =

+

( , )
( ( , ), ( , ))

( , ) ( , )
SK

SK SK

SK SK

Hc
H H c

H H

d x y
f d x y d x y

d x y d x y
 and yc the complement of y 

and dHSK
 (28) is defined in Section 3.2.

 

  Thus, a measure between two IFSs A and B is defined as:  
 

=
= = …∑ 1

1( , ) ( ( , ), ( , )), for 1 4
SK SK

n c
k k H i i H i ii

Sim A B sim d x y d x y k
n

  (20)

Ye [43]   Cosine similarity measure between IFSs:  
  µ µ ν ν

µ ν µ ν
=

+
=

+ +
∑ 1 2 2 2 2

( ) ( ) ( ) ( )1( , )
( ) ( ) ( ) ( )

n A i B i A i B i
Y i

A i A i B i B i

x x x x
S A B

n x x x x
  (21)

Park et al. [35]  
π=

= − ∆∑ 1

11 | |n i
P i

S
n

  (22)

Chu et al. [16]  
µ ν π

δ δ δ
=

= − ∆ + ∆ + ∆∑
1

1

1 2 31
1 ( | | | | | | )np i p i p i p p

C ii
S w

  (23)

  where δ δ
=

= < <∑ 3

1
1, 0 1j jj

 and 
=

=∑ 1
1n

ii
w  

 
µ ν πδ δ δ

µ µ ν ν π π=

       ∆ ∆ ∆       = − + +                   
∑

2

1

1 2 31

| | | | | |
1

max( , ) max( , ) max( , )

p pp pi i i
np

C j i i i i i ii
A B A B A B

S w

  (24)

  It is considered that =0 0
0

 

Mukherjee and Basu [33]  

( ) ( )( )
µ µ ν ν π π

µ ν π µ ν π

=

= =

+ +
=

+ + + +

∑
∑ ∑2 2 2 2 2 2

1

1 1

( )

max , 

n i i i i i i
A B A B A Bi

MB n ni i i i i i
A A A B B Bi i

S
  (25)

Table 1 (continued)
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Table 2: Distance Measures Between IFSs.

Authors   Distance measures  

Atanassov [2]   Hamming and Euclidean distances  
 

µ ν=
= ∆ + ∆∑ 1

1( , ) | | | |
2A

n i i
H i

d A B
n

  (26)

 
µ ν=

= ∆ + ∆∑ 2 2
1

1( , ) ( ) ( ) .
2A

n i i
E i

d A B
n

  (27)

Szmidt and Kacprzyk [39]   Hamming and Euclidean distances  
 

µ ν π=
= ∆ + ∆ + ∆∑ 1

1( , ) | | | | | |.
2SK

n i i i
H i

d A B
n

  (28)

 
µ ν π=

= ∆ + ∆ + ∆∑ 2 2 2
1

1( , ) ( ) ( ) ( ) .
2SK

n i i i
E i

d A B
n

  (29)

Hung and Yang [24]   Hausdorff distance  
 

µ ν=
= ∆ ∆∑ 1

1( , ) max(| |, | |)n i i
Hd i

d A B
n

  (30)

  Similarity measures using dHd(A, B):  
  = −

1
( , ) 1 ( , )HY HdS A B d A B   (31)

  − −

−

−
=

−2

( , ) 1

1

exp exp
( , )

1 exp

Hdd A B

HYS A B
  (32)

  −
=

+3

1 ( , )
( , )

1 ( , )
Hd

HY
Hd

d A B
S A B

d A B
  (33)

Wang and Xin [42]   µ ν µ ν

= =

   ∆ + ∆ ∆ ∆
   = +

  ∑ ∑
1 1 1

| | | | max(| |, | |)1 1( , )
4 2

i i i i
n n

WX i i
d A B

n n
  (34)

 
µ ν

ϕ ϕ
=

= +∑
2 1

1( , ) ( ( ) ( ))np pp
WX i ip i

d A B x x
n

  (35)

  where ϕ
μ
(xi)  =  |μA(xi) − μB(xi)|/2, ϕν(xi)  =  |νA(xi) − νB(xi)|/2 and p  >  0  

Huang et al. [23]  
µ ν

=

 ∆ + ∆
=    

∑
1

1

1

| | | |
( , )

2

i p i p P
np

H i
d A B

n

  (36)

 
µ ν µ ν

λ λ
=

= ∆ ∆ + ∆ ∆∑
2 1 21

1( , )  max(| |,| |)  min(| |,| |)n i i i i
H i

d A B
n

  (37)

 
µ ν µ ν

λ λ
=

= ∆ ∆ + ∆ ∆∑
3 1 21

1( , )  max(| | , | | )  min(| | , | | )np i p i p i p i pp
H i

d A B
n

  (38)

  where 0   ≤   λ1   ≤   1, 0   ≤   λ2   ≤   1, λ1  ≥  λ2, λ1 + λ2  =  1  
  If λ1  =  1, λ2  =  0 or λ λ= =1 2

1 ,
2

 p  =  1 the dH2
 and dH3

 distances lead to 
the Hamming distances dHA and dHSK, respectively. Having the same 
hypothesis and for p  =  2, the distance dH3

 leads to Euclidean distance dEA

 

  µ ν

µ ν
=

∆ + ∆
=

+ ∆ + ∆∑
4 1

2(| | | |)1( , )
2 | | | |

i i
n

H i ii
d A B

n
  (39)

 
µ ν

µ ν

=

=

∆ + ∆
=

+ ∆ + ∆

∑
∑5

1

1

2 (| | | |)
( , )

2 | | | |

n i i
i

H n i i
i

d A B
n

  (40)

 
=

+
1

6

4

2 ( , )
( , )

1 ( , )
H

H
H

d A B
d A B

d A B
  (41)

Hung and Yang [25]   The following IFSMs are proposed based on Lp metric  
  −

=
4

1

1

2 ( , )
( , )

2

p
pp

HY
p

L A B
S A B

  (42)
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3.2  Distance Measures Between Intuitionistic Fuzzy Sets

Some distance measures are proposed based on crisp distances, and some similarity measure propositions 
are based on distance measures. We cite the following measures in Table 2 from literature.

4  Proposition of Semi-Metric Distance Measures
In the following, we propose two semi-metric distance measures between IFSs. The first semi-metric distance 
measure is defined as:

 1

| ( ) ( ) | | ( ) ( ) |1( , ) .
2 ( ) ( ) 2 ( ) ( )

p pn
A i B i A i B ip

SM
i A i B i A i B i

x x x x
d A B

n x x x x
µ µ ν ν

µ µ ν ν=

 − −
= + + − − 

∑
 

(46)

where p  ≥  1. If μA(xi) + μB(xi)  =  0 or 2 − νA(xi) − νB(xi)  =  0, then, for the ith value xi, ( , ) 0.p
SMd A B =

It is easy to remark that p
SMd  satisfies the properties DP1−DP3. Next, we verify if it satisfies the property 

DP4.

Proof 2 Let A ⊆ B ⊆ C, then, μA(xi)   ≤   μB(xi)   ≤   μC(xi) and νA(xi)  ≥  νB(xi)  ≥  νC(xi). Therefore,

| ( ) ( ) | | ( ) ( ) |, | ( ) ( ) | | ( ) ( ) |,
| ( ) ( ) | | ( ) ( ) |, | 2an ( ) ( ) | | 2 ( ) ( )d | 

A i B i A i C i A i B i A i C i

A i B i A i C i A i B i A i C i

x x x x x x x x
x x x x x x x x

µ µ µ µ ν ν ν ν

µ µ µ µ ν ν ν ν

− ≤ − − ≤ −
+ ≤ + − − ≥ − −

as p  ≥  0, we have:

| ( ) ( ) | | ( ) ( ) | , | ( ) ( ) | | ( ) ( ) | .p p p p
A i B i A i C i A i B i A i C ix x x x x x x xµ µ µ µ ν ν ν ν− ≤ − − ≤ −

According to the above hypothesis, we have:

| ( ) ( ) | | ( ) ( ) |
,

| 2 ( ) ( ) | | 2 ( ) ( ) |

p p
A i B i A i C i

A i B i A i C i

x x x x
x x x x

ν ν ν ν

ν ν ν ν

− −
≤

− + − +

Authors   Distance measures  

 
− − −

=
− −

5

1

1

exp( ( , )) exp( 2 )
( , )

1 exp( 2 )

p
pp

HY
p

L A B
S A B

  (43)

  −
=

+
6

1

1

2 ( , )
( , )

2 (1 ( , ))

p
pp

HY
p

p

L A B
S A B

L A B

  (44)

  where: 
=

= ∑ 1

1( , ) ( , )n

p p A Bi
L A B d I I

n
 

 
µ ν

= ∆ + ∆ ≥1/( ( ), ( )) (| | | | ) , 1i p i p p
p A i B id I x I x p  

  and IA(xi)  =  [μA(xi), 1 − νA(xi)] and IB(xi)  =  [μB(xi), 1 − νB(xi)], i  =  1, 2, …, n  

Boran and Akay [13]  
µ ν ν µ=

= ∗ ∆ − ∆ + ∗ ∆ − ∆
+ ∑ 1

1( , ) | )| | |
2 ( 1)

np i i p i i ppBA p i
d A B t t

n t
  (45)

  where p  =  1, 2, 3, … and t  =  2, 3, 4, … identifies the level of uncertainty  

Table 2 (continued)
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and the inequality: 
| ( ) ( ) | | ( ) ( ) |
| ( ) ( ) | | ( ) ( ) |

p p
A i B i A i C i

A i B i A i C i

x x x x
x x x x

µ µ µ µ

µ µ µ µ

− −
≤

+ +
 is not true. Consequently, this inequality is not 

true, too:

| ( ) ( ) | | ( ) ( ) | | ( ) ( ) | | ( ) ( ) |
.

| ( ) ( ) | | 2 ( ) ( ) | | ( ) ( ) | | 2 ( ) ( ) |

p p p p
A i B i A i B i A i C i A i C i

A i B i A i B i A i C i A i C i

x x x x x x x x
x x x x x x x x

µ µ ν ν µ µ ν ν

µ µ ν ν µ µ ν ν

− − − −
+ ≤ +

+ − − + − −

So ( , ) ( , )p p
SM SMd A B d A C≤  is not true. Thus, the property (DP4) is not verified for the distance measure .p

SMd
The second semi-metric distance measure is extending a similarity measure defined between two type-1 

fuzzy sets A′ and B′ in Ref. [34] as:

 ( , ) 1 max(| ( ) ( ) |).A i B ii
L A B x xµ µ′ ′= − −′ ′  (47)

Based on the measure L(A′, B′), we propose the following measure:

 

( , ) ( max(| ( ) ( ) |, | ( ) ( ) |)
max(| ( ) ( ) |)) / 2.

L A i B i A i B ii

A i B ii

d A B x x x x
x x

µ µ ν ν

π π

= − −

+ −
 

(48)

The distance dL is a distance that satisfies the properties DP1−DP3, but it does not satisfy the property DP4 of 
distance measures between IFSs as shown by the following proof:

Proof 3 dL(A, C)  ≥  dL(A, B) but dL(A, C)  ≥  dL(B, C) is not always verified. dL(A, C)  =  maxi(|μA(xi) − μC(xi)|, 
|νA(xi) − νC(xi)|), dL(B, C)  =  maxi(|μB(xi) − μC(xi)|, |νB(xi) − νC(xi)|). The maximum can be |μA(xi) − μB(xi)| and 
|μB(xi) − μC(xi)| or |νA(xi) − νB(xi)| and |νB(xi) − νC(xi)| or |μA(xi) − μB(xi)| and |νB(xi) − νC(xi)| or |νA(xi) − νB(xi)| and 
|μB(xi) − μC(xi)|. In the two first cases, dL(A, C)  ≥  dL(B, C), but in the two last cases, dL(A, C)  ≥  dL(B, C) is not always 
true. Taking into account the second term |πA − πB|, the inequality dL(A, C)  ≥  dL(B, C) can be not true, too. So, the 
property DP4 is not verified by the distance dL. So, it is a semi-metric distance measure.

4.1  Numerical Examples

In this section, we apply the proposed similarity and semi-metric distance measures to some numerical 
examples in which patterns are borrowed from Ref. [28]. The results of comparisons between the patterns Ai, 
i  =  1, 2, 3 and B of the two data sets are given in Table 3.

Example 1

Let 1 1 2 3{( , 0.3, 0.3), ( , 0.2, 0.2), ( , 0.1, 0.1)}A x x x=

2 1 2 3{( , 0.2, 0.2), ( , 0.2, 0.2), ( , 0.2, 0.2)}A x x x=

3 1 2 3{( , 0.4, 0.4), ( , 0.4, 0.4), ( , 0.4, 0.4)}A x x x=

1 2 3{( , 0.3, 0.3), ( , 0.2, 0.2), ( , 0.1, 0.1)}B x x x=

From this data, it is clear that B  =  A1, so the sample B belongs to the pattern A1.

Table 3: Numerical Examples and Comparisons Between Proposed Distance Measures.

IFSM    Example 1   Example 2

A1, B  A2, B  A3, B A1, B  A2, B  A3, B
= 1p

SMd   0.0  0.110  0.250  0.381  0.018  0.539
= 2p

SMd   0.0  0.011  0.06  0.065  0.006  0.238

dL   0.0  0.15  0.35  0.45  0.15  0.199
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Example 2

Let 1 1 2 3{( , 0.1, 0.1), ( , 0.5, 0.1), ( , 0.1, 0.9)}A x x x=

2 1 2 3{( , 0.5, 0.5), ( , 0.7, 0.3), ( , 0.0, 0.8)}A x x x=

3 1 2 3{( , 0.7, 0.2), ( , 0.1, 0.8), ( , 0.4, 0.4)}A x x x=

1 2 3{( , 0.4, 0.4), ( , 0.6, 0.2), ( , 0.0, 0.8)}B x x x=

According to results of Ref. [24], sample B belongs to the pattern A2. On examining the table below, we remark 
that all the proposed measures classify patterns correctly.

5  Application of Similarity Measures to Shape Classification

5.1  Data Set Presentation

We used the SQUID data set (http://www.ee.surrey.ac.uk/CVSSP/demos/css/demo.html), which contains 
about 1100 images of edges of fishes. Every image is represented with an extended curvature scale space 
(CSS) descriptors [8, 30, 31] of original shape to identify concavities of the shapes’ edges and CSS descriptors 
of dual shapes to identify convexities of shapes; for more details, see Ref. [12]. In addition to the extended CSS 
descriptors, two features are used: the eccentricity and the frequency of codes in Freeman Chain Code [21] of 
shapes’ edges. In conclusion, the features used to describe the shapes are:

 – one value of eccentricity
 – a vector of concavity points (ordinates points)
 – a vector of convexity points (ordinates points)
 – Freeman chain code description

There are 30 classes of shapes, and every shape is labeled with the cluster to which it belongs. The data set 
of the shapes is divided into two data sets: The first is constituted of 738 shapes that serves as reference data 
set, and the second is constituted of 362 shapes that serves as test data set.

5.2  Constitution of Intuitionistic Fuzzy Features of Shapes

In this section, we are interested in creating intuitionistic fuzzy features of shapes. This stage allows us to 
pass from a crisp data set constituted with crisp values to an intuitionistic fuzzy data set. The construction of 
this data set is described in the next paragraphs.

5.2.1  Constitution of Intuitionistic Fuzzy Values of Freeman Chain Code

We extract Freeman chain codes for every shape edge. Freeman codes are a succession of numbers from 
zero to seven. The numbers indicate directions of a pixel constructing the connected compound edge. This 
directions can be vertical, horizontal, or representing a curvature. The codes 1, 3, 5, and 7 indicate the pixel 
belongingness to a curvature.

The number (N) of each direction in the chain code is computed. Then, the frequency F of each direction 
is computed as N divided by the total number (NT1) of codes indicating curvatures. Otherwise, N is divided by 
the total number (NT2) of codes not indicating a curvature. So, we obtain eight information. It is obvious that 
all obtained information are in the interval [0,1] (N is lower than NT1 or NT2).
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We consider two intuitionistic fuzzy sets A and B in the discourse universe X  =  {0, 1, 2, 3, 4, 5, 6, 7} with 
A  =  {1, 3, 5, 7} and B  =  {0, 2, 4, 6}. Set A concerns codes indicating curvature in Freeman chain, and set B con-
cerns codes not indicating curvatures. Thus, membership and non-membership degrees are computed for 
two sets A and B according to the following functions:

1

2

{ , ( ), ( ) | } { , ( ), ( ) | }
( ) / ( ) 0

where 
( ) 0 ( ) /

A A A A

A B

A B

A x x x x X B x x x x X
x N NT x

where
x x N NT

µ ν µ ν

µ µ

ν ν

= 〈 〉 ∈ = 〈 〉 ∈
 = = 
 = =  

5.2.2  Constitution of Intuitionistic Fuzzy Values of Eccentricity and CSS Descriptors

The CSS descriptors and the eccentricity are first fuzzified according to type-1 fuzzy sets (see [12]). The 
obtained results serve to constitute membership and non-membership degrees using these formulas pro-
posed in Ref. [41].

Let A  =  {〈x, μA(x), νA(x)〉|x ∈ X} an IFS where μA and νA are defined by these formulas:

 

( ) (1 ( ))
( ) ( ).

A A

A A

x x
x x

λµ µ

ν λ µ
′

′

 = −
 = ∗  

(49)

where λ ∈ [0,1] and A′ a type-1 fuzzy set. In our application λ  =  0.8.
The process of representation with intuitionistic fuzzy information of the features’ eccentricity and CSS 

descriptors is described in Figure 1.

5.2.3  Experimentation and Results

We applied the proposed semi-metric distance measures and similarity measures from literature to classify 
the data test of shapes using KNN classifier. The process of classification is represented in Figure 2, and the 

Reference data
set Test data set

Features
extraction

Crisp feature vectors

Constitution of
membership

functions

Features
fuzzification

Fuzzy feature vectors

Transformation to IF
features

Figure 1: Process of Representation with IF Information of the Feature Eccentricity and CSS Descriptors.
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IF feature vectors of
reference shape data sets

IF feature vectors of
test shape data sets

Computation of
fuzzy similarity

degrees

Classify results in
descending order

Figure 2: Classification of Shapes Using an Intuitionistic Fuzzy Similarity Measure.

results are given in Table 4 below. The 1-best presents the shape number found in the first position, and the 
10-best is the sum of found shapes in the ith position where i ∈ 1 … 10.

In Table 4, results are classified in descending order of 10-best. The results are very close to one another, 
varying from 83.43% to 77.62% with a difference of 5.81%. The best results are given by SY followed by those 
of 2 , , , ,

A SK

p
SM E E MBd d d S=  

2

1 1, p p
e WXS d= =  with slight differences. The lowest results are obtained by simk given after 

those of 
6

1 1
1, , .p p

SM w HYd S S= =  The remaining measures give results between 81.77% and 79.28% with a difference 

of 1.74%. The results on 1-best are also very close situated between 24.86% produced by 1p
SMd =  and 19.34% 

given by simk with a difference of 5.52%. Similarly, results in 2-best are close with simk in the last rank and SY 
in the first rank. The classification results give an idea of measure applications to a large data set. Unfortu-
nately, the results of the classification are not very high for all measures, so the used features may not fit the 
data set of shapes. In addition, the results given by the similarity measures are close, which puts all IFSMs 
in the same level with a bit of difference. We note that 

2

1p
CS =  (24) is computed in the shape classification and 

Arabic sentence recognition with omission of ω. In the second section, we apply IFSMs to Arabic sentence 
classification, and we compare the results to have more ideas about the results of IFSMs.

6   Application of Similarity Measures to Arabic Sentence 
Recognition

Handwritten Arabic words present many difficulties for recognition because of the variations in information 
between different writers and the overlapping between the word characters. So, features representing the 
words cannot be exact; they only contain imprecision. This last grows when the words are not normalized. 
In our work, we use an extract of the IFN/ENIT data set [36] constituted of different names of Tunisian towns. 
The names of the towns can be formed with one word or more; so, they are considered as sentences. In this 
section, we describe a data set of Arabic sentences with intuitionistic fuzzy information. Thus, we apply fuzzy 
similarity measures from literature and the proposed semi-metric distance measures to recognize Arabic sen-
tences [5, 9]. In the following subsections, we describe these processes with more details.

6.1  Data Set Sentence Presentation

We use 6537 images of 824 handwritten Tunisian town/village names extracted from the IFN/ENIT data set 
[36]. The data set images are written by different writers and undergo some preprocessing like noise  reduction 
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but are not normalized. The data set is divided into two data sets: reference data set constituted of 4357 sen-
tence images and test data set constituted of 2180 images of sentences [5, 6, 12]. Recognition process is done 
into two steps:

 – description of images by features using intuitionistic fuzzy sets
 – comparison between test data set and reference data set using an intuitionistic fuzzy similarity measure

The features are first constituted according to crisp sets from word connected compounds and are:
 – sum of pixel distances from the base or the top lines
 – higher black pixel coordinates
 – direction frequency of Freeman chain code

Thus, the features are fuzzified according to type-1 fuzzy sets, then, according to intuitionistic fuzzy sets. The 
descriptions of crisp and fuzzy features are presented in detail in Ref. [12]. In the following, we describe the 
process of constitution of intuitionistic fuzzy features.

Table 4: Shape Classification Results Obtained with Intuitionistic Fuzzy Similarity Measures.

IFSM   1-best (%)  2-best (%)  10-best (%)  Error rate

SY (21)   22.93  41.71  83.43  16.57
= 2p

SMd  (46)   21.82  40.1  82.32  17.68

dEA
 (27)   21.55  40.88  82.32  17.68

dESK
 (29)   21.54  40.33  82.32  17.68

SMB (25)   21  36.19  82.04  17.96
= 1p

eS  (6), =

2

1p
WXd  (35)   22.65  39.78  82.22  18.78

dL (48)   20.99  33.98  81.77  18.23
SP (22)   23.2  37.85  81.49  18.51
Smod (5), = 1p

sS  (7), =1p
dS  (4)  22.65  39.78  81.22  18.78

= 1p
hS  (8)   22.65  39.5  81.22  18.78

= 1p
BAd  (45)   22.65  39.78  81.22  18.78

Spk2 (12)   18.23  34.25  80.94  19.06
Snew1 (14)   22.93  38.67  80.66  19.34
Spk3 (13)   23.48  40.61  80.39  19.61
Spk1 (11)   23.2  40.88  80.39  19.61
SZF (9)   23.2  40.88  80.39  19.61
dWX1

 (34), dHSH
 (28)   22.93  40.61  80.39  19.61

SHY1
 (31)   22.93  40.61  80.39  19.61

SHY3
 (33)   22.38  40.33  80.11  19.89

=

4

1p
HYS  (42), dHA

 (26), SH (2)   23.48  40.61  80.11  19.89
=

5

1p
HYS  (43)   23.2  40.88  79.83  20.17

SHY2
 (32)   23.2  40.61  79.83  20.17

Snew2 (15)   22.1  37.57  79.83  20.17
dH5

 (40)   18.78  38.4  79.56  20.44
SL (3)   22.93  40.88  79.28  20.72

= 1p
SMd  (46)   24.86  39.23  78.73  21.27

Sw1 (10)   22.65  40.06  78.73  21.27
=

6

1p
HYS  (44)   22.38  41.16  78.73  21.27

dH4
 (39)   22.65  39.78  78.45  21.55
=

2

1p
CS  (24)   20.17  35.08  77.9  22.1

Simk (20)   19.34  38.4  77.62  22.38
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6.1.1  Sum of Pixel Distances From the Base or the Top Lines

For the black pixel in the edge of connected compounds, three sums of mathematical distances are computed, 
d1, d2, and d3, as described in Ref. [12]. The sum of the distances of the black pixels is divided by the sum of all 

black pixels of connected compound edge denoted as S. So, we obtain the distance sums as 11 ,dd
s

=  22 dd
s

=  

and 33 .dd
s

=  These results are fuzzified by computing their membership degrees to trapezoidal functions. To 

obtain intuitionistic information, the formulas of Ref. [41] given in Section 5.2.1 is used, to compute member-
ship and non-membership degrees as:

 

( ) (1 ( ))
( ) ( ).

A A

A A

x x
x x

λµ µ

ν λ µ
′

′

 = −
 = ∗  

(50)

where λ ∈ [0,1] (in this application, λ  =  0.8; this value is chosen to minimize the value of π) and A′ a type-1 
fuzzy set.
The membership and non-membership degrees are computed for each sum of distances.

6.1.2  Higher Black Pixel Coordinates

The abscissa of the higher black pixel can indicate its position (at the beginning, in the middle, or at the 
end) in the connected compound, and the ordinate comparing with its position on the top line can indicate 
a degree of membership to a triangular function, representing type-1 fuzzy set, to be a stroke. Three type-1 
fuzzy sets are then obtained. Consequently, three intuitionistic fuzzy sets are defined and have the following 
description:

={ , ( ), ( ) | }
(w ) ( )  and ( ) 1 (ith )

A A

A A A A

A x x x x X
x x x x

µ ν

µ µ ν µ′

∈
= = −

where μA′
 is the membership degree of x to a type-1 fuzzy set represented by a triangular membership.

For each connected compound, six degrees of belongingness and non-belongingness are retained. The 
two first degrees represent the membership degrees of a pixel in the beginning of a connected compound, 
the two second degrees represent the membership degrees of a pixel in the middle of a connected com-
pound, and the two last degrees represent the membership degrees of a pixel at the end of a connected 
compound.

6.1.3  Direction Frequency of Freeman Chain Code

Connected compounds are described by chain codes of Freeman. The process of computation of membership 
and non-membership degrees is the same presented in the Section 5.2.1.

6.2  Experimentation and Results

The similarity measures from the literature and the proposed semi-metric measure are applied to match 
between test data set and reference data set of Arabic sentences using the KNN classifier. The recognition 
results for each applied IFSM are presented in Table 5. The 1-best represents the rate of sentences found in 
the first position, and the 10-best is the rate of the sum of found sentences in the ith position where i ∈ 1 … 10.

The obtained results are classified in descending order of the 10-best (see Table 5). 1p
SMd =  is in the first 

rank with recognition results equal to 91.88%, and Snew2 is in the last rank with results of 46.23%. These 
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results show an important difference of 45.65% between the best and worst results, which can explain the 

differences between the results of the IFSMs. 
2

1 11, , , ,p p
SM mod e WXd S S d= =  and 1

dS  are in the second rank with bit 

differences in their results followed by those of 
5 5 4

1 1 1
3 1, , ,  , , , , ,p p pp p

pk s w h HY HY HYS S S S S S S S= = =  dHA, and SH with results 
varying from 90.83% to 90.32%. The results decrease with measures dL, simk and continue decreasing with 
measures SY and Snew1. The lowest results are given by dH4, dH5, Snew2. We note that p

eS  is proposed to resolve 
weakness of ,p

dS  but their results are the same when p  =  1. The IFSMs dHA and dEA produce better results than 
dHSK and dESK, respectively, despite that the latter are proposed to rectify dHA and dEA.

In addition, some measures represent some counter-intuitive cases such as Smod and p
dS  and do not verify 

some properties; however, they produce the best results. Similarly, the semi-metric p
SMd  do not satisfy the 

fourth property of distance measure; however, it produces the best results when p  =  1 and p  =  2. In the same 

Table 5: Arabic Sentence Recognition Results Obtained with Intuitionistic Fuzzy Similarity Measures.

IFSM   1-best (%)  2-best (%)  10-best (%)  Error rate (%)
= 1p

SMd  (46)   67.98  77.11  91.88  8.11
= 2p

SMd  (46)   69.5  78.03  91.47  8.53
=

2

1p
CS  (24)   68.17  77.06  91.38  8.62

Smod (5)   67.38  76.88  91.19  8.81
= 1p

eS  (6), =

2

1p
WXd  (35)   66.61  76.56  91  9

= 1p
BAd  (45)   67.16  76.65  90.92  9.08

= 1p
dS  (4)   66.61  76.19  91  9

Spk3 (13)   67.16  76.69  90.83  9.17
= 1p

sS  (7)   67.2  76.79  90.78  9.22

Sw1 (10)   68.66  78.11  90.64  9.35
= 1p

hS  (8)   66.51  75.77  90.46  9.54

SZF (9)   67.8  76.51  90.46  9.54
=

5

1p
HYS  (43)   66.56  75.73  90.32  9.68

=

6

1p
HYS  (44)   67.11  76.19  90.32  9.68

=

4

1p
HYS  (42), dHA (26), SH (2)   66.28  75.41  90.32  9.68

SL (3)   65.04  75.41  89.68  10.32
dWX1

 (34)   66.06  74.59  89.45  10.55
dEA

 (27)   63.94  73.53  89.22  10.78
SHY3

 (33)   66.19  74.45  89.17  10.83
SHY2

 (32)   66.06  74.4  88.94  11.06
Spk1 (11)   67.52  75.91  88.67  11.33
SHY1

 (31)   65.64  74.04  88.53  11.47
Spk2 (12)   63.21  72.8  88.17  11.83
dHSK

 (28)   64.86  73.58  88.07  11.93
dESK

 (29)   64.22  72.39  87.89  12.11
dL (48)   58.58  68.76  84.91  15.09
SP (22)   57.94  67.11  84.59  15.41
Simk (20)   48.39  60.27  84.58  15.51
SY (21)   45.87  55.83  79.95  20.05
Snew1 (14)   52.48  57.48  62.29  37.7
SMB (25)   22.06  31.83  61.19  38.81
dH4

 (39)   22.48  29.4  59.22  40.78
dH5

 (40)   20.87  27.8  58.17  41.83
Snew2 (15)   40.05  43.76  46.23  53.76
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way, the measure Spk3 does not verify the fourth property, but it produces acceptable results. The proposed 
measures dL produces modest results. In 1-best and 2-best, the results differ slightly from the 10-best; p

SMd  and 
Sw1 are in the first rank, and dH4, dH5, Snew2 are in the last rank.

7  Conclusion
We presented intuitionistic fuzzy similarity and distance measures from the literature. We proposed two 
semi-metric distance measures. Thus, we applied them and measures from the literature to shape the clas-
sification and Arabic sentence recognition. In both applications, most measures produced acceptable results, 
the proposed measures p

SMd  gave the best results when p  =  1 and p  =  2 in handwritten Arabic sentence clas-
sification. dH4, dH5, simk produced low results in both applications, SY produced the best results in the shape 
classification and low results in the handwritten Arabic sentence classification. Snew1 and Snew2 produced low 
results in the handwritten Arabic sentence classification and acceptable results in the shape classification. 

1p
SMd =  produced modest results in the first application with best results in the 1-best and best results in the 

second application. dL produced modest results in both applications.
From the obtained results, we can conclude that the validation of the fourth property of similarity or dis-

tance measures has no influence on the results. Some of the measures produced best results in both applica-
tions such as 2 ;p

SMd =  consequently, it must produce good results in similar applications. Similarly, dH4, dH5, and 
simk produced the worst results in both applications, so, they can produce low results in similar applications. 
The remaining similarities produced acceptable results in both applications.

The experimental results showed that a semi-metric distance measure can produce good results. In addi-
tion, some IFSMs are proposed to rectify or correct existing IFSMs, produced inferior results to those of these 
measures. To produce good results, an IFSM may not depend on some properties and may contain some 
counter-intuitive cases. IFSMs are numerous; some classification algorithms need IFSM, and an application 
of any IFSM may affect results. Thus, an IFSM, which satisfies all properties, does not imply that it produces 
the best results. The choice should only be based on experimentation. In future work, the proposed measures 
will be implemented on other data sets and other research topics [7, 17, 18] to assess their results.

Acknowledgments: The authors would like to acknowledge the financial support of this work by grants from 
the General Direction of Scientific Research (DGRST), Tunisia, under the ARUB program.

Appendices

Properties of Crisp Distance Measures
A distance measure between two crisp vectors x and y, in the discourse universe E, is defined as a function 
d : E2 → ℝ+ and have the following properties:
1. , ( , ) 0 mi ( nimal )ityx E d x x∀ ∈ =
2. , , ( , ) 0 ide ( tity)nx y E d x y x y∀ ∈ = ⇒ =
3. , , ( , ) ( ,  ( symmetry ))x y E d x y d y x∀ ∈ =
4. , , , ( , ) ( , ) ( t, )  ( )riangular inequalityx y z E d x y d x z d z y∀ ∈ ≤ +

According to the properties, a function d is called distance, index of distance, index of dissimilarity, semi-
metric distance, or distance ultra-metric as:

 – sign of dissimilarity: if the function d satisfies the properties 1 and 2
 – index of distance or semi-metric distance: if the function d satisfies the properties 1, 2, and 3
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 – distance: if the function d satisfies the properties 1, 2, 3, and 4
 – distance ultra-metric: if the function d verifies the property:

, , , ( , ) max( ( , ), ( , ) )x y z E d x y d x z d z y∀ ∈ ≤
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