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Summary In this paper, we study a random-coefficients model for a binary outcome. We
allow for the possibility that some or even all of the explanatory variables are arbitrarily
correlated with the random coefficients, thus permitting endogeneity. We assume the existence
of observed instrumental variables Z that are jointly independent with the random coefficients,
although we place no structure on the joint determination of the endogenous variable X and
instruments Z, as would be required for a control function approach. The model fits within the
spectrum of generalized instrumental variable models, and we thus apply identification results
from our previous studies of such models to the present context, demonstrating their use.
Specifically, we characterize the identified set for the distribution of random coefficients in the
binary response model with endogeneity via a collection of conditional moment inequalities,
and we investigate the structure of these sets by way of numerical illustration.

Keywords: Endogeneity, Incomplete models, Instrumental variables, Partial identification,
Random coefficients, Random sets, Set identification.

1. INTRODUCTION

In this paper, we analyse a random-coefficients model for a binary outcome,

Y = 1 [β0 + Xβ1 + Wβ2 > 0] , (1.1)

where β ≡ (β0, β
′
1, β

′
2)′ are random coefficients. Although covariates W are restricted to be

exogenous, covariates X are permitted to be endogenous in the sense that the joint distribution
of X and random coefficients β is not restricted. We assume that in addition to the variables
(Y,X,W ), the researcher observes realizations of a random vector of instrumental variables
Z such that (W,Z) and β are independently distributed. Thus, our goal is to use knowledge
of the joint distribution of (Y,X,W,Z) to set identify the marginal distribution of the random
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S2 A. Chesher and A. M. Rosen

coefficients β, denoted Fβ , with the joint distribution of random vectors X and β left unrestricted.
As a special case, we also allow for the possibility there are no exogenous regressors W .1 As
shorthand, we use the notation Z̃ ≡ (W,Z) to denote the composite vector of all exogenous
variables.

In order to characterize the identified set for Fβ , we carry out our identification analysis along
the lines of Chesher et al. (2013), hereafter CRS, and Chesher and Rosen (2013). Like CRS, we
consider a single-equation model for a discrete outcome, but here we restrict the outcome to be
binary. However, the model (1.1) used in this paper features random coefficients, which are not
present in CRS. The model is a special case of the general class of models considered in Chesher
and Rosen (2013), where we provide identification analysis for a broad class of instrumental
variable (IV) models. Like those models, the random-coefficients model (1.1) allows for multiple
sources of unobserved heterogeneity whereas, traditionally, IV methods have been employed in
models admitting a single source of unobserved heterogeneity. Thus, in this paper, we investigate,
and illustrate by way of example, the identifying power of IV restrictions with multivariate
unobserved heterogeneity in the determination of a binary outcome. The characterizations we
employ rely on results from random set theory. These and related results have been used for
identification analysis in various ways and in a variety of contexts by Beresteanu et al. (2011,
2012), Galichon and Henry (2011), CRS, and Chesher and Rosen (2012, 2013). As in CRS and
Chesher and Rosen (2012, 2013), our characterizations make use of properties of conditional
distributions of certain random sets in the space of unobserved heterogeneity.

The model also builds on the IV models for binary outcomes considered in Chesher (2010,
2013), where a single source of unobserved heterogeneity was permitted. There, it was found
that even if parametric restrictions were brought to bear, the models were in general not
point identifying. So, with the addition of further sources of unobserved heterogeneity, point
identification should not generally be expected. The paper thus serves to illustrate in part the
effect of additional sources of heterogeneity from the perspective of identification. The case of a
binary outcome variable is convenient for illustration, but models that permit more variation in
outcome variables might achieve greater identifying power.

Binary response specifications that model β in (1.1) as a random vector include, for example,
those of Quandt (1966) and McFadden (1976), and can be viewed as special cases of the discrete
choice models of Hausman and Wise (1978) and Lerman and Manski (1981). These papers
focus on specifications where all covariates and β are independently distributed, and where
the distribution of β is parametrically specified, enabling estimation via maximum likelihood.
Ichimura and Thompson (1998) and Gautier and Kitamura (2013) focus on the binary outcome
model (1.1), again with covariates and random coefficients independently distributed, but with
Fβ non-parametrically specified. Ichimura and Thompson (1998) provide sufficient conditions
for point identification of Fβ in this case, and prove that Fβ can be consistently estimated via
non-parametric maximum likelihood. Gautier and Kitamura (2013) introduce a computationally
simple estimator for the density of β, and derive its rate of convergence and pointwise asymptotic
normality. Gautier and LePennec (2011) propose an adaptive estimation method.

In contrast, we do not require that X || β and we employ instrumental variables Z. The
use of an IV approach in a random-coefficients binary response model with endogeneity is
new. A control function approach is employed by Hoderlein (2009) to provide identification
results for marginal effects and local average structural derivatives when a triangular structure

1 Similarly, the random intercept β0 can be easily removed from the analysis by restricting β0 = 0 throughout.
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is assumed for the determination of X as a function of Z. Hoderlein and Sherman (2011)
study identification and estimation of a trimmed mean of random coefficient β when again
endogenous variables can be written as a function of mutually independent instruments Z and
control variables V , additionally employing some conditional median restrictions. However, our
model does not require one to specify the form of the stochastic relation between X and Z, and
is thus incomplete.2

The random-coefficients logit model of Berry et al. (1995), hereafter BLP, now a bedrock of
the empirical industrial organization literature, allows for endogeneity of prices using insight
from Berry (1994) to handle endogeneity. Yet, the endogeneity problem in that and related
models in industrial organization is fundamentally different from the one in this paper. Their
approach deals with correlation between alternative-specific unobservables with prices at the
market level, both of which are assumed independent of random coefficients that allow for
consumer-specific heterogeneity. Important identification results in such models are provided
by Berry and Haile (2009, 2010), and a general treatment of the literature on such models and
their relation to other models of demand is given by Nevo (2011). Here, we focus on binary
response models at a micro-level, rather than across separate markets, absent alternative-specific
unobservables, and we allow random coefficients to be correlated with regressors.3 Recent
papers that give identification results for micro-level discrete choice models with exogenous
covariates and high-dimensional unobserved heterogeneity include Briesch et al. (2010), Bajari
et al. (2012), and Fox and Gandhi (2012). The latter also allows for endogeneity with alternative-
specific special regressors and further structure on the determination of endogenous regressors
as a function of the instruments.

The paper is organized as follows. In Section 2, we formally present our model and key
restrictions, and we introduce a simple example in which there is one endogenous regressor
and no exogenous regressors. In Section 3, we characterize the identified set for the distribution
of random coefficients in the general model set out in Section 2, and we provide two further
examples. In Section 4, we provide numerical illustrations of identified sets for subsets of
parameters in a parametric version of our model for four different data-generation processes.
We conclude in Section 5. The proof of the main identification result, which adapts theorems
from CRS, is provided in Appendix 1. Appendix B provides computational details absent from
the main text, and Appendix C verifies that there would be point identification in the example
considered in the numerical illustrations of Section 4 if exogeneity restrictions were imposed.

Throughout the paper, we use the following notation. We use upper-case Roman letters
A to denote random variables and lower-case letters a to denote particular realizations. For
the probability measure P, P (·|a) is used to denote the conditional probability measure given
A = a. The calligraphic font A is used to denote the support of A for any well-defined random
variable A in our model. B denotes the support of the random-coefficients vector β, and S
denotes a closed set on B. For any pair of random vectors A1, A2, A1 ⊥ A2 denotes stochastic
independence, Supp(A1, A2, . . . , An) denotes the joint support of the collection of random
vectors A1, A2, . . . , An, and Supp(A1, A2, . . . , An|b1, . . . , bm) denotes the conditional support

2 The model is incomplete because there is no specification for the determination of X given exogenous variables Z and
unobserved heterogeneity β. Thus, for any realization of (Z, β), each x on the support of X is a feasible realization of X.
However, the triangular structure used in the control function approach implies a unique value of X for any realization
of exogenous variables and unobservables.

3 In a binary choice model, the presence of unobserved, additively separable, alternative-specific utility shifters can be
subsumed into the threshold-crossing specification, and so is unnecessary.
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of (A1, A2, . . . , An) given realizations (b1, . . . , bm) of random vectors (B1, . . . , Bm). The empty
set is denoted by ∅. We use Fβ to denote the probability distribution of β, mapping from subsets
of B to the unit interval. F is used to denote the admissible parameter space for Fβ , F is used to
denote a generic element of F , and F∗ denotes the identified set for Fβ . We use cl(A) to denote
the closure of a set A. Finally, Z̃ ≡ (W,Z) with support denoted (Z̃) is used to denote the vector
of all exogenous variables, and z̃ = (w, z) for particular realizations.

2. THE MODEL

We now formally set out the restrictions of our model.

RESTRICTION 2.1. Y ∈ {0, 1}, X ∈ X ⊆ R
kx , and W ∈ W ⊆ R

kw obey (1.1) for some
unobserved β ∈ B ⊆ R

k with k = kx + kw + 1, and Z ∈ Z ⊆ R
kz . (β,W,X, Y,Z) belong to

a probability space (�,
, P) endowed with the Borel sets on � and the joint distribution
of (X,W, Y,Z), denoted F 0

XWYZ , is identified. For all (x,w, z) ∈ Supp(X,W,Z), 0 <

P [Y = 1|x,w, z] < 1.

RESTRICTION 2.2. For any (w, x, z) on the support of (W,X,Z), the conditional distribution
of random vector β given W = w, X = x, and Z = z is absolutely continuous with respect to
Lebesgue measure on B. β is marginally distributed according to the probability measure Fβ

mapping from subsets of B to the unit interval, with associated density fβ . Fβ is known to belong
to some class of probability measures F .4

RESTRICTION 2.3. (W,Z) and β are independently distributed.

Restriction 2.1 invokes the random-coefficients model for the binary outcome Y and defines
the support of random vectors X, W , and Z. The restriction further requires that for all (x,w, z),
both Y = 1 and Y = 0 have positive probability P (·|x,w, z). This simplifies the exposition of
some of the developments that follow, but is not essential. We do not otherwise restrict the joint
support of (W,X, Y,Z). We require that the joint distribution of (W,X, Y,Z) is identified, as
would be the case under random sampling, for instance. Restriction 2.3 is our IV restriction,
requiring independence of (W,Z) and β. Restriction 2.2 restricts Fβ to some known class of
distribution functions. In principle, this class could be parametrically, semi-parametrically, or
non-parametrically specified. Of course, greater identifying power will be afforded when F is
parametrically specified. In our numerical illustrations in Section 4, β is restricted to be normally
distributed, which is a common restriction in random-coefficients models.

As is always the case in models of binary response, it will be prudent to impose a scale
normalization because x̃β > 0 holds if and only if c · x̃β > 0 for all scalars c > 0, where x̃ ≡
(1, x,w).5 This can be done by imposing, for example, that B = {

b ∈ R
k : ‖b‖ = 1

}
if F is

non-parametrically specified, or by imposing that the first component of β has unit variance
(e.g., when F is parametrically specified as in the following example, and as also employed in
the numerical illustrations of Section 4).

4 If B is bounded, then the absolute continuity condition should be understood to be required to hold with respect to the
uniform measure on B.

5 Such normalizations are not strictly required when allowing for set identification, but it is wise to impose them in
order to enable comparison of set and point identifying models.
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EXAMPLE 2.1 (ONE ENDOGENOUS VARIABLE, NO EXOGENOUS VARIABLES). Suppose X ∈
R and that there are no exogenous covariates W . Then, we can write (1.1) as

Y = 1 [β0 + β1X > 0] ,

with β = (β0, β1)′. Suppose that F is the class of bivariate normal distributions whose first
component has unit variance. Then, defining α0, α1 as the means of β0, β1, respectively, we
have the representation

Y = 1 [U0 + U1X > −α0 − α1X] , (2.1)

where U0 ≡ β0 − α0 and U1 ≡ β1 − α1 are mean-zero bivariate normally distributed with the
same variance as β = (β0, β1). We then have from Restriction 2.3 that U || Z, and we can
parametrize the distribution U ≡ (U0, U1) as

U0 ∼ N (0, 1) U1|U0 = u0 ∼ N (γ0u0, γ1),

equivalently

U ∼ N

((
0

0

)
,

(
1 γ0

γ0 γ1 + γ 2
0

))
. (2.2)

Knowledge of the parameter vector (α0, α1, γ0, γ1) would then suffice for the determination of
Fβ , so the identified set for Fβ can be succinctly expressed as the identified set for (α0, α1, γ0, γ1).

3. IDENTIFICATION

For identification analysis, it will be useful to consider the correspondence

T (w, x, y) ≡ cl
{(

b0, b
′
1, b

′
2

)′ ∈ B : y = 1 [b0 + xb1 + wb2 > 0]
}
, (3.1)

which is the closure of the halfspace of B on which 2y − 1 and b0 + xb1 + wb2 have the
same sign. Application of this correspondence to random elements (W,X, Y ) yields a random
closed set T (W,X, Y ). For any realization of the exogenous variables z̃ ∈ Z̃ ≡ Supp(W,Z),
the conditional distribution of this random set given Z̃ = z̃ is completely determined by the
distribution of (W,X, Y ) given Z̃ = z̃, which is identified given knowledge of F 0

WXYZ under
Restriction 2.1. The identified set for Fβ , denoted F∗, is then the set of measures F ∈ F that
are selectionable from the conditional distribution of T (W,X, Y ) given Z̃ = z̃ for almost every
z̃ ∈ Z̃ .6 Intuitively, this holds because selectionability guarantees the existence of a random
variable β̃ realized on (�,
, P) and distributed F , such that P(β̃ ∈ T (W,X, Y ) |z̃) = 1, a.e.
z̃ ∈ Z̃ .7 Thus, there exists a random variable β̃ distributed F that delivers the conditional
distribution

F 0
XWY |Z̃ (·|z̃) , a.e. z̃ ∈ Z̃,

and all such F are observationally equivalent.

6 For further details and results regarding selections of random sets, see, e.g., Section 1.2 of Molchanov (2005).
7 The requirement that β̃ lives on (�,
, P) is innocuous. If this were not the case, then one could simply redefine the

initial probability space as the product of (�, 
, P) and the space on which β̃ lives.

C© 2013 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.
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As done in CRS for utility-maximizing discrete choice models without random coefficients
and in Chesher and Rosen (2013) for single-equation IV models more generally, we can exploit
Artstein’s Inequality (Artstein, 1983, see also Norberg, 1992, and Molchanov, 2005, Section
1.4.8.) to characterize the identified set through the use of conditional containment functional
inequalities. Using the same steps taken in Theorem 1 of CRS, Artstein’s Inequality guarantees
that a distribution F is selectionable from the conditional distribution of T (W,X, Y ) given Z̃ =
z̃, if and only if for all closed sets S ⊆ B,

F (S) ≥ P [T (W,X, Y ) ⊆ S|z̃] . (3.2)

The use of the conditional containment inequality (3.2) reduces the problem of determining
which F are selectionable from T (W,X, Y ) to a collection of conditional moment inequalities.
In CRS and Chesher and Rosen (2012, 2013), we devised algorithms to determine which test sets
S are sufficient in the contexts of the models in those papers to imply (3.2) for all possible test
sets S. The collection of such sets, referred to as core-determining sets, is crucially dependent on
the support of the random set under consideration. By the same reasoning as in those papers, it
is sufficient to focus on test sets that are unions of sets that belong to the support of T (W,X, Y )
conditional on the realization of exogenous variables (W,Z). For any such realization (w, z), the
support of T (W,X, Y ) is the collection of sets

T (w, z) ≡ {T (w, x, y) : y ∈ {0, 1} ∧ x ∈ Supp (X|w, z)} . (3.3)

We do not require that the conditional support of X given (w, z) coincide with its unconditional
support, but in that case Supp(X|w, z) in (3.3) can be replaced with X , and the collection of sets
T (w, z) does not vary with (w, z). The larger the conditional support Supp(X|w, z), the larger
the core-determining collection of test sets will be.

Given any (w, z), each element of T (w, z) is a halfspace in B, so the required test sets S
take the form of unions of such halfspaces.8 Alternatively, each such test set can be written
as the complement of intersections of sets, each of which are complements of elements of
T (w, z). This is convenient because the complement of each T ∈ T (w, z), denoted T c, is also
a halfspace, and the intersection of halfspaces is a convex polytope. Thus, the collection of
core-determining test sets S contains sets that are complements of intersections of halfspaces,
equivalently complements of convex polytopes. The formal result follows.

THEOREM 3.1. Let Restrictions 2.1–2.3 hold. Then, the identified set for Fβ is

F∗ = {
F ∈ F : ∀S ∈ T∪ (w, z) , F (S) ≥ P [T (W,X, Y ) ⊆ S|w, z] , a.e. (W,Z)

}
,

(3.4)
where T∪ (w, z) denotes the collection of sets that are unions of members of T (w, z).
Equivalently,

F∗ = {
F ∈ F : ∀S ∈ T∩ (w, z) , F (S) ≤ P [T (W,X, Y ) ∩ S �= ∅|w, z] , a.e. (W,Z)

}
,

(3.5)

8 If Supp(X|w, z) is uncountable, then the collection of all such test sets will include uncountable unions. If
Supp(X|w, z) is discrete and finite, then there are only finitely many possible unions of sets T ∈ T (w, z), and only
finite unions are required.

C© 2013 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.
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where T∩ (w, z) denotes the collection of sets that are intersections of members of Tc (w, z),
where

Tc (w, z) ≡ {
T c (w, x, y) : y ∈ {0, 1} ∧ x ∈ Supp (X|w, z)

}
,

which is the collection of sets that are complements of those in T (w, z).

The theorem follows from consideration of Theorems 1 and 2 of CRS, adapted to the
random set T (W,X, Y ) defined in (3.1), which make use of Artstein’s Inequality (Artstein,
1983) to prove sharpness; see also Norberg (1992) and Molchanov (2005), Section 1.4.8. The
characterization of test sets for the containment functional characterization (3.4) of Theorem 2
in CRS stipulates that a core-determining collection of test sets S is given by those that
are (i) unions of elements of T(w, z), and (ii) such that the union of the interiors of
component sets is a connected set. In this paper, condition (ii) can be ignored because the sets
T (w, x, y) and T (w′, x ′, y ′) are all halfspaces through the origin, ensuring that T (w, x, y) ∩
T (w′, x ′, y ′) has open interior except in the special case (x,w) = (x ′, w′) and y ′ = 1 − y,
in which case T (w, x, y) ∪ T (w′, x ′, y ′) = B. The test set B can indeed be safely discarded
from consideration because from F (B) = 1, (3.4) is trivially satisfied. The equivalence of
the containment functional characterization (3.4) and the capacity functional characterization
(3.5) follow from the fact that, for any sets T ,S, the events T ⊆ S and T ∩ Sc = ∅ are
identical.

Theorem 3.1 provides a characterization of the identified set of distributions of random
coefficients for binary choice models with endogeneity and instrumental variables. In particular,
the representation is given by a collection of conditional moment inequalities, with one such
inequality conditional on the realization of exogenous variables (w, z) for each element of
T∪(w, z) in (3.4), equivalently one conditional moment inequality for each element of T∩(w, z)
in (3.5). These conditional moment inequalities can then be used as a basis for estimation and
inference. To illustrate, suppose that the endogenous variable X is discrete, so that for any
(w, z), T (w, z) is a finite collection of sets in B. We can therefore enumerate the elements of
T∪ (w, z) as S1, . . . ,SJ for some J < ∞. Suppose further that F∗ is parametrically specified up
to finite-dimensional parameter θ , with typical element F (·|θ ) ∈ F∗. The characterization of the
identified set in (3.4) can then be written as those F (·|θ ) ∈ F∗ such that

∀j = 1, . . . , J, E
[
mj (X,W,Z; θ ) |w, z

] ≥ 0, a.e. (W,Z) ,

where

mj (X,W,Z; θ ) ≡ F
(
Sj

) − 1
[
T (W,X, Y ) ⊆ Sj

]
.

Inference can then be based on these conditional moment inequalities using, for example,
methods from Andrews and Shi (2013) or Chernozhukov et al. (2013).

In some important special cases, considered in the following examples, characterization of
the identified set can be further simplified.

EXAMPLE 3.1. (NO ENDOGENOUS COVARIATES). A leading and well-studied example is the
case where there are no endogenous variables X. Then, for each (w, z), we have

T (w, z) = {{b ∈ B : b0 + wb2 ≥ 0} , {b ∈ B : b0 + wb2 ≤ 0}} ,

where b is of the form b = (b0, b
′
2)′. The intersection of these sets is {b ∈ B : b0 + wb2 = 0},

which has zero measure Fβ under Restriction 2.2, and their union is B, which has measure 1. It

C© 2013 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.
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follows from similar reasoning as in Theorem 6 of Chesher and Rosen (2012) that for any (w, z)
the inequalities of the characterizations of Theorem 3.1 produce moment equalities. Consider,
for example, the containment functional inequalities of (3.4) delivered by all S ∈ T∪ (w, z):

F ({b ∈ B : b0 + wb2 ≥ 0}) ≥ P [T (W,Y ) ⊆ {b ∈ B : b0 + wb2 ≥ 0} |w, z] = P [Y = 1|w, z] ,

F ({b ∈ B : b0 + wb2 ≤ 0}) ≥ P [T (W,Y ) ⊆ {b ∈ B : b0 + wb2 ≤ 0} |w, z] = P [Y = 0|w, z] ,

F (B) ≥ P [T (W,Y ) ⊆ B|w, z] = 1.

The last inequality is trivially satisfied for all F ∈ F . Both the right-hand sides and the left-hand
sides of the first two inequalities clearly sum to 1, implying that these inequalities must, in fact,
hold with equality, giving

F ({b ∈ B : b0 + wb2 ≥ 0}) = P [Y = 1|w, z] , (3.6)

F ({b ∈ B : b0 + wb2 ≤ 0}) = P [Y = 0|w, z] . (3.7)

When there are no excluded exogenous variables z and Fβ is not restricted to a parametric
family, these equations coincide with the identifying equations in Ichimura and Thompson (1998)
and Gautier and Kitamura (2013). Ichimura and Thompson (1998) provide sufficient conditions
for point identification.9 When F is parametrically restricted, these equalities are likelihood
contributions (e.g., integrals with respect to the normal density in Hausman and Wise, 1978 or
Lerman and Manski, 1981), and less stringent conditions are required for point identification. In
the absence of sufficient conditions for point identification, the moment equalities (3.6) and (3.7)
a.e. (W,Z) nonetheless fully characterize the identified set.

EXAMPLE 3.2. (ONE ENDOGENOUS COVARIATE WITH ARBITRARY EXOGENOUS

COVARIATES). Consider the common setting where there is a single endogenous explanatory
variable, X ∈ R, as well as some exogenous explanatory variables W , a random kw-vector.
Then, given any (w, z), the collection of sets T (w, z) is given by

T (w, z) ≡ {{b ∈ B : b0 + xb1 + wb2 ≥ 0} , {b ∈B : b0 + xb1 + wb2 ≤ 0} : x ∈ Supp (X|w, z)} .

Suppose, for simplicity, that Supp(X|w, z) is discrete. Consider now a test set S which is one
of the core-determining sets in T∪ (w, z) and hence an arbitrary union of sets in T (w, z).10 Any
such S can be equivalently written as the set of b = (

b0, b1, b
′
2

)′ ∈ B that satisfy one of the
inequalities

b0 + wb2 + max
x∈X1

{xb1} ≥ 0 or b0 + wb2 + min
x∈X0

{xb1} ≤ 0, (3.8)

for some collections of values X0,X1 ⊆ Supp(X|w, z).

9 The restrictions used to ensure point identification include the requirements that for some fixed c ∈ R
kw ,

Fβ

({
b : c′b > 0

}) = 1, and that the distribution of W has an absolutely continuous component with everywhere positive
density. Our characterizations of the identified set, given by (3.6) and (3.7) in the case of only exogenous covariates, do
not require these restrictions.

10 The restriction to cases where Supp(X|w, z) is discrete is not essential but simplifies the exposition. An identical
characterization of required test sets S can be shown more generally by referring back to (3.2) appearing in (3.4) and
making use of the absolute continuity of Fβ from Restriction 2.2.

C© 2013 The Authors. The Econometrics Journal published by John Wiley & Sons Ltd on behalf of Royal Economic Society.



IV random-coefficients model for binary outcomes S9

Define now for each j = 0, 1,

xmax
j ≡ max

x∈Xj

x, xmin
j ≡ min

x∈Xj

x.

If b1 ≥ 0, (3.8) simplifies to

b0 + wb2 + xmax
1 b1 ≥ 0 or b0 + wb2 + xmin

0 b1 ≤ 0, (3.9)

while if b1 < 0, the inequalities can be written

b0 + wb2 + xmin
1 b1 ≥ 0 or b0 + wb2 + xmax

0 b1 ≤ 0. (3.10)

Furthermore, for any b ∈ B with b1 ≥ 0, (3.10) implies (3.9), and for any b ∈ B with b1 < 0,
(3.9) implies (3.10). Thus, for any b ∈ B, (3.8) holds if and only if

b ∈ T
(
w, xmin

1 , 1
) ∪ T

(
w, xmax

1 , 1
) ∪ T

(
w, xmin

0 , 0
) ∪ T

(
w, xmax

0 , 0
)
.

From this, it follows that one need only consider for each (w, z) test sets S of the form

S = T (w, x1, 1) ∪ T (w, x2, 1) ∪ T
(
w, x ′

1, 0
) ∪ T

(
w, x ′

2, 0
)
,

where x2 ≥ x1 and x ′
2 ≥ x ′

1.

EXAMPLE 2.1. (CONTINUED). If we restrict attention to cases with no exogenous covariates W ,
there is in fact further simplification of the list of core-determining sets. To see why, note that in
this case the collection T (w, z) = T (z) for any z reduces to

T (z) ≡ {{
(b0, b1)′ ∈ B : b0 + xb1 ≥ 0

}
,
{
(b0, b1)′ ∈ B : b0 + xb1 ≤ 0

}
: x ∈ Supp (X|z)

}
.

Each element of T (z) is thus a halfspace in R
2 defined by a separating hyperplane through

the origin intersected with B. The union of an arbitrary number of such halfspaces can be
equivalently written as the union of no more than two such halfspaces. Therefore, the collection
of core-determining sets T∪ (w, z) = T∪ (z) is given by the collection of test sets that can be
written as either elements of T (z) or unions of a pair of elements in T (z),

T∪ (z) = {T (x1, y1) ∪ T (x2, y2) : x1, x2 ∈ Supp (X|z) , y1, y2 ∈ {0, 1}} , (3.11)

where for any x ∈ X and y ∈ {0, 1},
T (x, y) = cl

{
(b0, b1)′ ∈ B : y = 1 [b0 + xb1 > 0]

}
.

The characterization applies for either continuous or discrete X, but if X is discrete with K points
of support, there are no more than 2K2 sets in T∪ (z) for any z ∈ Z . This follows from noting
there are 2K unique (x, y) pairs and the number of all pairwise unions (including the union of
each set with itself) is (2K)2 /2, with division by two from the observation that for any (x1, y1)
and (x2, y2), T (x1, y1) ∪ T (x2, y2) = T (x2, y2) ∪ T (x1, y1).

In the numerical illustrations that follow we consider various instances of Example 2.1, where
there are no exogenous covariates W and where F is restricted to a parametric (specifically
Gaussian) family. In the illustrations, we investigate identified sets for averages of (β0, β1), and
we show that this affords further computational simplification, in the sense that for any fixed
candidate values of (Eβ0, Eβ1), we need only consider test sets S that are unions of two elements
of T (w, z) in order to check whether such candidate values belong to the identified set.
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Table 1. Parameter settings in the four calculations.

Endogenous X Exogenous X

Parameter Case N1 Case N2 Case X1 Case X2

δ1 1.000 1.500 1.000 1.500

δ2 0.577 0.577 0.000 0.000

δ3 −0.577 −0.577 0.000 0.000

δ4 0.577 0.462 1.414 1.371

4. NUMERICAL ILLUSTRATIONS

To investigate the identifying power of the binary outcome random-coefficients IV model, we
reconsider Example 2.1. Y is determined as in (2.1) with unobservable U = (U0, U1) bivariate
normal with zero mean and variance as parametrized in (2.2). We define

GU (U , θ ) ≡ Fβ ({(u0 + α0, u1 + α1) : u ∈ U})
as the probability that U belongs to the set U where θ = (α0, α1, γ0, γ1) and when β is distributed
Fβ with mean α and variance governed by parameters (γ0, γ1). Given the restriction that β =
(β0, β1)′ is bivariate normally distributed, knowledge of θ implies knowledge of Fβ . Thus, we
consider the identified set for θ , denoted �∗, and focus attention on the identified set for (α0, α1),
the projection of the first two elements of �∗ on R

2.

4.1. Data-generating processes

Our examples employ data-generating processes in which X is determined as follows:

X = xk iff ck−1 < δ1Z + δ2U0 + δ3U1 + δ4V ≤ ck, k ∈ {1, . . . , K} (4.1)

⎡
⎢⎣

U0

U1

V

⎤
⎥⎦ ∼ N

⎛
⎜⎝

⎛
⎜⎝

0

0

0

⎞
⎟⎠ ,

⎛
⎜⎝

1 γ0 0

γ0 γ1 + γ 2
0 0

0 0 1

⎞
⎟⎠

⎞
⎟⎠ , (U0, U1, V ) || Z.

We report four calculations, in all of which there are the following settings:

(α0, α1, γ0, γ1) = (0,−1,−1, 1) ,

K = 4, (x1, x2, x3, x4) = (−1, 0, 1, 2), (c0, c1, c2, c3, c4) = (−∞,−1, 0, 1,∞).

In two cases (N1 and N2), the parameters are set such that X is endogenous, and in another
two cases (X1 and X2), they are set such that X is exogenous. We consider two possibilities for
the coefficient δ1 multiplying instrument Z in the determination of X in (4.1): δ1 = 1 (N1 and
X1) and δ1 = 1.5 (N2 and X2). All parameter settings are shown in Table 1. Table 2 shows the
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Table 2. Conditional probabilities P [X = x|z].

z = −2 z = −1 z = +1 z = +2

δ1 = 1.0 x = −1 0.760 0.500 0.079 0.017

x = 0 0.161 0.260 0.161 0.062

x = 1 0.062 0.161 0.260 0.161

x = 2 0.017 0.079 0.500 0.760

δ1 = 1.5 x = −1 0.928 0.642 0.034 0.002

x = 0 0.058 0.221 0.103 0.013

x = 1 0.013 0.103 0.221 0.058

x = 2 0.002 0.034 0.642 0.928

two conditional distributions of X given Z. In all cases, the support of the instrumental variable
is Z = {−2,−1, 1, 2}.

If the exogeneity restriction X || β is imposed then, as shown in Appendix C, the resulting
model point identifies the full parameter vector θ . In the structures delivering probability
distributions in cases X1 and X2, it is the case that X || β holds. However, we calculate identified
sets for a model without the exogeneity restriction and thereby show the substantial loss in
identifying power arising when exogeneity cannot be assumed to hold.

4.2. Calculation of probabilities

To illustrate identified sets, we computed the conditional probabilities P [X = xk|z] and
P [Y = 0 ∧ X = xk|z]. P [X = xk|z] is given by

P [X = xk|z] = 	

(
ck − δ1z

λ1/2

)
− 	

(
ck−1 − δ1z

λ1/2

)
,

where 	(·) denotes the standard normal distribution function and

λ ≡ δ2
2 + 2δ2δ3γ0 + δ2

3

(
γ1 + γ 2

0

) + δ2
4 . (4.2)

The conditional probability P [Y = 0 ∧ X = xk|z] can be calculated as the difference between
two normal orthant probabilities because, when Z = z, we have

(Y = 0 ∧ X = xk) ⇔ (Qk ≤ −α0 − α1xk) ∧ (
ck−1 − δ1z < Ṽ ≤ ck − δ1z

)
,

where

Ṽ ≡ δ2U0 + δ3U1 + δ4V, Qk ≡ U0 + xkU1.

Because (U0, U1, V ) || Z, conditional on Z = z, we have

(
Ṽ

Qk

)
∼ N

⎛
⎜⎜⎜⎝

[
0

0

]
,

⎡
⎢⎢⎢⎣

λ δ2 + γ0 (δ3 + δ2xk)

− δ3xk(γ1 + γ 2
0 )

δ2 + γ0 (δ3 + δ2xk)

−δ3xk(γ1 + γ 2
0 ) (1 + xkγ0)2 + x2

k γ1

⎤
⎥⎥⎥⎦

⎞
⎟⎟⎟⎠ ,
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from which we see that P [Y = 0 ∧ X = xk|z] is indeed the difference between two normal
orthant probabilities. The conditional probability P [Y = 1 ∧ X = xk|z] can then be obtained
by subtracting P [Y = 0 ∧ X = xk|z] from P [X = xk|z].11

4.3. Calculation of projections

We calculate two-dimensional projections of the four-dimensional (4D) identified set for θ0,
giving results for the projection on to the plane on which lie (α0, α1). This is the identified set for
the mean of the random coefficients (β0, β1).

We calculate the projections as follows.12 The full 4D identified set is

�∗ = {
θ ∈ � : ∀S ∈ S, GU (S, θ ) ≥ max

z∈Z
P [T (X, Y ) ⊆ S|z]

}
, (4.3)

where S = T∪ (z) is a collection of 32 core-determining sets of the form described for
Example 2.1 in Section 3, specifically (3.11), in the present case where X has four points
of support. GU (S, θ ) is the probability mass placed on the set S by a bivariate normal
distribution with parameters θ . The probabilities P [T (X, Y ) ⊂ S|Z = z], z ∈ Z , are identified
under Restriction 2.1.

For computational purposes, we make use of the following discrepancy measure

D(θ ) ≡ max
z∈Z,S∈S

(P [T (X, Y ) ⊆ S|z] − GU (S, θ )) , (4.4)

which can be used to characterize the full 4D identified set as follows:

�∗ = {θ ∈ � : D(θ ) ≤ 0} .

To compute identified sets for subvectors of parameters, let θc denote a list of one or more
elements of θ , and let θ−c denote the remaining elements of θ . The projection of the identified
set on to the space in which θc resides is the set of values of θc for which there exists θ−c such
that θ = (θc, θ−c) lies in the identified set �∗. We calculate this set, �∗

c , as the set of values θc

for which the value of minθ−c
D(θc, θ−c) is non-positive:

�∗
c = {

θc : min
θ−c

D(θc, θ−c) ≤ 0
}
. (4.5)

Here, D(θc, θ−c) is to be understood as the function defined in (4.4) applied to that value of θ

with subvectors equal to θc and θ−c. We perform this minimization using the optim function in
base R.

Figure 1 shows the projections of the identified set in cases N1 and N2 in which X is
endogenously determined. The probability generating value (α0, α1) = (0,−1) is plotted. When
the parameter δ1 = 1.5 (drawn in beige, labelled Case N2), the area of the projection is smaller
than when δ1 = 1.0 (drawn in blue, labelled Case N1). Most values in the projection when
δ1 = 1.5 lie inside the projection obtained when δ1 = 1.0, but at high values of α0 there is a very
small region of the first projection that is not contained in the latter. Note that this can happen

11 In our R programs (R Core Team, 2012), the bivariate normal orthant probabilities are calculated using the pmvnorm
program provided in the mvtnorm package (Genz et al., 2012), which implements computation of multivariate normal
and t probabilities from Genz and Bretz (2009).

12 In this section, we write T (X, Y ) in place of T (W, X, Y ) because there are no exogenous covariates W in this
model.
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Figure 1. Projections of identified sets for cases N1 and N2.

because even though the slope coefficient on Z in (4.1) is larger in the δ1 = 1.5 case, this does
not guarantee that the quantity maxz∈Z P [T (W,X, Y ) ⊂ S|z] providing the lower bound of the
inequalities in (4.3) is larger than in the δ1 = 1.0 case. Figure 2 similarly illustrates projections of
the identified set for cases X1 and X2 in which X is exogenously determined in the probability
generating process. In this case, the projection of the identified set when δ1 = 1.5 is a subset
of that when δ1 = 1.0. The identified sets are larger in the exogenous X cases, even though the
predictive power of the instrument is the same as in the endogenous X cases. This occurs because
the scale on which (α0, α1) is measured differs in the two cases.13 Computations for both figures
were implemented as described in Appendix B, with the alphahull parameter set to 5.

In all cases, the projections contain no positive values of α1, so the model allows one to sign
α1 and the hypothesis H0 : α1 ≥ 0 is falsifiable.

5. CONCLUSION

In this paper, we have provided set identification analysis for a model of binary response featuring
random coefficients and potentially endogenous regressors. The regressors in question are not

13 The scale difference arises because of the differential variability of the index U0 + U1X in (2.1) as measured by the
conditional variance given X and Z. Calculations using simulated values of the unobservables show that this is larger at
every value of X and Z in the exogenous X case.
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Figure 2. Projections of identified sets for cases X1 and X2.

restricted to be distributed independently of the random coefficients. We have shown that with an
IV restriction we can apply analysis along the lines of that in CRS and Chesher and Rosen (2013)
to characterize the identified set as those distributions that satisfy a collection of conditional
moment inequalities. In our numerical illustrations of Section 4, there are 32 such inequalities,
one for each core-determining set, which hold conditional on any value of the instrument. While
our focus was on identification, recently developed approaches for estimation and inference
based on such characterizations, such as those of Andrews and Shi (2013) and Chernozhukov
et al. (2013), are applicable. In some settings, the number of core-determining sets in the full
characterization can be quite large, necessitating some care in choosing the number to employ in
small samples. Issues that arise as a result of many moment inequalities have been investigated
in an asymptotic paradigm by Menzel (2009). With discrete endogenous variables having finite
support, the number of conditional moment inequalities can be large, but is necessarily finite,
and future research on finite sample approximations for inference and computational issues is
warranted.

We have provided numerical illustrations of identified sets under particular data-generation
processes. We have given an overview of the computational approach we used for computing
these identified sets, and details are set out in Appendix B.

Although our computational approaches are adequate for the examples considered, we have
no doubt that they can be improved, either by developing more efficient implementations,
or by devising new computational approaches altogether. Nonetheless, the illustrations serve
to demonstrate the feasibility of computing identified sets in one particular setting in the
general class of IV models studied in Chesher and Rosen (2013). These IV models can admit
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high-dimensional unobserved heterogeneity, for example through a random-coefficients
specification such as the one studied in this paper.
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APPENDIX A: PROOF OF THEOREM 3.1

Proof of Theorem 3.1: Following the same steps as in the proof of Theorem 1 of CRS applied to the
random set T (W,X, Y ) and exogenous variables Z̃ = (W,Z) in place of Tv (Y, X; u) and instruments Z in
the notation of that paper, we obtain

F∗ = {F ∈ F : ∀S ∈ F (B) , F (S) ≥ P [T (W,X, Y ) ⊆ S|w, z] , a.e. (W,Z)} ,

where F (B) denotes all closed subsets of B. Then, the application of Theorem 2 of CRS, specifically part
(i), further gives that F (B) above can be replaced with unions of members of the support of T (W,X, Y ).
Then, using the same reasoning as in Lemma 1 of Chesher and Rosen (2012), it follows that when
considering probabilities conditional on (W,Z) = (w, z), F (B) can be replaced by unions of elements of
the conditional support of T (W,X, Y ) given the realization of the exogenous variables, namely T∪ (w, z).
The representation

F∗ = {
F ∈ F : ∀S ∈ T∩ (w, z) , F (S) ≤ P [T (W,X, Y ) ∩ S �= ∅|w, z] , a.e. (W, Z)

}
,

follows from the equivalence

T1 ∪ · · · ∪ TJ = (
T c

1 ∩ · · · ∩ T c
J

)c
,

that for all S ⊆ B, F (Sc) = 1 − F (S), and for all z̃ ∈ Z̃ ,

P [T (W,X, Y ) ⊆ S|z̃] = 1 − P
[
T (W,X, Y ) ∩ Sc �= ∅|z̃] . �

APPENDIX B: COMPUTATIONAL DETAILS

In this appendix, we provide computational details for the numerical illustrations of Section 4 not provided
in the main text.

B.1. Calculation of probabilities GU (S, θ )

Each set S in the collection T∪(z) = T∪ is the union of one or more contiguous cones centred at the point
(α0, α1), which we refer to as elementary cones. The slopes of the rays defining the cones are determined
entirely by the values of the points of support of X. In the case K = 4, there are eight such cones. For each
value of θ = (α0, α1, γ0, γ1) encountered, we calculate the probability mass supported on each of the eight
cones by a bivariate normal density function with mean (0, 0) and variance matrix entirely determined by
(γ0, γ1). The probability mass supported by a particular set S at the value of θ is obtained by adding the
masses on the appropriate cones. Thus, we are able to compute the probability mass GU (S, θ ) allocated to
each of the 32 core-determining sets by summing probabilities obtained for the eight elementary cones.

The probability masses on each elementary cone are obtained by numerical integration after re-
expressing the integrand in polar coordinates. In our R code, the numerical integrations are carried out
by using the adaptIntegrate function provided in the cubature package (Johnson, 2011). We have also
programmed this calculation in MATHEMATICA using the NIntegrate function and an integrand, which is
the appropriate bivariate normal density function with values outside the cone of interest set to zero using
the Boole function. We obtained very close agreement.

The numerical integrations are necessarily computationally burdensome and some inaccuracy is
inevitable, which has a knock-on effect on the determination of membership of projections.
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B.2. Calculation of projections

First approximations to the (α0, α1)-projections of identified sets were obtained by evaluating over a coarse
grid of values of (α0, α1). Refinements were then obtained by using a bisection procedure to search down
a sequence of rays defined by angles γ ∈ [0, 2π ], each passing through the probability-generating value
(α0, α1) = (0, −1), which is known to lie in the projection. Each ray was stepped along until a value of
(α0, α1) outside the projection was found. A value midway between this value and the last value found
in the projection was then evaluated for membership of the projection. By repeated bisection, a good
approximation to the position of the boundary of the identified set along the ray under consideration was
obtained. Sweeps were also made in directions parallel to the α0 and α1 axes to refine the boundary
approximations in areas where it was relatively non-linear. These were helpful in confirming the near
convexity of the projections, which is sufficient for our bisection-along-rays procedure to give a good view
of the entire boundary.

The objective function minimized in (4.5) when determining membership of the identified set is not
very well behaved. There are points at which it is not differentiable and there appear to be some places in
which there are small jump discontinuities. One difficulty is that the terms GU (S, θ ) depend upon eight
numerical integrals of bivariate normal density functions, and the inaccuracy in calculating these affects the
computation of the minimum in (4.5). The effect is likely to be dependent on the parameter value (α0, α1)
being considered.

There is plenty of scope for improvement in the numerical procedures employed here. In particular, a
very small further investment would deliver a much more efficient method of searching down a ray for an
initial point outside the identified set. The method we use relies on the near convexity of the projection

There were a few cases in which isolated points appeared to be in the projections. These were
examined individually and, in most cases, by choosing different starting points for the parameters θ−c of
the minimization, the points were found on recalculation not to be in the projection. The remaining isolated
points had a minimized value of the objective function in (4.5) that was very close to zero. The graphs of
the identified set shown here were produced by assigning points with values of the minimized objective
function less than 0.001 to the projection.

B.3. Graphics

The projections calculated using our approximations are not convex although the departures from convexity
are quite small. We do not know whether the projections are, in fact, convex with the non-convexity arising
because of approximation errors. In this circumstance, it seems unwise to draw boundaries of projections
as the convex hulls of the points calculated to lie in the projections, although in fact there is not so great an
error produced by proceeding in this way. The projections drawn in Figures 1 and 2 are alpha-convex hulls
calculated using the ahull function provided in the R package alphahull (Pateiro-Lopez and Rodriguez-
Casal, 2009) with the alphahull parameter set equal to 5. We experimented with different values of this
parameter and found that the differences in the illustrations were minute.

APPENDIX C: IDENTIFICATION IN EXAMPLE 2.1 WITH EXOGENOUS X

Consider the setting of Example 2.1, but where, in addition, X is restricted to be exogenous. Here, we show
that the Gaussian random-coefficients probit model is point identifying in this case.

The model stipulates that

Y = 0 ⇔ U0 + U1X ≤ −α0 − α1X

and, with X || U ,

(U0 + U1X) |X = x ∼ N (0, 1 + 2γ0x + σx2),
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where σ ≡ γ 2
0 + γ1 is the variance of U1.

It follows that

P [Y = 0|X = x] = 	

(
−α0 − α1x(

1 + 2γ0x + σx2
)1/2

)
,

and thus

g(x)
(
1 + 2γ0x + σx2

)1/2 = −α0 − α1x, (C.1)

where

g(x) ≡ 	−1 (P [Y = 0|X = x])

is point identified under Restriction 2.1.
The Gaussian random-coefficients probit model with exogenous X is point identifying if there is a

unique admissible solution for θ = (α0, α1, γ0, γ1) to the system of equations generated by (C.1) when x

takes all values in the support of X. Admissible solutions are real-valued with γ1 + γ 2
0 ≥ 0.

In our numerical illustrations, X = {−1, 0, 1, 2} and the parameter values employed are

(α0, α1, γ0, γ1) = (0, −1, −1, 1) .

Thus, σ = 2 and

g(−1) = −1/
√

5, g(0) = 0, g(1) = 1, g(2) = 2/
√

5. (C.2)

Setting x = 0 in (C.1) delivers

α0 = g(0) = 0.

Using this and (C.2) and setting x = −1 in (C.1) delivers

α1 = − 1√
5

(1 − 2γ0 + σ )1/2 . (C.3)

Setting x = 1 and then x = 2 in (C.1) gives the following pair of equations in (γ0, σ ):

(1 + 2γ0 + σ )1/2 = −α1; (C.4)

2√
5

(1 + 4γ0 + 4σ )1/2 = −2α1. (C.5)

Solving (C.3)–(C.5), we have the unique solution (α1, γ0, σ ) = (−1, −1, 2), from which it follows that
γ1 = 1, and thus θ = (α0, α1, γ0, γ1) is point identified.
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